**MATH 450** 

## Advanced Mathematics for Engineers I

## Review Sheet #2 for Final Exam

Problem 1. Determine whether the following statements are True or False. Justify your answer.

(a) If  $F\{f(x)\} = \hat{f}(\omega)$  and  $F\{g(x)\} = \hat{g}(\omega)$ , then  $F\{f(x) + g(x)\} = \hat{f}(\omega) + \hat{g}(\omega)$ .

(b) If  $F^{-1}{\hat{f}(\omega)} = f(x)$  and  $F^{-1}{\hat{g}(\omega)} = g(x)$ , then  $F^{-1}{\hat{f}(\omega)\hat{g}(\omega)} = f(x)g(x)$ .

(c) If  $C_1$  and  $C_2$  are two different contours with same starting and ending points (*i.e.*,  $C_1$  and  $C_2$  both start at  $z_1$  and end at  $z_2$ ), then  $\oint_{C_1} \bar{z} dz = \oint_{C_2} \bar{z} dz$ .

(d) The complex valued function  $f(z) = z^2$  is differentiable everywhere in  $\mathbb{C}$ . (e)  $\cosh(z) = \frac{e^z + e^{-z}}{2}$ .

Problem 2. Find the image of the domains described below under the given transformation:

(a)  $D = \{z \in \mathbb{C} : |z| < 1\}, w(z) = \frac{\sqrt{2}}{2}(1+i)\frac{z+1}{z-1}.$ (b)  $D = \{z \in \mathbb{C} : |z-1| < 1\}, w(z) = \frac{1}{z}.$ (c)  $D = \{z \in \mathbb{C} : -\frac{\pi}{4} < \operatorname{Arg} z < \frac{\pi}{4}\}, w(z) = \frac{z}{z-1}.$ 

**Problem 3.** Solve Laplace equation,  $\nabla^2 \Phi = 0$ , over the domain inside the circle  $x^2 + y^2 = 4$  and outside the circle  $(x-1)^2 + y^2 = 1$ , with boundary conditions  $\Phi = 10$  on the outer circle, and  $\Phi = 30$  on the inner circle, give your answer in terms of x and y. [Hint: use a bi-linear transformation to map the given domain into an infinite strip.]

**Problem 4.** Solve Laplace equation,  $\nabla^2 \Phi = 0$ , over the domain outside the circle through the points 2, -2, and 4*i*, and the circle through the points 2, -2, and -4i, with boundary conditions  $\Phi = 20$  on the upper circle, and  $\Phi = 0$  on the lower circle, give your answer in terms of *x* and *y*. [Hint: use a bi-linear transformation to map the given domain into an infinite wedge, then use polar coordinates to solve the Laplace equation.]

**Problem 5.** Find bi-linear transformations that map:

(a) The lower half plane to the disk |w + 1| < 1 [Hint: do it as a composition of rotations, scalings, translations, and/or inversions.]

(b) The unit disk |z| < 1 onto the right half plane and taking z = -i to the origin.

**Problem 6.** Evaluate the following integrals where C is the contour displayed below.

