Advanced Mathematics for Engineers I

Review Sheet #1 for Final Exam

Problem 1. Determine whether the following statements are True or False. Justify your answer.

(a) The transformation $w = \frac{1}{z}$ maps a circle centered at the origin into a line through the origin.

(b) The composition of two bi-linear transformations is a bi-linear transformation.

(c) The Laplace equation $\nabla^2 \Phi = 0$ becomes $\Phi_{uu} - 2\Phi_{uv} + \Phi_{vv} = 0$ under the transformation $w = \frac{3iz-2}{z+5i}$.

(d) A complex valued function, f(z) = u(x, y) + iv(x, y), is said to be analytic at $z = z_0$ if $u_x = v_y$ and $u_y = -v_x$ at $z = z_0$.

(e) If f(z) satisfies $\int_C f(z) dz = 0$ where C is a positively oriented simple closed contour, then f(z) is analytic on and inside C.

(f) The function f(z) = Im(z) is analytic in \mathbb{C} .

$$(\mathbf{g})\,\sin\left(-z\right)=-\sin z.$$

(h) $Log(z_1z_2) = Log(z_1) + Log(z_2)$. Here Log(z) denotes the principal branch of the logarithmic function, log(z).

(i) The image of the hyperbola xy = 9 under the transformation $w(z) = z^2$ is a line.

(j) The Inverse Fourier Transform of $\hat{u}(\omega, t)$ satisfies $F^{-1}\{\hat{u}\} = \frac{1}{i\omega} u_x(x, t)$.

Problem 2. Solve the diffusion equation with convection:

$$u_t = ku_{xx} + cu_x, \quad -\infty < x < \infty, \quad u(x,0) = f(x).$$

Problem 3. Solve the wave equation, $u_{tt} - c^2 u_{xx} = 0$, for $x \in \mathbb{R}$, t > 0, with initial conditions:

$$u(x,0) = \begin{cases} 2 & \text{if } x \in [0,2] \\ 0 & \text{otherwise} \end{cases}, \qquad u_t(x,0) = \begin{cases} x & \text{if } x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

Problem 4. Use the method of characteristics to solve the following *quasi-linear* hyperbolic PDEs subject to the initial conditions $\rho(x, 0) = f(x)$

(a) $\rho_t + c\rho_x = e^{-3x}$ (b) $\rho_t + t\rho_x = 5$ (c) $\rho_t - t^2\rho_x = -\rho$ (d) $\rho_t + x\rho_x = t$ **Problem 5.** Use polar coordinates to solve Laplace equation, $\nabla^2 u = 0$ inside the circle $x^2 + y^2 = R^2$ with boundary conditions

$$|u(0,\theta)| < \infty, \quad u(R,\theta) = 12\cos 2\theta$$

 $\frac{\partial u}{\partial n}(r,0) = \frac{\partial u}{\partial n}(r,2\pi) = 0.$

Problem 6. Use polar coordinates to solve Laplace equation, $\nabla^2 u = 0$, in the domain 1 < r < 3, $0 < \theta < \pi$, with boundary conditions $u(1, \theta) = u_{\theta}(r, 0) = u_{\theta}(r, \pi) = 0$, and $u(3, \theta) = 20$.

Problem 7. Solve Laplace equation, $\nabla^2 \Phi = 0$ in a domain consisting of the *xy*-plane with the circles $x^2 + (y-1)^2 = 9$ and $(x-5)^2 + (y-1)^2 = 1$ cut off, with $\Phi = 10$ on the first circle and $\Phi = 0$ on the second one. Give your answer in terms of x and y.

Problem 8. Find bi-linear transformations that map the given region in the left (D) onto that in the right (Ω) :

(a) $D = \{z \in \mathbb{C} : |z| < 1\}, \quad \Omega = \{w \in \mathbb{C} : \operatorname{Im}(w) > 0\}$ (b) $D = \{z \in \mathbb{C} : |z - 1| < 1\}, \quad \Omega = \{w \in \mathbb{C} : \operatorname{Im}(w) > 0\}$ (c) $D = \{z \in \mathbb{C} : |z| < 1\}, \quad \Omega = \{w \in \mathbb{C} : \operatorname{Im}(w) > 0\}$

(d) $D = \{z \in \mathbb{C} : |z+1| < 1\}, \quad \Omega = \{w \in \mathbb{C} : \operatorname{Im}(w) < 0\}$

(e) D: The region between the circle through the points -2i, 2i, and -4, and the circle through the points -2i, 2i, and 2i, Ω : an infinite wedge.

Problem 9. Evaluate the following contour integrals (contours are assumed to traversed the given path only once):

- (a) $\oint_{|z|=2} \sin z \, dz$
- (b) $\oint_{|z|=2} \frac{\sin z}{(z-1)(z-3)} dz$
- (c) $\oint_{|z|=4} \frac{\sin z}{(z-1)(z-3)} dz$
- (d) $\oint_{|z|=2} \frac{e^z}{(z-1)(2z-3)} dz$
- (e) $\oint_{|z|=1} \frac{\sin z}{(2z-1)z^2} dz$
- (f) $\oint_{|z|=1} \frac{\cos z}{(z-4)(z+2)} dz$