Advanced Mathematics for Engineers I

Review Sheet #1 for Midterm Exam

Problem 1. Determine whether the following statements are True or False. Justify your answer. (a) If $y_1(x)$ and $y_2(x)$ are two solutions of

$$y'' + 2y' + y = 0, \qquad x \in [0, L],$$

then $y(x) = \alpha y_1(x) + \beta y_2(x), \ \alpha, \beta \in \mathbb{R}$ is the general solution of the equation.

- (b) $\sin ix = \sinh x$
- (c) $\cosh ix = \cos x$
- (d) For any complex valued function w(z), $w(\bar{z}) = \overline{w(z)}$
- (e) The power series $\sum_{n=0}^{\infty} \frac{-1}{n+1} x^{n+1}$ converges to $\ln(1-x)$, for $x \in [-1,1)$
- (f) $|e^{ix}| = 1$ for all $x \in \mathbb{R}$
- (g) If z = x + iy, then $|e^z| = e^x$
- (h) Let

$$f(x) = \begin{cases} \frac{1}{2}x & \text{if } -\pi < x < 2\\ 2 & \text{if } 2 < x \le \pi. \end{cases}$$

The Fourier series $a_0 + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$, with

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \cos nx \, dx, \text{ and } b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \sin nx \, dx,$$

converges to f(x) for all $x \in [-\pi, \pi]$.

(i) The function $f(x) = x^4 + \cos 3\pi x$ can be written as $f(x) = f_e(x) + f_o(x)$, where $f_e(x)$ is even, and $f_o(x)$ is odd.

(j) If f(x) is odd, then f'(x) is also odd

Problem 2. Use the method of undetermined coefficients to obtain the general solution of

(a) $y'' + y = 3\sin 2x - 5 + 2x^2$ (b) $y'' - 2y' + y = x^2 e^x$

Problem 3. In section 4.2 we saw how to find a power series solution for second order linear ODEs of the form y'' + p(x)y' + q(x)y = 0. Consider the equation

$$x^2y'' - y = 0, \qquad x_0 = 2.$$

- (a) Identify p(x) and q(x). Explain.
- (b) Seek a power series solution around x_0 .
- (c) Write your solution as the linear combination of two solutions $y_1(x)$ and $y_2(x)$.
- (d) Show that $y_1(x)$ and $y_2(x)$ are linearly independent.

Problem 4. Find the Fourier series of $f(x) = |x|, x \in [-\pi, \pi]$.

Problem 5. Consider the function

$$f(x) = \begin{cases} -1 & \text{if } x \in [-\pi, 0] \\ \\ 1 & \text{if } x \in (0, \pi]. \end{cases}$$

(a) Find its Fourier series.

(b) To what value does the series converge at x = 0?

Problem 6. Consider the function f(x) = 2 + x on the interval $x \in [0, 3]$.

- (a) Find an odd periodic extension, $f_{ext}(x) = f_{ext}(x+L)$, with period L = 6.
- (b) Draw the graph of $f_{ext}(x)$ and label the lines of (anti)symmetry of the graph.
- (c) Find the coefficients of a Fourier series that converges to $f_{ext}(x)$.

Problem 7. Consider the Stum-Liouville problem

$$y'' + \lambda y = 0, \ y'(-1) = 0, \ y'(1) = 0.$$

- (a) Identify p(x), q(x), w(x), α , β , γ , and δ .
- (b) Find its eigen pairs $(\lambda_n, \phi_n(x))$.
- (c) Find the coefficients a_n of the expansion $f(x) = \sum_{n=1}^{\infty} a_n \phi_n(x)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \in [-1,0] \\ \\ 1 & \text{if } x \in (0,1]. \end{cases}$$

Problem 8. Use the method of separation of variables to solve the heat equation, $u_t = \alpha^2 u_{xx}$, with boundary conditions u(0,t) = 25 and $u_x(4,t) = 0$, and initial conditions u(x,0) = f(x) = 25.