Midterm Review Sheet I – Linear Algebra

[Sources: Linear Algebra and its Applications, 4th Edition, Gilbert Strang, Brooks/Cole; and Linear Algebra, Geodesy, and GPS, Gilbert Strang and Kai Borre, Wellesley-Cambridge Press]

Exam information:

- Date and Location: The midterm exam will take place on Thursday, October 28, from 10 to 11.50AM at LO 1322
- Topics: Linear Algebra (Chapter 2) and Probability (Chapter 3)
- Notes: You can bring one page of notes, one side of an 8.5 in. × 11 in. sheet.

Additional Notes in Linear Algebra

Some Examples and Definitions:

- Examples of Vector Spaces:
 - \mathbb{R}^n Spaces: \mathbb{R}^2 all vectors of two real components (including the zero vector), *i.e.*, the plane; \mathbb{R}^3 all vectors with three real components; . . . ; \mathbb{R}^n all vectors of n real components.
 - Function Spaces: \mathbf{F} the space of all real functions f(x); C^2 the space of all real continuous functions with continuous first and second derivatives.
 - Matrix Spaces: M The space of all real 2 by 2 matrices.
 - Other Vector Spaces: **Z** The vector space consisting only of a zero vector.

Definition. A *subspace* or a vector space is a set of vectors (including the zeros vector) of a vector space that satisfies two conditions: If \mathbf{u} and \mathbf{v} are vectors in the subspace, and c is any scalar, then

- $\mathbf{u} + \mathbf{w}$ is also in the subspace
- \bullet cu is also in the subspace

Examples: (1) \mathbb{R}^2 is a subspace of \mathbb{R}^2 , \mathbb{R}^2 consists of all vectors in \mathbb{R}^3 whose third component is zero. (2) Any line on the plane through (0,0) is a subspace of \mathbb{R}^2 . (3) All upper triangular matrices in \mathbf{M} form a subspace of \mathbf{M} .

Definition. The column space of a matrix A consists of all linear combinations of the columns of A. These combinations are the vectors A**x**.

Remarks: (1) If $A \in \mathbb{R}^{m \times n}$ its columns have m entries, so the columns belong to \mathbb{R}^m and the column space of A is a subspace of \mathbb{R}^m . (2) The system $A\mathbf{x} = \mathbf{b}$ has (at least) a solution if \mathbf{b}

is in the column space of A. The solution \mathbf{x} is the vector whose entries are the coefficients of the linear combination.

Definition. The column space of A is called the range of A and it is denoted by R(A).

Example: The column space of the matrix

$$A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix}$$

consist of all linear combinations

$$x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}, \quad x_1, x_2 \in \mathbb{R}$$

These linear combinations define a plane through the origin in \mathbb{R}^3 , a subspace of \mathbb{R}^3 .

Definition. The nullspace (or kernel) of a matrix $A \in \mathbb{R}^{m \times n}$ consists of all solutions to $A\mathbf{x} = \mathbf{0}$ and it is denoted by N(A). These vectors \mathbf{x} are in \mathbb{R}^n .

Remark: The system $A\mathbf{x} = \mathbf{b}$ has a solution if \mathbf{b} is in the range of A, and the solution is unique if the only element in the nullspace of A is $\mathbf{0}$.

Definition. The row space of a matrix A is the vector space spanned by its rows. It coincides with the range of A^T .

Definition. The rank, r, of a matrix A is the number of linearly independent rows/columns of A; $r \leq \min\{m, n\}$.

Definition. A basis for a vector space is a collection of linearly independent vectors that span the space. The dimension of a space is the number of vectors in any basis of the space.

Definition. The nullity of a matrix A is the dimension of its nullspace

Fundamental Theorem of Linear Algebra $A \in \mathbb{R}^{m \times n}$

- 1. R(A) column space of A; dimension r.
- 2. N(A) nullspace of A; dimension n-r.
- 3. $R(A^T)$ row space of A^T ; dimension r.
- 4. $N(A^T)$ nullspace of A^T ; dimension m-r.

Singular Value Decomposition. (SVD) of a matrix $A \in \mathbb{R}^{m \times n}$, $A = UDV^T$, where:

- $U \in \mathbb{R}^{m \times m}$ orthogonal matrix whose columns are (1) the eigenvectors of AA^T , (2) its first r columns form a basis for R(A), and (3) its last m-r columns form a basis for $N(A^T)$.
- $D \in \mathbb{R}^{m \times n}$ diagonal matrix with the r non-singular values of A which are the square root of the nonzero eigenvalues of both AA^T and A^TA .
- $V \in \mathbb{R}^{n \times n}$ orthogonal matrix whose columns are (1) the eigenvectors of $A^T A$, (2) its first r columns a basis for $R(A^T)$, and (3) its las n-r columns form a basis for N(A).

• Note: AV = UD. That is, when A multiplies column v_j of V, it produces d_j times a column of U.

Problems in Linear Algebra

Problem 1. Determine whether the following statements are **T**rue or **F**alse. Justify your answer.

- (a) If $A \in \mathbb{R}^{m \times n}$, then A and A^T have the same nullspaces.
- (b) If the columns of a matrix are linearly dependent so are the rows.
- (c) The column space of a 2 by 2 matrix is the same as its row space.
- (d) The columns of a matrix are a basis for its column space.
- (e) Suppose the columns of a 4 by 4 matrix are a basis for \mathbb{R}^4 , then the equation $A\mathbf{x} = \mathbf{0}$ has only the solution $\mathbf{x} = \mathbf{0}$

Problem 2. Describe the column spaces and nullspaces of the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}.$$

Problem 3. For which numbers c and d do this matrices have rank r=2?

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}$$

Problem 4. Consider the system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 2 & \alpha \\ 4 & 8 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 16 \\ \beta \end{bmatrix}.$$

For what values of α and β does the system have:

- (a) No solution?
- (b) Infinitely many solutions?
- (c) Exactly one solution?

Problem 5. The matrix B has eigenvalues 0, 1,and 2. Find:

- (a) The rank of B.
- (b) The determinant of B^TB .
- (c) The eigenvalues of B^TB .
- (d) The eigenvalues of $(B+I)^{-1}$

Problem 6. Suppose $A = \mathbf{u}\mathbf{v}^T$ is a column times a row (a rank-1 matrix)

- (a) Show that \mathbf{u} is an eigenvector of A by multiplying A times \mathbf{u} . What is the corresponding eigenvalue?
- (b) What are the other eigenvalues of A? Why?
- (c) Compute the trace of A by (i) adding its diagonal entries, and (ii) adding its eigenvalues

Problem 7. Singular Value Decomposition: $A = UDV^T$. Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$, and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, are two orthonormal bases for \mathbb{R}^n . Construct the matrix that transforms each \mathbf{v}_j into \mathbf{u}_j to give $A\mathbf{v}_1 = \mathbf{u}_1, \dots, A\mathbf{v}_n = \mathbf{u}_n$.

Problem 8. Find UDV^T if A has orthogonal columns $\mathbf{w}_1, \dots, \mathbf{w}_n$ of lengths d_1, \dots, d_n .