
Chapter 7

UML-BASED WEB ENGINEERING
An Approach Based on Standards

Nora Koch,1, 2 Alexander Knapp,1 Gefei Zhang,1 Hubert Baumeister3

1Institut für Informatik, Ludwig-Maximilians-Universität München, Germany,

{kochn, knapp, zhangg }@pst.ifi.lmu.de

2F.A.S.T. GmbH, Germany, koch@fast.de

3Informatik og Matematisk Modellering, Danmarks Tekniske Universitet, Lyngby, Denmark,

hub@imm.dtu.dk

7.1 OVERVIEW

UML-based Web Engineering (UWE; www.pst.ifi.lmu.de/projekte/uwe)
came up at the end of the 1990s (Baumeister et al., 1999; Wirsing et al.,
1999) with the idea to find a standard way for building analysis and design
models of Web systems based on the then-current methods of OOHDM
(Schwabe and Rossi, 1995), RMM (Isakowitz et al., 1995), and WSDM (de
Troyer and Leune, 1998). The aim, which is still being pursued, was to use a
common language or at least to define meta-model-based mappings among
the existing approaches (Koch and Kraus, 2003; Escalona and Koch, 2006).

At that time the Unified Modeling Language (UML), which evolved
from the integration of the three different modeling techniques of Booch,
OOSE, and OMT, seemed to be a promising approach for system modeling.
Since those early integration efforts, UML became the “lingua franca” of
(object-oriented) software engineering (Object Management Group, 2005).
A prominent feature of UML is that it provides a set of aids for the definition
of domain-specific modeling languages (DSL)—so-called extension
mechanisms. Moreover, the newly defined DSLs remain UML-compliant,
which allows the use of all UML features supplemented, e.g., with Web-
specific extensions.

Both the acceptance of the UML as a standard in the development of
software systems and the flexibility provided by the extension mechanisms

158 N. Koch et al.

are the reasons for the choice of the Unified Modeling Language instead of
the use of proprietary modeling techniques. The idea followed by UWE to
adhere to standards is not limited to UML. UWE also uses XMI as a model
exchange format (in the hopes of future tool interoperability enabled by a
truly portable XMI), MOF for meta-modeling, the model-driven principles
given by OMG’s Model-Driven Architecture (MDA) approach, the
transformation language QVT, and XML.

UWE is continuously adapting, on the one hand, to new features of Web
systems, such as more transaction-based, personalized, context-dependent,
and asynchronous applications. On the other hand, UWE evolves to
incorporate the state of the art of software engineering techniques, such as
aspect-oriented modeling, integration of model checking using Hugo/RT
(Knapp et al., 2002; www.pst.ifi.lmu.de/projekte/hugo), and new
model transformation languages to improve design quality.

The remainder of this chapter is structured as follows: The features
distinguishing UWE’s development process, visual notation, and tool
support are briefly outlined below. UWE’s modeling techniques are
discussed step by step in Section 7.2 by means of the online movie data-
base case study. The UWE extensions of the UML meta-model are
outlined in Section 7.3. UWE’s model-driven process and, in particular, the
model transformations integrated into the process are described in
Section 7.4. The CASE tool ArgoUWE, which supports the UWE notation
and method, is described in Section 7.5. Finally, we give an outlook on
future steps in the development of UWE.

7.1.1 Characteristics of the Process

The development of Web systems is subject to continuous changes in user
and technology requirements. Models built so far in any stage of the
development process have to be easily adaptable to these changes. To cope
efficiently with the required flexibility, UWE advocates a strict separation of
concerns in the early phases of the development and implements a model-
driven development process, i.e., a process based on the construction of
models and model transformations. The ultimate challenge is to support a
development process that allows fully automated generation of Web
systems.

7.1.1.1 Separation of Concerns

Similarly to other Web Engineering methods, the UWE process is driven by
the separate modeling of concerns describing a Web system. Models are
built at the different stages of requirements engineering, analysis, design,
and implementation of the development process and are used to represent

7. UML-Based Web Engineering 159

different views of the same Web application corresponding to the different
concerns (content, navigation structure, and presentation). The content
model is used to specify the concepts that are relevant to the application
domain and the relationships between these concepts. The hypertext or
navigation structure is modeled separately from the content, although it is
derived from the content model. The navigation model represents the
navigation paths of the Web system being modeled. The presentation

presentation and user–machine communication
tasks.

UWE proposes at least one type of UML diagram for the visualization of
each model to represent the structural aspects of the different views.
However, in addition, very often UML interaction diagrams or state
machines are used to represent behavioral aspects of the Web system.

dimensions: development stages, systems’ views, and aspects.

Another concern also handled separately is adaptivity. Personalized and
context-dependent Web systems provide the user with more appropriate
information, links, or pages by being aware of user or contextual features.
We propose to view adaptivity as a cross-cutting concern and thus use
aspect-oriented techniques to model adaptive Web systems. It can be seen as
a fourth dimension influencing all other Web modeling dimensions: views,
aspects, and phases. Requirements models and architecture models focusing
on specific Web aspects complete the specification of the Web system.
Separation of concerns offers advantages in the maintenance and re-
engineering of a Web system as well as for the generation of Web systems
for different contexts and platforms.

Figure 7.1. Modeling aspects in UWE (from Schwinger and Koch, 2006).

model takes into account re

Figure 7.1 shows how the scope of modeling spans these three orthogonal

160

7.1.1.2 Development Driven by Models

The model-driven development (MDD) approach not only advocates the use
of models (as those described above) for the development of software, but
also emphasizes the need of transformations in all phases of the
development, from requirements specification to designs and from design
models to implementations. Transformations between models provide a
chain that enables the automated implementation of a system in successive
steps from the different models.

The development of Web systems is a field that lends itself to applying
MDD due to the Web-specific separation of concerns and continuous
changes in technologies in the Web domain.

Meta-model-based methods such as OO-H (Gómez et al., 2001) and
UWE constitute a good basis for the implementation of a model-driven
process for the development of Web systems. They included semiautomated
model-based transformations even before MDD concepts became well-
known. For the first guidelines for a systematic and stepwise construction of
models for UWE, we refer to Hennicker and Koch (2001) and Koch (2001).

UWE emphasizes the relevance of requirements engineering starting with
modeling activities in this early development phase (Escalona and Koch,
2006). Therefore, the UWE meta-model includes a set of modeling
primitives that allows for simpler and more specific specification of the
requirements of Web systems.

7.1.2 Characteristics of the Notation

As the saying goes, a picture is worth a thousand words. Visual models are
naturally used not only for documentation purposes but also as the crucial
chain link in the software development process. The trend is the production
of domain-specific visual models. Conversely, the importance of the
selection of the modeling language is not self-evident.

From our point of view, a modeling language has to

1. provide powerful primitives to construct expressive, yet intuitive models
2. offer wide CASE tool support
3. facilitate extension
4. provide a formal or at least a semiformal semantics
5. be easy to learn

Although UML fulfills only the first three requirements, it seems that
UML is currently the best approach. UML and various UML extensions are
successfully used in many different application domains. However, there is
no formal semantics covering the whole UML, and the fifth requirement can

N. Koch et al.

7. UML-Based Web Engineering 161

only be satisfied if we restrict ourselves to a subset of the modeling
constructs of UML.

7.1.2.1 Modeling with UML

The distinguishing feature of UWE is its UML compliance since the model
elements of UWE are defined in terms of a UML profile and as an extension
of the UML meta-model (Koch and Kraus, 2002, 2003).

Although the UML is expressive enough to model all requirements that
arise in modeling Web systems, it does not offer Web domain-specific
elements. To ease the modeling of special aspects of Web applications, we
define in UWE special views—using UML’s extension mechanisms—
graphically represented by UML diagrams, such as the navigation model and
the presentation model (Koch, 2001; Koch et al., 2001).

UML modeling techniques comprise the construction of static and
dynamic views of software systems by object and class diagrams, component
and deployment diagrams, use case diagrams, state and activity diagrams,
sequence and communication diagrams. The UML extension mechanisms
are used to define stereotypes that we utilize for the representation of Web
constructs, such as nodes and links. In addition, tag definitions and
constraints written in OCL (Object Constraint Language) can be used. This
way we obtain a UML-compliant notation—a so-called UML lightweight
extension or better known as a UML profile. UWE notation is defined as
such a UML profile.

The advantage of using UML diagrams is the common understanding of
these diagrams. Furthermore, the notation and the semantics of the modeling
elements of “pure” UML, i.e., those modeling elements that comprise the
UML meta-model, are widely described in the OMG documentation (Object
Management Group, 2005). For any software designer with a UML
background, it is easy to understand a model based on a UML profile, such
as the extension that UWE suggests. We observe that UML extensions
“inherit” the problems of UML, e.g., the lack of a complete formal semantics
covering all modeling elements.

UWE focuses on visual modeling together with systematic design and
automatic generation. The aim is to cover the entire development life cycle
of Web systems, providing techniques and notations to start with
requirements models, moving through design models, as well as including
architecture and aspect models. All these models are visualized using UML
diagrammatic techniques.

7.1.2.2 Meta-Modeling

Meta-modeling plays a fundamental role in CASE tool construction and is as
well the core of the model-driven process. A meta-model is a precise

162

definition of the elements of a modeling language, their relationships, and
the well-formedness rules needed for creating syntactically correct models.

Tool-supported design and model-based system generation are becoming
essential in the development process of Web systems due to the need for
rapid production of new Web presences and Web applications. CASE tools
have to be built on a precisely specified meta-model of the modeling
constructs used in the design activities, providing more flexibility if
modeling requirements change. Meta-models are essential for the definition
of model transformations and automatic code generation.

The UWE meta-model is defined as a conservative extension of the UML
meta-model (Koch and Kraus, 2003). It is the basis for the UWE notation
and UWE tool support. “Conservative” means that the modeling elements of
the UML meta-model are not modified, e.g., by adding additional features or
associations to the UML modeling element Class. OCL constraints are used
to specify additional static semantics (analogous to the well-formedness
rules in the UML specification). By staying thereby compatible with the
MOF interchange meta-model, we can take advantage of meta-modeling
tools based on the corresponding XML interchange format (XMI).

In addition, the UWE meta-model is “profileable” (Baresi et al., 2002),
which means that it is possible to map the meta-model to a UML profile. A
UML profile consists of a hierarchy of stereotypes and a set of constraints.
Stereotypes are used for representing instances of metaclasses and are
written in guillemets, like «menu» or «anchor». The definition of a UML
profile has the advantage that it is supported by nearly every UML CASE
tool either automatically, by a tool plug-in, or passively when the model is
saved and then checked by an external tool. The UWE meta-model could
also be used as the basis for building a common meta-model (or ontology) of
the concepts needed for the design in the Web domain (cf. Koch and Kraus,
2003; Escalona and Koch, 2006). Using for this purpose the standardized
OMG meta-modeling architecture would facilitate the construction of meta-
CASE tools.

7.1.3 Characteristics of the Tool Environment

The UML compliance of UWE has an important advantage: All CASE tools
that support the Unified Modeling Language can be used to build UWE
models. For this purpose it is sufficient to name stereotypes after the names
of the UWE modeling concepts. Many tools offer additional support with an
import functionality of predefined UML profiles. In such a case, the profile
model elements can be used in the same way as the built-in UML model
elements.

N. Koch et al.

7. UML-Based Web Engineering 163

7.1.3.1 CASE Tool Support

A wider developer support is achieved by the open source plug-in ArgoUWE
(www.pst.ifi.lmu.de/projekte/uwe) for the open source CASE tool
ArgoUML (www.argouml.org). In addition to providing an editor for the
UWE notation, ArgoUWE checks the consistency of models and supports
the systematic transformation techniques of the UWE method. Using the
UWE profile, models designed with other UML CASE tools can be
exchanged with ArgoUWE. The use of tools that support not only the
modeling itself but also a model-driven approach shortens development
cycles and facilitates re-engineering of Web systems.

7.1.3.2 Model Consistency Check

ArgoUWE also checks the consistency of models according to the OCL
constraints specified for the UWE meta-model. Consistency checking is
embedded into the cognitive design critiques feature of ArgoUML and runs
in a background thread. Thus, model deficiencies and inconsistencies are
gathered during the modeling process, but the designer is not interrupted.
The designer obtains feedback at any time by taking a look at this
continuously updated list of design critiques, which is shown in the to-do
pane of the tool.

In the following, we exemplify how UWE’s model-driven process,
notation, and tool support are used to develop Web applications.

7.2 METHOD BY CASE STUDY

We use a simple online movie database example that allows users to explore
information about movies and persons related to the production of the
movies. This example is inspired by www.imdb.org and named the “Movie
UWE Case Study” (MUC). Movies are characterized, among other things,
by their genre, the cast, memorable quotes, trailers, and a soundtrack.
Persons related to the movie production include the director, producer,
composer, and the actors. The user interested in watching a movie can access
information on theaters that show the movie. Registered users—identified by
an email address and a password—can provide comments, rate comments,
vote movies, manage “their movies,” and buy tickets in theaters of their
preference. The MUC online movie database personalizes the application,
giving some recommendations about movies and providing personalized
news to the user.

164

The focus in the following is on the models built for the different views
of the analysis and design phases (see Figure 7.1). Model transformations are
described as part of the model-driven process in Section 7.4.

7.2.1 Starting with Requirements Specification

The first step toward developing a Web system is the identification of the
requirements for such an application that are specified in UWE with a
requirements model. Requirements can be documented at different levels of
detail. UWE proposes two levels of granularity when modeling Web system
requirements. First, a rough description of the functionalities is produced,
which are modeled with UML use cases. In a second step, a more detailed
description of the use cases is developed, e.g., by UML activity diagrams
that depict the responsibilities and actions of the stakeholders.

7.2.1.1 Overview of Use Cases

Use case diagrams are built with the UML elements Actor and UseCase.
Actors are used to model the users of the Web system. Typical users of Web
systems are the anonymous user (called User) in the MUC case study, the
registered user (RegisteredUser), and the Web system administrator. Use
cases are used to visualize the functionalities that the system will provide.
The use case diagram depicts use cases, actors, and associations among
them, showing the roles the actors play in the interaction with the system,
e.g., triggering some use cases.

In addition to the UML features, UWE distinguishes among three types
of use cases: navigation, process, and personalized use cases. Navigation use
cases are used to model typical user behavior when interacting with a Web
application, such as browsing through the Web application content or
searching information by keywords. The use case model of Figure 7.2, for
example, includes the «navigation» () use cases ViewMovie, Search, and
GoToExternalSite. Process use cases are used to describe business tasks that
end users will perform with the system; they are modeled in the same way as
it is done for traditional software. These business tasks normally imply
transactional actions on the underlying database. We use “pure” UML
notation for their graphical representation. Typical examples for business use
cases are Register, CommentMovie, and BuyTicket. A third group of use
cases are those that imply personalization of a Web system, such as
ViewRecommendations and ViewLatestNews. They are denoted by a
stereotype «personalized» (). Personalization is triggered by user
behavior.

All UML elements for modeling use case diagrams are available, such as
system boundary box, package, generalization relationship, stereotyped

N. Koch et al.

7. UML-Based Web Engineering 165

dependencies «extend» and «include» among use cases. Figure 7.2 illustrates
the use case diagram for the MUC case study restricted to the functional
requirements from the User and RegisteredUser viewpoint.

7.2.1.2 Detailed View of Use Cases

The level of detail and formality of requirements specifications depends on
project risks and the complexity of the Web application to be built. But very
often a specification based only on use cases is not enough (Vilain et al.,
2000). Analysts use different kinds of refinement techniques to obtain a
more detailed specification of the functional requirements, such as
workflows, formatted specifications, or prototypes. These representations
usually include actors, pre- and postconditions, a workflow description,
exceptions and error situations, information sources, sample results, and
references to other documents. In particular, for the development of Web

Figure 7.2. UWE use case model for MUC.

166

systems, the informational, navigational, and process goals have to be
gathered and specified. Informational goals indicate content requirements.
Navigational goals point toward the kind of access to content, and process
goals specify the ability of the user to perform some tasks within the Web
system (Pressman, 2005).

Following the principle of using UML whenever possible for the
specification, we refine requirements with UML activity diagrams. For each
nontrivial business use case, we build at least one activity diagram for the
main stream of tasks to be performed in order to provide the functionality
indicated by the corresponding use case. Optionally, additional diagrams can
be depicted for exceptions and variants. Activity diagrams include activities,
shareholders responsible for these activities (optional), and control flow
elements. They can be enriched with object flows showing relevant objects
for the input or output of those activities.

Figure 7.3 illustrates the activity diagram for the use case BuyTicket of
our MUC case study. The UWE profile includes a set of stereotypes adding
Web-specific semantics to UML activity and object nodes. For example, a
distinction is made between the objects that define content, nodes of the
application, and presentation elements. Visualization is improved by the use
of the corresponding icons: for «content», for «node», and for Web
user interface («WebUI»). Stereotypes of activities are used to distinguish
possible actions of the user in the Web environment: browse, search, and
transactional activities that comprise changes in at least one database. To this
category of stereotypes belong for «browse», for «query», and for
transactional actions.

Figure 7.3. MUC case study: UWE activity diagram detailing the buy-ticket use case.

N. Koch et al.

7. UML-Based Web Engineering 167

7.2.2 Defining the Content

Analysis models provide the basis for the design models, in particular the
content model of a Web system. The aim of the content model is to provide a
visual specification of the domain-relevant information for the Web system
that mainly comprises the content of the Web application. However, very
often it also includes entities of the domain required for customized Web
applications. These entities constitute the so-called user profile or user
model.

Customization deals not only with adaptation to the properties of users or
user groups, but also with adaptation to features of the environment. A so-
called context profile or context model is built in such a case. The objects
occurring in the detailed view of the use cases provide natural candidates of
domain entities for the content and user model.

The separation of content and user model (or context model) has proven
its value in practice. Both are graphically represented as UML class
diagrams. The content model of MUC is depicted in Figure 7.4; the user
model is shown in Figure 7.5. The entities representing content and

Figure 7.4. MUC case study: content model.

168

user or context properties respectively, are modeled by classes, i.e., instances
of the UML metaclass Class. Relationships between content and user
properties are modeled by UML associations. In particular, movies are
modeled by a class Movie with a set of properties, such as title and genre
forming the attributes of the class Movie, or as classes associated to Movie

like Trailer and ExternalReview. Stakeholders of the film production, e.g., a
movie’s producer, composer, and cast, are modeled as roles of associations
to the class Person. Note that Performance and Ticket were inferred from the
activity diagram in Figure 7.3.

The user model contains the user data (again see Figure 7.3) needed for
the login of the user and the comments and rating of the movies. All these
data are provided by the users themselves during registration or use of the
Web application. In addition, the system collects information on users by
observing their behavior. The collected data are used for adaptation and are
modeled as a cross-cutting aspect and woven into the user model and other
parts of the system (see Section 7.2.6 on aspect-oriented modeling of
adaptivity).

7.2.3 Laying Down the Navigation Structure

Based on the requirements analysis and the content modeling, the navigation

structure of a Web application is modeled. Navigation classes (visualized as
) represent navigable nodes of the hypertext structure; navigation links

show direct links between navigation classes. Alternative navigation paths

Figure 7.5. MUC case study: user model.

N. Koch et al.

There is no need for the definition of additional elements as there is no
distinction to modeling of non-Web applications. We use “pure” UML
notation and semantics. All the features provided by the UML specification
for constructing class diagrams can be used, in particular, packages,
enumerations (e.g., Genre in Figure 7.4), generalizations, compositions, and
association classes (e.g., Cast in Figure 7.4).

7. UML-Based Web Engineering 169

are handled by «menu» (). Access primitives are used to reach multiple
instances of a navigation class («index» , or «guided tour») or to select
items («query»). In Web applications that contain business logic, the
business processes must be integrated into the navigation structure. The
entry and exit points of the business processes are modeled by process
classes () in the navigation model, the linkage between each other and to
the navigation classes is modeled by process links. Each process class is
associated with a use case that models a business process. Navigation

structures are laid down in stereotyped UML class diagrams with navigation
and process classes, menus, and access primitives extending the UML
metaclass Class, and navigation and process links extending the UML
metaclass Association.

7.2.3.1 Initial Navigation Structure

UWE provides methodological guidelines for developing an initial sketch of
the navigation structure from the content model of a Web application (see
also Koch and Kraus, 2002; Knapp et al., 2003): Content classes deemed to
be relevant for navigation are selected from the content model, and these
classes as well as their associations are put into a navigation model as
navigation classes and navigation links, respectively. Navigation links
represent possible steps to be followed by the user, and thus these links have
to be directed; if navigation back and forth between two navigation classes is

Figure 7.6. MUC case study: navigation from Movie (fragment).

170

desired, an association is split into two. Menus are added to every navigation
class that has more than one outgoing association. Finally, access primitives
(index, guided tours, and queries) allow for selecting a single information
entity, as represented by a navigation class. An index, a guided tour, or a
query should be added between two navigation classes whenever the
multiplicity of the end target of their linking association is greater than 1.
The properties of the content class corresponding to the navigation class over
which the index or the query runs are added as navigation attributes to the
navigation class.

The result of applying these steps of the UWE method to the content
model of the MUC case study in Figure 7.4 is shown in Figure 7.6.

From the home page Home the user can, by means of a query
SearchMovie, search for movies of his interest by criteria like movie name,
actors, or directors, etc. Soundtrack is directly reachable through MovieMenu
as there may be at most one soundtrack for each movie whereas there may
be several directors among which to select from DirectorsIndex. As an
example for a bidirectional linkage between navigation classes, the actors of
a movie can be selected from CastIndex reaching a Person, where,
conversely, one can choose from all movies this person has contributed to.
The navigation structure has been refined by adding a home node () as the
initial node of the MUC Web application, as well as a main menu.

The UWE profile notation for menus and access primitives provides a
compact representation of patterns frequently used in the Web domain.
Figure 7.7 (right) shows the shorthand notation for indexes. Using “pure”
UML for modeling an index would instead require an additional model
element: an index item as depicted in Figure 7.7 (left). The result would be
an overloaded model if it contains many such indexes.

7.2.3.2 Adding Business Processes

In a next step, the navigation structure can now be extended by process
classes that represent the entry and exit points to business processes. These
process classes are derived from the nonnavigational use cases. In Figure 7.8
the business processes Register (linked to the use case Register) and Login
(linked to the use case Login) have been added. The integration of these
classes in the navigation model requires an additional menu (MainMenu),

Figure 7.7. “Pure” UML (left) and shorthand notation (right) for index.

N. Koch et al.

7. UML-Based Web Engineering 171

which provides links to Register, Login, and SearchMovies. A user may only
manage her movies if she has logged in previously. Finally, a user can buy
tickets for a selected movie and a selected performance by navigating to
BuyTicket.

A single navigation structure diagram for a whole Web application would
inevitably lead to cognitive overload. Different views to the navigation
structure should be produced from the content model focusing on different
aspects of the application, like navigation to particular content or integration
of related business processes.

Figure 7.8. MUC case study: integration of business processes into navigation (fragment).

7.2.4 Refining the Processes

Each process class included in the navigation model is refined into a process
model consisting of a process flow model and optionally of a process
structure model. The control and data flow is modeled in the process flow
model in the form of a UML activity diagram. It is the result of a refinement
process that starts from the workflow in the requirements model.

Figure 7.9 illustrates the result of the refinement process applied to
Figure 7.3. This process mainly consists of the integration of the main
stream of the actions with alternatives, such as Enter new credit card info in
case of invalid card numbers or exception handling (not included in this
example). Control elements are added with the purpose of providing the
business logic. Activities and objects can be added to the activity diagram. A
process structure model has the form of a class diagram and describes the
relationship between a process class and other classes whose instances are
used to support the business process.

172

7.2.5 Sketching the Presentation

The presentation model provides an abstract view of the user interface (UI)
of a Web application. It is based on the navigation model and abstracts
from concrete aspects of the UI, like the use of colors, fonts, and the
location of UI elements on the Web page; instead, the presentation model
describes the basic structure of the user interface, i.e., which UI elements
(e.g., text, images, anchors, forms) are used to present the navigation
nodes. The advantage of the presentation model is that it is independent of
the actual techniques used to implement the Web site, thus allowing the
stakeholders to discuss the appropriateness of the presentation before
actually implementing it.

The basic elements of a presentation model are the presentation classes,
which are directly based on nodes from the navigation model, i.e., navigation
classes, menus, access primitives, and process classes. A presentation class
() is composed of UI elements, like text («text»), anchor («anchor»),
button («button»), image («image»), form («form»), and anchored
collection («anchored collection»).

Figure 7.9. MUC case study: UWE process flow model for the buy-ticket process.

N. Koch et al.

7. UML-Based Web Engineering 173

Figure 7.10 shows an example of a presentation class for the navigation
class Movie. Note that to ease the identification of which navigation node is
presented by a presentation class, the presentation class uses by default the
same name as the corresponding navigation node. Each attribute of a
navigation class is presented with an appropriate UI element. For example, a
text element is used for the title attribute, and an image element is used for
the photo attribute. The relationship between presentation classes and UI
elements is that of composition. For presentation models, composition is
pictured by drawing the component, i.e., the UI element, inside the
composite, i.e., the presentation class; note, however, that this notation is not
supported by all CASE tools.

Figure 7.10. MUC case study: presentation class Movie.

Usually, the information from several navigation nodes is presented on

one Web page, which is modeled by pages («page») in UWE. Pages can
contain, among other things, presentation classes and presentation groups
(«presentation group»). A presentation group can itself contain presentation
groups and presentation classes. An excerpt of the presentation model of the
movie page is shown in Figure 7.11. It contains a presentation class for the
main menu, which in turn contains a link (represented by the anchor UI
element) to home, a presentation class for the SearchMovie query, and
button UI elements to start the login and registration processes. The
SearchMovie query also provides an example of the form UI element to
enter the movie name to search for. The presentation class for MovieMenu
contains links to the presentation classes of the corresponding indexes—
based on the navigation model in Figure 7.6—providing additional
information on the movie.

The presentation classes of these indexes plus the presentation classes for
movie are assembled in a presentation group. The use of the stereotypes
«default» and «alternative» for the associations from Movie, ProducersIndex,
etc. to MovieMenu indicates that the elements of the presentation groups are
alternatives, i.e., only one of them is shown depending on which link was

174

followed from the movie menu, with the presentation class Movie being
shown by default. For example, when the user follows the producers link in
the MovieMenu, the ProducersIndex is shown, containing the list of the
producers of that film.

Figure 7.11. MUC case study: the presentation model of the movie page.

7.2.6 Aspect-Oriented Modeling of Adaptivity

Adaptivity is an increasingly important feature of Web applications.
Adaptive Web applications provide more appropriate pages to the user by
being aware of user or context properties. An example of adaptivity is
recommendations based on user behavior, like movie of favorite actors in
our MUC case study. In general, adaptivity is orthogonal to three views:
content, navigation structure, and presentation (see Figure 7.1). In order to
model adaptive features of Web applications non-invasively, we use
techniques of aspect-oriented modeling (AOM; cf. Filman et al., 2004) in
UWE.

We introduce a new model element named aspect. An aspect is
composed of a pointcut part and an advice part. It is a (graphical) statement
expressing that, in addition to the features specified in the principal model,
each model element selected by the pointcut also has features specified by
the advice. In other words, a complete description, including both general
system functionality and additional, cross-cutting features of the quantified
model elements, is given by the composition of the principal model and the
aspect. The process of composition is called weaving.

N. Koch et al.

7. UML-Based Web Engineering 175

UWE defines several kinds of aspects for modeling different static and
run-time adaptivity (Baumeister et al., 2005). In order to model the
recommendation feature modularly, we use on the one hand a model aspect
and a run-time aspect for keeping track of the number of visits to movie
pages. On the other hand, another run-time aspect integrates the
recommendation feature into the login process: A list of movies is presented
ranked according to the appearing actors, who in turn are ranked according
to their relevance in the visited movies.

The static model aspect for extending the user model (see Figure 7.5) by
an operation that returns the number of visits of a registered user to a movie
page is shown in Figure 7.12 (left). The pointcut is a pattern containing a
special element, the formal parameter, which is annotated by a question
mark. The pointcut selects all model elements in the base model that match
the pattern, thereby instantiating the formal parameter. In our case the formal
parameter is a class in which only the name RegisteredUser is specified. The
pointcut therefore selects all classes (actually, there is exactly one such
class) in the navigation model with the name RegisteredUser. The advice
defines the change to the selected model elements. After weaving, our
RegisteredUser class is thus extended by the operation visited (see Figure
7.12, right); no other elements are affected by this aspect.

Model aspects are a special case of aspect-oriented class diagrams
(AOCDs), which are also defined in a lightweight UML extension and are
therefore UML-compatible; see Zhang (2005). Since a model aspect
specifies a static modification of the base model, other, standardized model
transformation languages such as the Atlas Transformation Language (ATL;
Jouault and Kurtev, 2005), QVT-P (QVT-Partners, 2003), or QVT (QVT-
Merge Group, 2004) may also be used. The advantage of AOCD compared
with these languages is, however, that it does not require the modeler to have
expert knowledge of the UML meta-model, which may make AOCD easier
to use (cf. Section 7.4).

Figure 7.12. MUC case study: model aspect (left) and the weaving result (right).

The dynamic behavior of our MUC system is extended by two run-time
aspects. Figure 7.13 shows a link traversal aspect, used to ensure that visited
returns the correct result: The pointcut selects all links from any

176

object—note that neither the name nor the type of the object to the left is
specified and thus it matches any object—to some Movie object. The advice
defines with an OCL constraint the result of the action fired when such a link
is visited: If the current user is logged in, the system increases his respective
record by 1. After weaving, the system’s behavior is thus enriched by
counting user visits to the movie pages.

Figure 7.13. MUC case study: link traversal aspect for counting movie visits.

Figure 7.14 shows how the business process Login is extended by a flow
aspect. The base model depicted in Figure 7.14 (top) defines the normal
workflow without considering adaptivity: The user is asked to input her
email address and password, and then the system verifies the input and
responds accordingly.

Figure 7.14. MUC case study: flow aspect (bottom) extending business process Login (top).

The adaptive feature of generating recommendations for the user is added

by the aspect shown in Figure 7.14 (bottom). The pointcut selects every (in

N. Koch et al.

7. UML-Based Web Engineering 177

this concrete example, exactly one) control flow edge from a decision point
to the OK action, which is guarded by the condition valid. The advice deletes
this edge by crossing it out and adds an action for recommendation
generation and two new control flow edges to bind it into the process.

7.3 UWE META-MODEL

The UWE meta-model is defined as a conservative extension of the
UML 2.0 meta-model. “Conservative” means that the model elements of the
UML meta-model are not modified. Instead, all new model elements of the
UWE meta-model are related by inheritance to at least one model element of
the UML meta-model. We define additional features and relationships for
the new elements. Analogous to the well-formedness rules in the UML
specification, we use OCL constraints to specify the additional static
semantics of these new elements. The resulting UWE meta-model is
profileable, which means that it is possible to map the meta-model to a UML
profile (Koch and Kraus, 2003). In particular, UWE stays compatible with
the MOF interchange meta-model and therefore with tools that are based on
the corresponding XML interchange format XMI. The advantage is that all
standard UML CASE tools that support UML profiles or UML extension
mechanisms can be used to create UWE models of Web applications. If
technically possible, these CASE tools can further be extended to support the
UWE method. ArgoUWE (see Section 7.5) presents an instance of such
CASE tool support for UWE based on the UWE meta-model.

Figure 7.15. Overview of the UWE meta-model.

The UWE extension of the UML meta-model consists of adding two top-
level packages, Core and Adaptivity, to the UML (cf. Figure 7.15). The
separation of concerns of Web applications is reflected by the package

178

structure of Core and the cross-cutting of adaptation by the dependency of
Adaptivity on Core (see Figure 7.1). The package Requirements comprises
the UWE extensions on UseCase for discerning navigational from business
process and personalized use cases and the different markings for
ActivityNode («browse», «query», and «transaction») and ObjectNode
(«content», «node», and «WebUI») (see Escalona and Koch, 2006).

The navigation and presentation packages bundle UWE’s extensions for
the corresponding models. Figure 7.16 details a part of the meta-model for
Navigation with the connection between Node and Link and their various
subclasses. NavigationClass and ProcessClass with the related
NavigationLink and ProcessLink as well as Menu and the access primitives
Index, GuidedTour, and Query provide the Web domain-specific metaclasses
for building the navigation model. The packages Contents and Process are
currently only used as a stub, reflecting the fact that UWE allows the
designer to develop content and process models using all UML features.
Finally, Adaptation contains UWE’s aspect facilities by representing Aspect
as a UML Package with two subpackages, Pointcut and Advice.

Figure 7.16. UWE navigation meta-model.

In order to transfer the UWE meta-model into a UML profile, we use

UML’s extension mechanisms (see Section 7.1). Figure 7.17 shows how the
metaclasses of the UWE navigation meta-model are rendered as a stereotype
hierarchy, forming the UWE navigation profile: Node becomes a stereotype
of Class, NavigationAttribute a stereotype of Property, and Link a stereotype
of Association.

N. Koch et al.

7. UML-Based Web Engineering 179

Figure 7.17. UWE navigation profile.

The associations of the UWE navigation meta-model, e.g., connecting

Link to Node, cannot be represented by meta-associations (see Object
Management Group, 2005) and have to be added either by stereotyping the
UML metaclass Dependency or by using the association from the UML
meta-model from which the association is derived. The latter approach is
used for representing the composition between NavigationClass and
NavigationAttribute using the association ownedAttributes; for the association
between AccessPrimitive and NavigationAttribute and the association
between NavigationClass and Menu, we stereotype Dependency, leading,
e.g., to the following constraint:

context Dependency

inv: self.stereotypes->

 includes("Primitive2Attribute") implies

 (self.client.stereotypes->

 includes("AccessPrimitive") and

 self.supplier.stereotypes->

 includes("NavigationAttribute"))

where client and supplier denote the ends of the Dependency relationship.

180

7.3.1 Consistency Rules

Following the UML, we use OCL to state more precisely the static
semantics of UWE’s new meta-model elements as well as the dependencies
of meta-model elements both inside a single meta-model package and
between packages. As an example, the following constraint states that every
use case that is neither a navigation nor a personalized use case needs a
process class and that the converse direction holds as well (cf. Figure 7.18):

Figure 7.18. UWE process meta-model.

context ProcessClass

inv: not self.useCase.oclIsKindOf(NavigationUseCase) and

 not self.useCase.oclIsKindOf(PersonalizedUseCase)

context UseCase

inv: (not self.oclIsKindOf(NavigationUseCase) and

 not self.oclIsKindOf(PersonalizedUseCase)) implies

 ProcessClass.allInstances()->

 exists(pn | pn.useCase = self)

7.4 MODEL-DRIVEN DEVELOPMENT IN UWE

The UWE approach includes the specification of a process for the
development of Web systems in addition to the UML profile and the UWE
meta-model. The UWE process is model-driven following the MDA
principles and using several other OMG standards, like MOF, UML, OCL,
and XMI, and forthcoming standards, like QVT (QVT-Merge Group, 2004).
The process relies on modeling and model transformations, and its main
characteristic is the systematic and semiautomatic development of Web
systems, as detailed in Chapter 12 by Moreno et al. on model-driven Web

transformation, which, in each step, is based on transformation rules.

N. Koch et al.

Engineering. The aim of such an MDD process is automatic model

7. UML-Based Web Engineering 181

Focusing on model transformations, the UWE process is depicted in
Figure 7.19 as a stereotyped UML activity diagram (Meliá et al., 2005).
Models are shown as objects, and transformations are represented with
stereotyped activities (special circular icon).

Figure 7.19. Overview of model transformations in the UWE process.

The process starts with the business model, which MDA calls the

computational independent model (CIM), used to specify the requirements.
Platform-independent models (PIMs) are derived from these requirement
models. The set of design models represents the different concerns of the
Web applications, comprising the content, the navigation, the business
processes, the presentation, and the adaptation of the Web system
(summarized as FunctionalModels in Figure 7.19). In a next step, the
different views are integrated into a “big picture” model of the Web systems,
which can be used for validation (Knapp and Zhang, 2006) and also for
generation of platform-dependent models (see below). A merge with
architectural modeling features, either of the “big picture model” or of the
design models directly, results in an integrated PIM covering functional and

182

architectural aspects. Finally, the platform-specific models (PSMs) derived
from the integration model are the starting point for code generation.

7.4.1 Transformations from Requirements to Functional Models

The overall objective of modeling the requirements is the specification of the
system as a CIM and providing input for the construction of models in the
other development phases (see Figure 7.1, Schwinger and Koch, 2006, and
Section 7.2). In particular, specific objectives for Web systems are the
specification of content requirements, the specification of the functional
requirements in terms of navigation needs and business processes, the
definition of interaction scenarios for different groups of Web users, and, if
required, the specification of personalization and context adaptation. The
first model transformation step of the UWE process consists of mapping
these Web system requirements models to the UWE functional models.
Transformation rules are defined therefore as mappings from the
requirements meta-model package to the content, navigation, presentation,
process, and adaptivity packages of the meta-model. How these packages
depend on each other is shown in Figure 7.15.

For example, UWE distinguishes in the requirements model between
different types of navigation functionality: browsing, searching, and
transactional activities. Browse actions can be used to enforce the existence
of a navigation path between a source node and a target node. An action of
type search indicates the need for a query in the navigation model in order to
allow for user input of a term, and the system responds with a resulting set
matching this term (see Section 7.2.1).

Figure 7.20 shows the Search2Query transformation rule specified in
QVT’s graphical notation (QVT-Merge Group, 2004). The source and target
of the transformation are the UWE meta-model defined as checkonly and
enforce, respectively (identified with a “c” and “e” in Figure 7.20). For each
search with content p2 in the requirements model, a query in the navigation
model is generated with an associated navigation attribute p2. For the
associated node object in the requirements model, an index and objects of a
navigation class, as well as corresponding links, will be generated.

For more details about the UWE meta-model for Web requirements, we
refer the reader to Escalona and Koch (2006). A detailed description of the
transformation rules between CIMs and PIMs for the functional aspects of
Web applications has been presented in Koch et al. (2006). A meta-model of
the nonfunctional requirements for Web applications and mappings of
nonfunctional requirements to architectural model elements are subject to
future work.

N. Koch et al.

7. UML-Based Web Engineering 183

7.4.2 Refinement of Functional Models

The transformations for refining the functional models comprise mappings
from content to navigation model, refinements of the navigation model, and
from the navigation into the presentation model. In UWE, an initial
navigation model is generated based on classes of the content model marked
as navigation-relevant (see Section 7.2.3). This generation step can be
rendered as a transformation Content2Navigation. From a single content
model, different navigation views can be obtained, e.g., for different
stakeholders of the Web system like anonymous user, registered user, and
administrator. The generation of each navigation view requires a set of
marks on elements of the content model that form a so-called marking model
kept separately from the content model. The development process cannot be
completed in an entirely automatic way, as the designer has to make the
decision about the “navigation relevance” marks; the Content2Navigation
transformation is applied once the marks have been set.

Conversely, the remaining transformation steps for navigation models
mentioned in Section 7.2.3 are turned into transformation rules that can be
applied fully automatically. These rules include, for example, the insertion of
indexes and menus. Presentation elements are generated from navigation
elements. For example, for each link in the navigation model, an appropriate
anchor is required in the presentation model. The main difficulty is the
introduction of the “look and feel” aspects.

Figure 7.20. Transformation rule Search2Query.

184

All these transformations are defined as OCL constraints (by precondi-
tions and postconditions) in UWE and are implemented in Java in the CASE
tool ArgoUWE.

7.4.3 Creation of Validation and Integration Models

The UWE MDD process comprises two main integration steps: the
integration of all functional models and the integration of functional and
nonfunctional aspects; the latter integration step is related to architectural
design decisions.

The aim of the first step is the creation of a single model for validating
the correctness of the different functional models and that allows seamless
creation of PSMs. This “big picture” model is a UML state machine,
representing the content, navigation structure, and business processes of the
Web application as a whole (presentation aspects will be added in the
future). The state machine can be checked by the tool Hugo/RT (Knapp et
al., 2002)—a UML model translator for model checking, theorem proving,
and code generation.

The transformation rules Functional2BigPicture are defined based on a
meta-model graph transformation system. For the implementation of the
graph transformation rules, any (non-Web-specific) tool for graph trans-
formations can be used. An example of the graph transformation of a
navigation node to a state of the validation model is sketched in Figure 7.21.
The aim of the second step is the merge of the validation model elements
with information on architectural styles. Following the WebSA approach
(Meliá et al., 2005), we propose merging functional design models and
architecture models at the PIM level. For example, the elements of the
WebSA models provide a layer view and a component view of the
architecture, which are also specified as PIMs. Transformation rules are
defined based on the UWE and WebSA meta-models.

Figure 7.21. Transformation rule Node2State.

N. Koch et al.

7. UML-Based Web Engineering 185

7.4.4 Generation of Models and Code for Specific

Platforms

In order to transform PIMs into PSMs, additional information about the
platform is required. It can be provided as an additional model or it can be
implicitly contained in the transformations. For mappings from UWE design
models (PIMs) to PSMs for Web applications, we tested different model
transformation languages. The query-view-transformation languages we use
are ATL (Jouault and Kurtev, 2005), QVT-P (QVT-Partners, 2003), and
QVT (QVT-Merge Group, 2004). For example, the following QVT-P
transformation tackles the generation of J2EE elements from Java server
pages of the integration model:

relation ServerPage2J2EE {

 domain { (IM.IntegrationModel)

 [(ServerPage)

 [name = nc,

 services = { (WebService) [name = on,

 type = ot] },

 views = { (View) [name = vn] }]] }

 domain { (JM.J2EEModel)

 [(JavaServerPage)

 [name = nc,

 forms = { (Form) [name = on,

 type = ot] },

 beans = { (JavaClass) [name = vn] }]] }

 when { services->forAll(s |

 WebService2Form(s, F1set.toChoice()))

 views->forAll(v |

 View2Bean(v, J1set.toChoice())) }

}

The ATL code below exemplifies a transformation rule that maps the
element Anchor of the UWE presentation model to a JSP element. Note that
the transformation rule also involves elements of the navigation model
(NavigationLink).

186

rule Anchor2JSP {

 from

 uie : UWE!Anchor

 (not uie.presentationClass.oclIsUndefined() and

 not uie.navigationLink.oclIsUndefined())

 to

 jsp : JSP!Element

 (name <- 'a',

 children <- Sequence { hrefAttribute,

 contentNode }),

 hrefAttribute : JSP!Attribute

 (name <- 'href',

 value <- thisModule.createJSTLURLExpr

 (uie.navigationLink.target.name,'objID')),

 contentNode : JSP!TextNode

 (value <- uie.name)

}

7.5 CASE TOOL ARGOUWE

We have extended the CASE tool ArgoUML into a tool for UWE-based
Web application development, called ArgoUWE (Knapp et al., 2003;
www.pst.ifi.lmu.de/projekte/argouwe). We decided to extend
ArgoUML as it is a feature-rich, open source tool and offers a plug-in
architecture. The drawback of this decision is that the UWE meta-model
cannot be used directly since ArgoUML is based on UML 1.3/4. However, a
UML 1.x-compatible profile can easily be derived from the UWE meta-
model along the same lines as sketched in Section 7.3.

ArgoUML provides support for designing Web applications in the phases
of requirements elicitation and content, navigation, business process, as well
as presentation modeling. It provides not only tailored editors for UWE
diagrams, but also semiautomatic model transformations defined in the
UWE development process. As these model transformations are based on the
UWE meta-model, the tool ensures both consistency between the different
models and integrity of the overall Web application model with respect to
UWE's OCL constraints. ArgoUWE fully integrates the UWE meta-model
(Koch and Kraus, 2003), provides XMI export, and thus facilitates data
transfer with other UML-compliant tools. Design deficiencies, such as
violations of the OCL constraints, are reported by an extension of the
cognitive design critiques of ArgoUML and can also be checked upon
request (see Section 7.5.2).

N. Koch et al.

7. UML-Based Web Engineering 187

Working with ArgoUWE is intuitive for ArgoUML users, as ArgoUWE
makes use of ArgoUML’s graphical interface. In particular, the UML model

elements and diagrams are structured in a tree view in the explorer [(1) in
Figure 7.22]; the diagrams are edited in the editor pane (2); to-do items of
the designer are listed in the to-do pane (3); tagged values, constraints, and
documentation of the currently selected model as well as automatically
generated code skeletons are shown in the details pane (4).

7.5.1 Model Transformations

ArgoUWE implements some of the aforementioned model transformations
as semiautomatic procedures.

• In the content model, the designer may mark classes as navigation-
relevant. ArgoUWE can then generate an initial navigation model by
creating for each navigation-relevant class a navigation class and for each
association between navigation-relevant classes a link between the
corresponding navigation classes.

Figure 7.22. MUC case study: ArgoUWE screenshot of a fragment of the use case
model.

188

• In the navigation model, ArgoUWE can add indexes and menus
automatically. The designer may add queries and guided tours between
navigation nodes manually or, alternatively, by selecting a generated
index and changing it into a query or a guided tour.

• From the navigation model, ArgoUWE can generate a first draft of a
presentation model. For each navigation class and each of its attributes, a
presentation class is created. The presentation classes of attributes are
associated to those of the navigation classes by composition.
The generation of Web applications from the presentation model is out of

scope for ArgoUWE. This is done either by hand by the Web designer or
semiautomatically by using frameworks for the implementation of Web
applications, such as Struts (struts.apache.org).

7.5.2 Model Consistency

An important requirement of any CASE tool is to support the modeler to
keep his models consistent. Upon model inconsistency, the tool may either
interrupt the modeler and force him first to correct it before continuing
modeling or simply give a warning. We implemented ArgoUWE to do the
latter since we believe that the usability of the modeler being warned yet not
interrupted outweighs the drawback of the model being inconsistent for a
short time. Moreover, the ArgoUML feature of design critiques provides an
excellent starting point for the implementation of the non-interruptive
warnings for UWE models.

The “cognitive design critiques” of ArgoUML is one of its distinguishing
features compared to other modeling tools (cf. Robbins, 1999). During run
time, a thread running in the background keeps checking if the current model
shows deficiencies. For each deficiency found, a design critique item is
created and added to the to-do pane. Design critiques not only warn the user
that her design may be improved but can also, by means of a wizard, lead to
a better design. The design critique items range from incompleteness, such
as unnamed model elements, to inconsistency, such as name collisions of
different attributes or operations in a class. Furthermore, design critiques
also suggest the use of certain design patterns (Gamma et al., 1995). The
issues of design critiques can be sorted by several criteria like priority or the
model element causing the design critique. Design critiques are only
warnings and do not interrupt the designer.

ArgoUWE inherits the feature of design critiques from ArgoUML. In
fact, all well-formedness constraints of UWE have been fully integrated and
are continuously checked by ArgoUWE in the background at run time. In
Figure 7.22 the highlighted design critique indicates that the use case
CommentMovie does not show a corresponding process class yet; this
critique corresponds to the meta-model constraints shown in Section 7.3.

N. Koch et al.

7. UML-Based Web Engineering 189

7.6 OUTLOOK

The UML-based Web Engineering (UWE) approach is continuously
evolving. Evolution is due to improvement of existing features, such as
personalization of Web systems; adaptation to new technologies, e.g.
asynchronous client-server communication; and introduction of new
software engineering techniques, like aspect orientation and model-driven
principles. The challenge in all these cases is to provide a more intuitive and
useful tool for the methodological development of Web systems, to increase
Web systems quality, and to reduce development time.

The evolution we can currently observe is driven by a set of
improvements that are being addressed and a set of extensions we are
planning for UWE. The most important are

• specification of the transformations (at the meta-model level) of
(nonfunctional) requirements to architecture models

• implementation of the “weaving” process for the integration of the
aspect-oriented features in UWE models

• engineering of Rich Internet Applications (RIAs), e.g., Web applications
based on asynchronous communication such as using AJAX (Garrett,
2005)

• tool support for transformations from CIM models to PIM models and for
the UML 2.0 features in UWE

• integration of a QVT engine (when available) in the tool environment
• extension of UWE with test models

Our higher-level goal is the convergence of Web design/development
methods. It is the only way to obtain a powerful domain-specific modeling
and a development language that benefits from the advantages of the
different methods. Obviously, there is a trend toward using UML as the
common notation language. Some methods are moving from their
proprietary notation to a UML-compliant one and introduce a UML profile;
others define an MOF-based meta-model. It is currently hard to predict how
far this converging trend will go and whether it will eventually lead to a
“Unified Web Modeling Language.”

ACKNOWLEDGEMENTS

Thanks go to Andreas Kraus for providing the ATL transformation rule and
fruitful discussions. This work has been partially supported by the MAEWA
project, “Model Driven Development of Web Applications” (WI841/7-1) of
the Deutsche Forschungsgemeinschaft (DFG), Germany, and the EC 6th
Framework SENSORIA project, “Software Engineering for Service-
Oriented Overlay Computers” (FET-IST 016004).

190

REFERENCES

Baresi, L., Garzotto, F., Mainetti, L., and Paolini, P., 2002, Meta-modeling techniques meet
Web application design tools. In R.-D. Kutsche and H. Weber, eds., Proceedings Fifth

International Conference on Fundamental Approaches to Software Engineering
(FASE’02), pp. 294–307.

Baumeister, H., Knapp, A., Koch, N., and Zhang, G., 2005, Modelling adaptivity with
aspects. In D. Lowe and M Gaedke, eds., Proceedings Fifth International Conference on

Web Engineering (ICWE’05), pp. 406–416.
Baumeister, H., Koch, N., and Mandel, L., 1999, Towards a UML extension for hypermedia

design. In R. France and B. Rumpe, eds., Proceedings Second International Conference on

Unified Modeling Language (UML’99), pp. 614–629. .
de Troyer, O., and Leune, C.J., 1998, WSDM: A user centered design method for Web sites.

Computer Networks, 30(1–7): 85–94.
Escalona, M.J., and Koch, N., 2006, Metamodeling the requirements of Web systems.

Proceedings Second International Conference on Web Information Systems and

Technologies (WebIST’06), Setubal, Portugal.
Filman, R.E., Elrad, T., Clarke, S., and Aksit, M., eds., 2004, Aspect-Oriented Software

Development, Addison-Wesley, Reading, MA.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995, Design Patterns, Addison-

Wesley, Reading, MA.
Garrett, J.J., 2005, Ajax: A New Approach to Web Applications. http://www.

adaptivepath.com/publications/essays/archives/000385.php.
Gómez, J., Cachero, C., and Pastor, O., 2001, Conceptual modeling of device-independent

Web applications. IEEE Multimedia, 8(2): 26–39.
Hennicker, R., and Koch, N., 2001, Systematic design of Web applications with UML. In K.

Siau and T.A. Halpin, eds., Unified Modeling Language: Systems Analysis, Design and

Development Issues, Idea Group, Hershey, PA, pp. 1–20.
Isakowitz, T., Stohr, E.A., and Balasubramanian, P., 1995, MM: A methodology for

structuring hypermedia design. Communications of the ACM, 38(8): 34–44.
Jouault, F., and Kurtev, I., 2005, Transforming models with ATL. In J.-M. Bruel, ed., Revised

Selection of Papers on Satellite Events at the MoDELS 2005 Conference, pp. 128–138.
Knapp, A., Koch, N., Moser, F., and Zhang, G., 2003, ArgoUWE: A CASE tool for Web

applications. Proceedings First International Workshop on Engineering Methods to

Support Information Systems Evolution (EMSISE’03), Geneva.
Knapp, A., Merz, S., and Rauh, C., 2002, Model checking timed UML state machines and

collaborations. In W. Damm Werner and E.R. Olderog, eds., Proceedings Seventh

International Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems,
pp. 395–416.

Knapp, A., and Zhang, G., 2006, Model transformations for integrating and validating Web
application models. In H.C. Mayr and R. Breu, eds., Proceedings Modellierung 2006
(MOD’06), pp. 115–128.

Koch, N., 2001, Software engineering for adaptive hypermedia systems: Reference model,
modeling techniques and development process. PhD thesis, Ludwig-Maximilians-
Universität, München.

Koch, N., and Kraus, A., 2002, The expressive power of UML-based Web engineering. In D.
Schwabe, O. Pastor, G. Rossi, and L. Olsina, eds., Proceedings Second Internatioanl

Workshop on Web-Oriented Software Technology (IWWOST’02), pp. 105–119.
Koch, N., and Kraus, A., 2003, Towards a common metamodel for the development of Web

applications. In J.M.C. Lovelle, B.M.G. Rodríguez, L.J. Aguilar, J.E.L. Gayo, and M. del

N. Koch et al.

7. UML-Based Web Engineering 191

Puerto Paule Ruiz, eds., Proceedings Third International Conference on Web Engineering
(ICWE’03), pp. 495–506.

Koch, N., Kraus, A., and Hennicker, R., 2001, The authoring process of the UML-based Web
engineering approach. In D. Schwabe, ed., Proceedings First International Workshop on

Web-Oriented Software Technology (IWWOST’01). http://www.dsic.upv.es/

˜west2001/iwwost01/.
Koch, N., Zhang, G., and Escalona, M.J., 2006, Model transformations from requirements to

Web system design. In D. Wolber, N. Calder, C. Brooks, and A. Ginige, eds., Proceedings

Sixth International Conference on Web Engineering (ICWE’06), pp. 281–288.
Lowe, D., and Gaedke, M., eds., 2005, Proceedings Fifth International Conference on Web

Engineering (ICWE’05).
Meliá, S., Kraus, A., and Koch, N., 2005, MDA transformations applied to Web application

development. In D. Lowe and M. Gaedke, eds., Proceedings Fifth International

Conference on Web Engineering (ICWE’05), pp. 465–471.
Object Management Group (2005). Unified Modeling Language. www.uml.org.
Object Management Group (2005). Unified Modeling Language: Superstructure, version 2.0.

Specification, OMG. http://www.omg.org/cgi-bin/doc?formal/05-07-04.
Pressman, R., 2005, Software Engineering—A Practitioner’s Approach, 6th edition, McGraw-

Hill, Boston.
QVT-Merge Group (2004). Revised Submission for MOF 2.0 Query/Views/Transformations

RFP (ad/2002-04-10). Submission, OMG. http://www.omg.org/cgi-bin/doc?ad/
04-04-01.pdf.

QVT-Partners (2003). Revised Submission for MOF 2.0 Query/Views/Transformations RFP,
version 1.1. http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf.

Robbins, J.E., 1999, Cognitive support features for software development tools. PhD thesis,
University of California, Irvine.

Schwabe, D., and Rossi, G., 1995, The object-oriented hypermedia design model.
Communications of the ACM, 38(8): 45–46.

Schwinger, W., and Koch, N., 2006, Modeling Web applications. In G. Kappel, B. Pröll, S.
Reich, and W. Retschitzegger, eds., Web Engineering: Systematic Development of Web

Applications, John Wiley, Hoboken, NJ, pp. 39–64.
Vilain, P., Schwabe, D., and de Souza, C.S., 2000, A diagrammatic tool for representing user

interaction in UML. In A. Evans, S. Kent, and B. Selic, eds., Proceedings Third

International Conference on Unified Modeling Language (UML’00), pp. 133–147.
Wirsing, M., Koch, N., Rossi, G., Garrido, A., Mandel, L., Helmerich, A., and Olsina, L.,

1999, Hyper-UML: Specification and modeling of multimedia and hypermedia
applications in distributed systems. In Proceedings Second Workshop on German-Argen-

tinian Bilateral Programme for Scientific and Technological Cooperation, Königswinter,
Germany.

Zhang, G., 2005, Towards aspect-oriented class diagrams. In Proceedings 12th Asia Pacific

Software Engineering Conference (APSEC’05), pp. 763–768.

Chapter 9

DESIGNING WEB APPLICATIONS WITH

WEBML AND WEBRATIO

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Pizza L. da Vinci 32,

20133, Milan, Italy

9.1 INTRODUCTION

The Web Modeling Language (WebML) is a third-generation Web design
methodology, conceived in 1998 in the wake of the early hypermedia models
and the pioneering works on hypermedia and Web design, like HDM
(Garzotto et al., 1993) and RMM (Isakowitz et al., 1995). The original goal
of WebML was to support the design and implementation of so-called data-
intensive Web applications (Ceri et al., 2002), defined as Web sites for
accessing and maintaining large amounts of structured data, typically stored
as records in a database management system, like online trading and e-
commerce applications, institutional Web sites of private and public
organizations, digital libraries, corporate portals, and community sites.

To achieve this goal, WebML reused existing conceptual data models
and proposed an original notation for expressing the navigation and
composition features of hypertext interfaces. WebML’s hypertext model
took an approach quite different from previous proposals: Instead of offering
a high number of primitives for representing all the possible ways to
organize a hypertext interface that may occur in data-intensive Web
applications, the focus was on inventing a minimal number of concepts,
which could be composed in well-defined ways to obtain an arbitrary
number of application configurations.

Marco Brambilla, Sara Comai, Piero Fraternali, Maristella Matera

222 M. Brambilla et al.

This initial design choice deeply influenced the definition of the language
and its evolution toward more complex classes of applications. Four major
versions of WebML characterize the progression of the language:

• WebML 1: The original version comprised only a fixed set of primitives
for representing read-only data-intensive Web sites; the focus was on the
modular organization of the interface, navigation definition, and content
extraction and publication in the interface.

• WebML 2: It added support for representing business actions (called
operations) triggered by the navigation of the user; in this way, the
expressive power was extended to support features like content
management, authentication, and authorization.

• WebML 3: The introduction of the concept of model plug-ins
transformed WebML into an open language, extensible by designers with
their own conceptual-level primitives, as to widen the expressive power
to cover the requirements of new application domains. This transition
emphasized the role of component-based modeling and was the base of
all subsequent extensions.

• WebML 4: The notion of a model plug-in was exploited to add
orthogonal extensions to the core of WebML, covering sectors and
applications not previously associated with model-driven development.
For example, Web service interaction and workflow modeling primitives
were added as plug-in components, to enable the modeling and
implementation of distributed applications for multi-actor workflow
enactment (Manolescu et al., 2005; Brambilla et al., 2006); other
extensions pointed in the direction of multichannel and context-aware
Web applications (Ceri et al., 2007).

A distinctive trait of the WebML experience is the presence of an

industrial line of development running in parallel to the academic research.
One of the original design principles of WebML was implementability,
with the ultimate goal of bringing model-driven development (MDD) to
the community of “real” developers. To achieve this objective, Politecnico
di Milano spun off a company (called Web Models) in 2001, with the
mission of implementing and commercializing methods and tools for
model-driven development of Web applications, based on WebML. Even
before then, WebML had been used for modeling and automatically
implementing an industrial project, the Acer-Euro system (http://www.
acer-euro.com), comprising the multilingual B2B and B2E content
publishing and management applications of Acer, the number 4 PC vendor
in the world.

9. Designing Web Applications with WebML and WebRatio 223

The major result of the industrial R&D is WebRatio (WebModels, 2006),
an integrated development environment supporting the modeling of
applications with WebML and their implementation with model-driven code
generators. Today WebRatio is a consolidated industrial reality: More than
100 applications have been developed by WebModels’ customers, over
4,000 trial copies are downloaded per year, and many universities and
institutions worldwide use the tool in their Web Engineering courses. In
retrospect, the most fruitful and challenging aspect of the interplay of
academic and industrial activity has been the continuous relationship
between researchers and “real–world,” “traditional” developers, which
produced essential feedback on the definition of a truly usable and effective
model-driven development methodology, which is (hopefully) reflected in
the current status of WebML and its accompanying tools.

In this chapter we will overview the core features of WebML and some
of its extensions and briefly comment on the usage experience. The chapter
is organized as follows: Section 9.2 presents an overview of the WebML
methodology and, in particular, introduces the WebML notations for the
definition of conceptual schemas. Section 9.3 describes the implementation
of the methodology and the architecture of the development tool supporting
it. Section 9.4 presents extensions of WebML for supporting Web service
composition and publication, workflow-driven Web applications, and
context-aware Web applications. Section 9.5 shortly summarizes some of the
lessons learned in the application of model-driven development with
WebML in industrial projects. Finally, Section 9.6 presents the ongoing and
future work and draws the conclusions.

9.2 THE WEBML METHODOLOGY

WebML is a visual language for specifying the content structure of a Web
application and the organization and presentation of such content in a
hypertext (Ceri et al., 2000, 2002).

224 M. Brambilla et al.

Figure 9.1. Phases in the WebML development process.

As reported in Figure 9.1, the WebML approach to the development of
Web applications consists of different phases. Inspired by Boehm’s spiral
model (Boehm, 1988) and in line with modern methods for Web and
software applications development (Beck, 1999; Booch et al., 1999;
Conallen, 2000), the WebML process is applied in an iterative and
incremental manner in which the various phases are repeated and refined
until results meet the application requirements. The product life cycle
therefore undergoes several cycles, each producing a prototype or a partial
version of the application. At each iteration, the current version of the
application is tested and evaluated and then extended or modified to cope
with the previously collected requirements as well as the newly emerged
requirements. Such an iterative and incremental life cycle appears
particularly appropriate for the Web context, where applications must be
deployed quickly (in “Internet time”) and requirements are likely to change
during development.

Out of the entire process illustrated in Figure 9.1, the “upper” phases of
analysis and conceptual modeling are those most influenced by the adoption
of a conceptual model. The rest of this section will introduce the WebML
notations for the definition of conceptual schemas. It will then illustrate the
different activities in the WebML development process, with special
emphasis on conceptual modeling activities. Some issues about
implementation through automatic code generation will be discussed in
Section 9.3, by showing how conceptual schemas defined during the
design phases can be translated into a running application using WebRatio.

Requirements
Analysis

Data Design

Hypertext Design

Conceptual Modeling
Business Requirements

Implementation

Testing &
Evaluation Deployment

Maintenance and
Evolution

9. Designing Web Applications with WebML and WebRatio 225

9.2.1 Requirements Analysis

Requirements analysis focuses on collecting information about the
application domain and the expected functions and on specifying them
through easy-to-understand descriptions. The input to this activity is the set
of business requirements that motivate the application development. The
main results of this phase are

• the identification of the groups of users addressed by the application.
Each group represents users having the same characteristics or playing
the same role within a business process, i.e., performing the same
activities with the same access rights over the same objects. The same
individual user may play different roles, thus belonging to different
groups.

• the specification of functional requirements that address the functions
to be provided to users. For each group of users, the relevant activities to
be performed are identified and specified.

• the identification of core information objects, i.e., the main information
assets to be accessed, exchanged, and/or manipulated by users.

• the decomposition of the Web application into site views, i.e., different
hypertexts designed to meet a well-defined set of functional and user
requirements. Each user group will be provided with at least one site
view supporting the functions identified for the group.

Analysts are expected to use their favorite format for requirements

specification; for instance, tabular formats can be used for capturing the
informal requirements such as group or site view descriptions; UML use
case diagrams and activity diagrams can also be used as standard
representations of usage scenarios and activity synchronization. In particular,
functional requirements might be captured by activity flow, showing
sequence, and parallelism and synchronization among the activities to be
performed by different user groups.

9.2.2 Conceptual Modeling

Conceptual modeling consists of defining conceptual schemas, which
express the organization of the application at a high level of abstraction,
independently from implementation details. According to the WebML
approach, conceptual modeling consists of data design and hypertext
design.

226 M. Brambilla et al.

Data design corresponds to organizing core information objects
previously identified during requirements analysis into a comprehensive and
coherent data schema, possibly enriched through derived objects.

Hypertext design then produces site view schemas on top of the data
schema previously defined. Site views express the composition of the
content and services within hypertext pages, as well as the navigation and
the interconnection of components. For applications where different user
groups perform multiple activities, or for multichannel applications, in which
users can adopt different access devices, hypertext design requires the
definition of multiple site views, addressing the user groups involved and
their access requirements.

The models provided by the WebML language for data and hypertext
design are briefly described in the following. A broader illustration of the
language and its formal definition can be found in Ceri et al. (2000, 2002)
and at http://www.webml.org.

9.2.2.1 WebML Data Model

Data design is one of the most traditional and consolidated disciplines of
information technology, for which well-established modeling languages and
guidelines exist. For this reason, WebML does not propose yet another data
modeling language; rather, it exploits the entity-relationship data model, or
the equivalent subset of UML class diagram primitives. The fundamental
elements of the WebML data model are therefore entities, defined as
containers of data elements, and relationships, defined as semantic
connections between entities. Entities have named properties, called
attributes, with an associated type. Entities can be organized in
generalization hierarchies and relationships can be restricted by means of
cardinality constraints.

In the design of Web applications it is often required to calculate the
value of some attributes or relationships of an entity from the value of some
other elements of the schema. Attributes and relationships so obtained are
called derived. Derived attributes and relationships can be denoted by adding
a slash character (/) in front of their name, and their computation rule can be
specified as a logical expression added to the declaration of the attribute or
relationship, as is customary in UML class diagrams (Booch et al., 1999).
Derivation expressions can be written using declarative languages like OQL
or OCL.

9. Designing Web Applications with WebML and WebRatio 227

RegisteredUser

UserName

Password
EMail

UserComment

Comment
Rate

Title

Comment_Date

0:N0:N

Movie

Title
Year

Description

Official_site

1:10:N

Actor

FirstName
LastName

BirthPlace

BirthDate

Photo

0:N

1:N

Month

OID

OID

OID OID

/NumOfComments

/NumOfComments {Count(Movie.MovieToUserComment}

Derived attribute:

Figure 9.2. A fragment of data schema of the Movie database Web application.

Figure 9.2 shows a small fragment of the data schema of the Movie
database example, containing the entities Movie, UserComment,
RegisteredUser, Actor, and their relationships. The entity Movie contains
one derived attribute /NumOfComments, which is computed as the value of
the expression Count(Movie.MovieToUserComment). This expression counts
the number of comments associated with a movie according to the
MovieToUserComment relationship role between the entities Movie and
UserComment.

9.2.2.2 WebML Hypertext Model

The hypertext model enables the definition of the front-end interface, which
is shown to a user in the browser. It enables the definition of pages and their
internal organization in terms of components (called content units) for
displaying content. It also supports the definition of links between pages and
content units that support information location and browsing. Components
can also specify operations, such as content management or user’s
login/logout procedures. These are called operation units.

The modular structure of an application front end is defined in terms of
site views, areas, pages, and content units. A site view is a particular
hypertext, designed to address a specific set of requirements. It consists of
areas, which are the main sections of the hypertext, and comprises
recursively other subareas or pages. Pages are the actual containers of
information delivered to the user.

Several site views can be defined on top of the same data schema, for
serving the needs of different user communities or for arranging content as
requested by different access devices like PDAs, smart phones, and similar
appliances.

228 M. Brambilla et al.

MOVIE DB

ShoppingCart Area

HomePage H

L

Movies Area

ShoppingCart Data

RecentMoviesList SearchMovies

D

D

InsertComment

Figure 9.3. Example of site view modularization based on areas and pages.

Figure 9.3 gives an example of the organization of pages and areas in a

site view, considering a fragment of the Movie database Web application.
The site view is composed of a home page, which is the first page accessed
when the user enters the application. The site view also comprises two areas:
the Shopping Cart area, including only one page through which the user
manages his current shopping cart; and the Movies area, including three
pages that show the list of recent movies, support the search of movies, and
allow the user to enter comments.

Pages and areas are characterized by some relevance properties, which
highlight their “importance” in the Web site. In particular, pages inside an
area or site view can be of three types:

• The home page (denoted with a small “h” inside the page icon) is the

page at the default address of the site view, or the one presented after the
user logs into the application; it must be unique.

• The default page (denoted with a small “d” inside the page icon) is the
one presented by default when its enclosing area is accessed; it must be
unique within an area. In the example in Figure 9.3, the Shopping Cart
Data page and the Recent Movies List page are default pages for their
enclosing areas. This implies that the two pages are entry points for the
two areas.

• A landmark page (denoted with a small “l” inside the page icon) is
reachable from all the other pages or areas within its enclosing module.
For example, in Figure 9.3 the home page is also a landmark page,
meaning that a link to it will be available from any other page of the site
view.

9. Designing Web Applications with WebML and WebRatio 229

Table 9.1. The Five Predefined Content Units in WebML

Data Unit Multidata
Unit

Index Unit Scroller Unit Entry Unit

Page composition. Pages are made of content units, which are the

elementary pieces of information, possibly extracted from data sources,
published within pages. Table 9.1 reports the five WebML predefined
content units, representing the elementary information elements that may
appear in the hypertext pages.

Units represent one or more instances of entities of the structural schema,
typically selected by means of queries over the entity attributes or over
relationships. In particular, data units represent some of the attributes of a
given entity instance; multidata units represent some of the attributes of a set
of entity instances; index units present a list of descriptive keys of a set of
entity instances and enable the selection of one of them; scroller units enable
the browsing of an ordered set of objects. Finally, entry units do not draw
content from the elements of the data schema, but publish a form for
collecting input values from the user.

Data, multidata, index, and scroller units include a source and a selector.
The source is the name of the entity from which the unit’s content is
retrieved. The selector is a predicate, used for determining the actual objects
of the source entity that contribute to the unit’s content. The previous
collection of units is sufficient to logically represent arbitrary content on a
Web interface (Ceri et al., 2002). However, some extensions are also
available, for example, the multichoice and the hierarchical indexes reported
in Table 9.2. These are two variants of the index unit that allow one to
choose multiple objects and organize a list of index entries defined over
multiple entities hierarchically.

Link definition. Units and pages are interconnected by links, thus
forming a hypertext. Links between units are called contextual, because they
carry some information from the source unit to the destination unit. In
contrast, links between pages are called noncontextual.

Entity
[conditions]

Data unit Multidata unit

Entity
[conditions]

Index unit

Entity
[conditions]

Scroller unit

Entity
[conditions]

Entry unit

230 M. Brambilla et al.

Table 9.2. Two Index Unit Variants

Multichoice
Unit

Hierarchical
Unit

In contextual links, the binding between the source unit and the

destination unit of the link is formally represented by link parameters,
associated with the link, and by parametric selectors, defined in the
destination unit. A link parameter is a value associated with a link between
units, which is transported as an effect of the link navigation, from the
source unit to the destination unit. A parametric selector is, instead, a unit
selector whose condition contains one or more parameters.

Figure 9.4. Example of contextual and noncontextual navigation.

As an example of page composition and unit linking, Figure 9.4 reports a
simple hypertext, containing two pages of the Movies Area. The page
Recent Movies List contains an index unit defined over the Movie entity,
which shows the list of movies shown in the last month, and a data unit also

Multichoice Index

Entity
[conditions]

HierarchicalIndex

Entity1
[Selector1]

NEST Entity2
[Selector2]

 RecentMoviesList SearchMovies

Movie
[Year=system.year()]

[Month=system .month()]

Movie
[OID=CurrMovie]

CurrMovie:OID

Movie
[Title contains keyword]

RecentMovies
Index Movie details Entry unit Scroller unit

Movies
multidata

Movie
[OID in BlockMovies]

keyword

BlockMovies:{OID}D

9. Designing Web Applications with WebML and WebRatio 231

defined over the Movie entity, which displays the details of the movie
selected from the index. Two selectors ([Year=system.year()],
[Month=system.month()]) are defined to restrict the selection only to the
movies of the current month and year. The arrow between the two units is a
contextual link, carrying the parameter CurrMovie, containing the object
identifier (OID) of the selected item. The data unit includes a parametric
selector ([OID=CurrMovie]), which uses the input OID parameter to retrieve
the data of the specific movie.

OIDs of the objects displayed or chosen from the source unit are
considered the default context associated with the link. Therefore, OID
parameters over links and parametric selectors testing for OID values can be
omitted and simply inferred from the diagram.

An example of a noncontextual link is shown from the Recent Movies
List page to the Search Movies page: This link does not carry any
parameter, because the content of the destination page does not depend on
the content of the source page.

The page Search Movies shows an interesting hypertext pattern; it
contains three units: an entry unit denoting a form for inserting the keyword
of the title to be searched, a scroller unit defined over the Movie entity and
having a selector for retrieving only the movies containing that keyword in
their titles ([Title contains keyword]), and a multidata unit displaying a
scrollable block of search results. Through the scroller unit it is possible to
move to the first, previous, next, and last blocks of results.

Automatic and transport links. In some applications, it may be necessary
to differentiate a specific link behavior, whereby the content of some units is
displayed as soon as the page is accessed, even if the user has not navigated
its incoming link. This effect can be achieved by using automatic links. An
automatic link, graphically represented by putting a label “A” over the link,
is “navigated” in the absence of a user’s interaction when the page that
contains the source unit of the link is accessed.

Also, there are cases in which a link is used only for passing contextual
information from one unit to another and thus is not rendered as an anchor.
This type of link is called a transport link, to highlight that the link enables
only parameter passing and not interaction. Transport links are graphically
represented as dashed arrows.

232 M. Brambilla et al.

Figure 9.5. Example of automatic and transport links.

Consider the example in Figure 9.5, extending the content of the page
Recent Movies List shown in Figure 9.4. The link between the index and
the data unit has been defined as automatic: When the page is accessed, the
details of the first movie appearing in the index will be shown to the user,
without the need for her interaction. A multidata unit has been added to
show the names of the actors playing in the selected movie. A transport link
is used to pass the OID of the current movie to the multidata unit. This OID
is used by the multidata unit in a parametric selector associated with the
MovieToActor relationship defined between the entities Movie and Actor to
retrieve only the actors associated with the current movie. Note that the
automatic link admits the user’s interaction for selecting a different movie
and is thus rendered as an anchor; conversely, the output link of the data unit
does not enable any selection and thus is defined as transport and is not
rendered as an anchor.

Global parameters. In some cases, contextual information is not
transferred point to point during navigation but can be set as globally
available to all the pages of the site view. This is possible through global

parameters, which abstract the implementation-level notion of session-
persistent data.

Parameters can be set through the Set unit and consumed within a page
through a Get unit. The visual representation of such two units is reported in
Table 9.3. An example of use of the get unit will be shown in the next
subsection.

Operations. In addition to the specification of read-only Web sites, where
user interaction is limited to information browsing, WebML also supports
the specification of services and content management operations requiring
write access over the information hosted in a site (e.g., the filling of a
shopping trolley or an update of the users’ personal information). WebML
offers additional primitives for expressing built-in update operations, such as
creating, deleting, or modifying an instance of an entity (represented through
the create, delete, and modify units, respectively) or adding or dropping a

 RecentMoviesList

RecentMovie Movie
[OID=CurrMovie]

CurrMovie:OID
RecentMovies

Index Movie details Actors multidata

Actor
[MovieToActor (CurrMovie)]

CurrMovie:OID
A

9. Designing Web Applications with WebML and WebRatio 233

relationship between two instances (represented through the connect and
disconnect unit, respectively). The visual representation of such units is
reported in Table 9.4.

Table 9.3. The WebML Global Parameter Units

Table 9.4. The WebML Operation Units

Other utility operations extend the previous set. For example, login and

logout units (see Table 9.5) are respectively used (1) for managing access
control and verifying the identity of a user accessing the application site
views and (2) for closing the session of a logged user.

Operation units do not publish the content to be displayed to the user but
execute some processing as a side effect of the navigation of a link. Like
content units, operations may have a source object (either an entity or a
relationship) and selectors, may receive parameters from their input links,
and may provide values to be used as parameters of their output links. The
result of executing an operation can be displayed in a page by using an
appropriate content unit, for example, a data or multidata unit, defined over
the objects updated by the operation.

Get Unit Set Unit

Get unit

Parameter

Set unit

Parameter

Create
Unit

Modify
Unit

Delete
Unit

Connect
Unit

Disconnect
Unit

Create

Entity
<param := value>

Modify

Entity
[Conditions]

<param := value>

Delete

Entity
[conditions]

Connect

Relationship

Disconnect

Relationship

234 M. Brambilla et al.

Table 9.5. Login and Logout Operations, Supporting Site View Access Control

Regardless of their type, WebML operations may have multiple incoming

contextual links, which provide the parameters necessary for executing the
operation. One of the incoming links is the activating link (the one followed
by the user for triggering the operation), while the others just transport
contextual information and parameters, for example, the identifiers of some
objects involved in the operation.

Two or more operations can be linked to form a chain, which is activated
by firing the first operation. Each operation can have two types of output
links: one OK link and one KO link. The former is followed when the
operation succeeds; the latter when the operation fails. The selection of the
link to follow (OK or KO) is based on the outcome of the operation
execution and is under the responsibility of the operation implementation.

InsertComment

Entry unit

Movie

Movie details

Get unit

CurrentUser

Create

UserComment

Connect

UserCommentTo

RegisteredUser

Connect

UserCommentTo

Movie

OK OK OK

Comment

Figure 9.6. Example of content management.

The example in Figure 9.6 shows the content of the Insert Comment page

in the Movies area. Through the entry unit the user can insert a comment for
the movie currently displayed by the Movie details data unit. A get unit is
defined to retrieve the data of the currently logged user, which have been
stored in a global parameter after the login. When the user submits a comment,
a chain of operations is triggered and executed: First, a new comment instance
is created in the UserComment entity, containing the text inserted by the user;
then, the new comment is associated to the current user (by creating a new

Login Unit Logout Unit

Login Logout

9. Designing Web Applications with WebML and WebRatio 235

instance of the relationship UserCommentToRegisteredUser) and to the
current movie (relationship UserCommentToMovie). In the example, KO links
are not explicitly drawn: By default, they lead the user to the page from which
the operation chain has been triggered.

9.2.3 Other Development Phases

The phases following conceptual modeling consist of implementing the
application, testing and evaluating it in order to improve its internal and
external quality, deploying it on top of a selected architecture, and
maintaining and possibly evolving the application once it has been deployed.

As described in more details in Section 9.3, the WebRatio development
environment (WebModels, 2006) largely assists the implementation phase.
First of all, it offers a visual environment for drawing the data and hypertext
conceptual schemas. Such visual specifications are then stored as XML
documents, which are the inputs for the WebML code generator, which then
produces the data and hypertext implementation.

For space reasons, the remaining phases of the application life cycle are
only hinted at in this chapter, but they are nonetheless well supported by
WebML and WebRatio. In particular:

• The model-driven approach benefits the systematic testing of

applications, thanks to the availability of the conceptual model and the
model transformation approach to code generation (Baresi et al., 2005).
With respect to the traditional testing of applications, the focus shifts
from verifying individual Web applications to assessing the correctness
of the code generator. The intuition is that if one could ensure that the
code generator produces a correct implementation for all legal and
meaningful conceptual schemas (i.e., combinations of modeling
constructs), then testing Web applications would reduce to the more
treatable problem of validating the conceptual schema. The research
work conducted in this area has shown that it is possible to quantitatively
evaluate the confidence in the correctness of a model-driven code
generator, by formally measuring the coverage of a given test set (that is,
of a set of sample conceptual schemas) with respect to the entire universe
of syntactically admissible schemas. Different notions of coverage have
been proposed, and heuristic rules have been derived for minimizing the
number of test cases necessary to reach the desired coverage level of the
testing process.

• Model-driven development also fosters innovative techniques for quality
assessment. The research in this area has led to a framework for the
model-driven and automatic evaluation of Web application quality
(Fraternali et al., 2004; Lanzi et al., 2004; Meo and Matera, 2006). The

236 M. Brambilla et al.

framework supports the static (i.e., compile-time) analysis of conceptual
schemas and the dynamic (i.e., run-time) collection of Web usage data to
be automatically analyzed and compared with the navigation dictated by
the conceptual schema. The static analysis is based on the discovery in
the conceptual schema of design patterns and on their automatic
evaluation against quality attributes encoded as rules. Conversely, usage
analysis consists of the automatic examination and mining of enriched
Web logs, called conceptual logs (Fraternali et al., 2003), which correlate
common HTTP logs with additional data about (1) the units and link
paths accessed by the users, and (2) the database objects published within
the viewed pages.

• In a model-driven process, maintenance and evolution also benefit from
the existence of a conceptual model of the application. Requests for
changes can in fact be turned into changes at the conceptual level, either
to the data model or to the hypertext model. Then, changes at the
conceptual level are propagated to the implementation. This approach
smoothly incorporates change management into the mainstream
production life cycle and greatly reduces the risk of breaking the software
engineering process due to the application of changes solely at the
implementation level.

9.3 IMPLEMENTATION

Application development with WebML is assisted by WebRatio
(WebModels, 2006), a commercial tool for designing and implementing
Web applications. The architecture of WebRatio (shown in Figure 9.7)
consists of two layers: a design layer, providing functions for the visual
editing of specifications, and a run-time layer, implementing the basic
services for executing WebML units on top of a standard Web application
framework.

The design layer includes a graphical user interface (shown in Figure 9.8)
for data and hypertext design, which produces an internal representation in
XML of the WebML models. A data mapping module, called Database
Synchronizer, maps the entities and relationships of the conceptual data
schema to one or more physical data sources, which can be either created by
the tool or pre-existing. The Database Synchronizer can forward- and
reverse-engineer the logical schema of an existing data source, propagate the
changes from the conceptual data model to the physical data sources, and
vice versa.

9. Designing Web Applications with WebML and WebRatio 237

Style sheet library

Built-in tag

libraries

HTML

Third party

authoring

tools

XML XSL

Data Mapping

Data Design Site Design Presentation

WebRatio Design Layer

Code Generator

Application Server

WebRatio Runtime Layer

Data

Sources

Unit library

Custom

components

Custom unit

library

Figure 9.7. The WebRatio architecture.

Figure 9.8. WebRatio’s graphical user interface.

238 M. Brambilla et al.

A third module (called EasyStyler Presentation Designer) offers
functionality for defining the presentation style of the application, allowing
the designer to create XSL stylesheets from XHTML mock-ups, associate
XSL styles with WebML pages, and organize page layout, by arranging the
relative position of content units in each page.

The design layer is connected to the run-time layer by the WebRatio code
generator, which exploits XSL transformations to translate the XML
specifications visually edited in the design layer into application code
executable within the run-time layer, built on top of the Java2EE platform.
In particular, a set of XSL translators produces a set of dynamic page

templates and unit descriptors, which enable the execution of the application
in the run-time layer. A dynamic page template (e.g., a JSP file) expresses
the content and markup of a page in the markup language of choice (e.g., in
HTML, WML, etc.). A unit descriptor is an XML file that expresses the
dependencies of a WebML unit from the data layer (e.g., the name of the
database and the code of the SQL query computing the population of an
index unit).

The design layer, code generator, and run-time layer have a plug-in
architecture: New software components can be wrapped with XML
descriptors and made available to the design layer as custom WebML units,
the code generator can be extended with additional XSL rules to produce the
code needed for wrapping user-defined components, and the components
themselves can be deployed in the run-time application framework. As
described in the following section, such a plug-in architecture has been
exploited to extend WebRatio to support new WebML constructs that have
been recently defined for covering advanced modeling requirements.

9.4 ADVANCED FEATURES

The core concepts of WebML have been extended to enable the specification
of complex applications, where Web services can be invoked, the navigation
of the user is driven by process model specifications, and page content and
navigation may be adapted (like in a multichannel, mobile environment). In
the next subsections we briefly present the extensions that have been
integrated in the WebML model for designing service-enabled, process-
enabled, and context-aware Web applications.

9. Designing Web Applications with WebML and WebRatio 239

9.4.1 Service-Enabled Web Applications

Web services have emerged as essential ingredients of modern Web
applications: They are used in a variety of contexts, including Web portals
for collecting information from geographically distributed providers or B2B
applications for the integration of enterprise business processes.

To describe Web services interactions, WebML has been extended with
Web service units (Manolescu et al., 2005), implementing the WSDL (W3C,
2002) classes of Web service operations.

We start by recalling some basic aspects of WSDL, providing the
foundation of the proposed WebML extensions. A WSDL operation is the
basic unit of interaction with a service and is performed by exchanging
messages.

Two categories of operations are initiated by the client:

• One-way operations consist of a message sent by the client to the service.
• Request-response operations consist of one request message sent by the

client and one response message built by the service and sent back to the
client.

Two other operation categories are initiated by the service:

• Notification operations consist of messages sent to the service.
• Solicit and response operations are devised for receiving request

messages sent to the service and providing messages as responses to the
client.

WebML supports all four categories of operations. In particular, we

interpret the operations initiated by the service as a means for Web services
publishing. Therefore, we assume that these operations will not be used
within the traditional hypertext schemas representing the Web site, but
within appropriate Service views, which contain the definition of published
services. The operations initiated by the client are instead integrated within
the specification of the Web application. In the following subsections we
will see how they can be specified in WebML and present some examples
applied to the Movie database running case.

9.4.1.1 Modeling Web Applications Integrated with Web Services

The specification of Web service invocation from within a Web application
exploits the request-response and one-way operations. Here we show an
example of a request-response operation. Suppose we want to extend the
Movie database Web application with the possibility of retrieving books
related to a particular movie from a remote Web service (e.g., the Amazon

240 M. Brambilla et al.

Web service). Assume that the request-response operation SearchBooks
allows one to obtain a list of books meeting search criteria provided as input
to the service (e.g., keywords contained in the title). The remote Web service
responds with the list of books meeting the given search criteria.

The WSDL request-response operation is modeled through the request-
response unit, whose graphical notation is shown in Figure 9.9. This
operation involves two messages: the message sent to the service and the
message received from the service. The corresponding unit is labeled with
the Web service operation name and includes two arrows that represent the
two messages. This operation is triggered when the user navigates one of its
input links; from the parameters transferred by these links, a message is
composed and then sent to a remote service as a request. The user waits until
the arrival of the response message from the invoked service; then she can
resume navigation from the page reached by the output link of the Web
service operation unit.

Figure 9.9. Example of usage of the request-response operation.

In the example in Figure 9.9, the user can browse to the Search page,

where an entry unit permits the input of search criteria, preloaded from the
currently selected movie. From this information, a request message is
composed and sent to the SearchBooks operation of the Web service
exposed by the service provider. The user then waits for the response
message, containing a list of books satisfying the search criteria. From these
options, a set of instances of the Book entity is created through the XML-in
operation unit (which receives as input XML data and transforms them into
relational data) and displayed to the user by means of the Book Index unit;
the user may continue browsing, e.g., by choosing one of the displayed
books. Further details about data transformations and about the storage of
data retrieved from Web services can be found in recent publications
(Manolescu et al., 2005).

One-way operations are modeled in a similar way: The main difference is
that the service will not provide any response. Therefore, once the message
is sent to the service, the user continues navigation without waiting for the
response.

 Search page
Enter data

keyword

SearchBooks

Book page
BookIndex

Book
Movie

Movie details

Book

XML-in
XML

9. Designing Web Applications with WebML and WebRatio 241

9.4.1.2 Modeling Web Services Publishing

WebML also supports the publication of Web services that can be invoked
by third-party applications. From the application point of view, no user
interaction is required in a published Web service. The actions to be
performed when the notification or the solicit-response operations are
triggered are not specified through pages, but as a chain of operations (e.g.,
for storing or retrieving data, or for executing generic operations such as
sending emails). Therefore, the publishing of Web services can be specified
separately from the site view of a Web application. We introduce the
following concepts:

• Service view: a collection of ports that expose the functionality of a Web

service through WSDL operations
• Port: the individual service, composed by a set of WSDL operations;

each individual WSDL operation is modeled through a chain of WebML
operations starting with a solicit-response and/or notification operation

Therefore, the business logic of a WSDL operation is described by a
chain of WebML operations, specifying the actions to be performed as a
consequence of the invocation of the service, and possibly building the
response message to be sent back to the invoker. Each WSDL operation
starts with a solicit unit, which triggers the service, and possibly ends with
the response unit, which provides a message back to the service. Here we
show an example of a solicit-response operation.

Suppose we want to extend the Movie database application with the
publication of a service providing the list of movies satisfying search
criteria. The WSDL operation is modeled through a chain of WebML
operations starting with the solicit unit (SearchSolicit), shown in Figure
9.10. The solicit unit receives the SOAP message from the requester and
decodes the search keywords, passing them as parameters to the next
WebML operation in the sequence. This is a so-called XML-out (Manolescu
et al., 2005) operation unit, which extracts from the database the list of
movies that correspond to the specified conditions and formats it as an XML
document. After the XML-out operation, the composition of the response
message is performed through the response unit (SearchResponse).

Figure 9.10. Example of usage of the solicit-response operation.

SearchMovies

SearchSolicit

SearchMovies

SearchResponse

Movie
[Attributes match Keywords]

XML-out

XML

Keywords

242 M. Brambilla et al.

Notice that the schema of Figure 9.10 can be seen as the dual specification
of the SearchBooks service invocation pattern, represented in Figure 9.9.

In addition to the above-mentioned examples, WebML also supports the
exchange of asynchronous messages (Brambilla et al., 2004) and complex
Web service conversations (Manolescu et al., 2005).

From the implementation standpoint, the deployment and publishing of
Web services required the extension of the run-time WebRatio with a SOAP
listener able to accept SOAP requests.

9.4.2 Process-Enabled Web Applications

Today the mission of Web applications is evolving from the support of
online content browsing to the management of full-fledged collaborative
workflow-based applications, spanning multiple individuals and
organizations. WebML has been extended for supporting lightweight Web-
enabled workflows (Brambilla, 2003; Brambilla et al., 2003, 2007), thus
transferring the benefits of high-level conceptual modeling and automatic
code generation also to this class of Web applications.

Integrating hypertexts with workflows means delivering Web interfaces
that permit the execution of business activities and embodying constraints
that drive the navigation of users. The required extensions to the WebML
language are the following:

• Business process model: A new design dimension is introduced in the

methodology. It consists of a workflow diagram representing the
business process to be executed, in terms of its activities, the precedence
constraints, and the actors/roles in charge of executing each activity.

• Data model: The data model representing the domain information is
extended with a set of objects (namely, entities and relationships)
describing the meta-data necessary for tracking the execution of the
business process, both for logging and for constraints evaluation
purposes.

• Hypertext model: The hypertext model is extended by specifying the
business activity boundaries and the workflow-dependent navigation
links.

Besides the main models, the proposed extension affects the following

aspects of the WebML methodology:

• Development process: Some new phases are introduced in the
development process, to allow the specification of business processes
and their integration in the conceptual models (see Figure 9.11).

9. Designing Web Applications with WebML and WebRatio 243

• Design tools: A new view shall be introduced for supporting the design
of the workflow models within the WebML methodology.

• Automatic generation tools: A new transformer is needed for translating
workflow diagrams into draft WebML specifications of the Web
applications implementing the process specification.

Figure 9.11. Steps of the proposed methodology: Square boxes represent the design steps and
the involved tools; bubbles represent the expected results of each step.

The following sections present the details of the process-related

extensions, by referring to a specific aspect of the Internet movie database
case study, namely the subscription process. Details will be provided about
the new features of the development process, the business process modeling,
and the data and hypertext modeling.

9.4.2.1 Extensions to the Development Process

The development process is enriched by a set of new design tasks and
automatic transformations that addresses the workflow aspects of the
application. Figure 9.11 shows the expected steps of the development, the
results of each steps, and the involved tools: Through a visual workflow
editor, the analyst specifies the business process model to be implemented;
the designed workflow model can be processed by an automatic
transformation that generates a set of hypertext skeletons implementing the
specified behavior; the produced skeletons can be modified by designers by
means of CASE tools for conceptual Web application modeling; the
resulting models can be processed by automatic code generators that produce
the running Web application.

9.4.2.2 Workflow Model and Design Tool

Many standard notations have been proposed to express the structure of
business processes. For our purposes, we adopt the Business Process
Management Notation (BPMN), which covers the basic concepts required by
WfMC (Workflow Management Coalition) and is compatible with Web
service choreography languages (e.g., BPEL4WS) and standard business
process specification languages (e.g., XPDL). A visual design tool for
business processes has been implemented for covering this design phase.
The tool is an Eclipse plug-in and allows one to specify BPMN diagrams.

Worflow
editor

WF-driven
hypertext
generator

Business
process
models

WebML
hypertext
skeletons

WebML
hypertext
models

Running
web

application

WebML
editor

WebRatio
code

generator

244 M. Brambilla et al.

Figure 9.12 shows a subscription process that could apply to the Movie
database scenario (the case study has been extended to avoid a simplistic
example): The user specifies whether he is a private customer or a company,
then he alternatively submits the company or his own personal information,
and finally a user manager accepts the subscription.

Figure 9.12. Subscription process represented in BPMN in the BP design tool.

9.4.2.3 Data Model Extensions: Workflow Meta-Data

The extensions to the data model include some standard entities for
recording activities instances and process cases, thus allowing one to store
the state of the business process execution and enacting it accordingly. The
adopted meta-model is very simple (see Figure 9.13): The Case entity stores
the information about each instantiation of the process, while the Activity
entity stores the status of each activity instance executed in the system. Each
activity belongs to a single case. Connections to user and application data
can be added, for the purpose of associating domain information to the
process execution. Typical requirements are the assignment of application
objects to activity instances and the tracking of the relation between an
activity and its executor (a user).

Notice that the proposed meta-model is just a guideline. The designer can
adopt more sophisticated meta-data schemas or even integrate with
underlying workflow engines through appropriate APIs (e.g., Web services)
for tracking and advancing the process instance.

9. Designing Web Applications with WebML and WebRatio 245

Figure 9.13. Workflow meta-data added to the data model.

9.4.2.4 Hypertext Model Extensions: Activities and Workflow Links

The hypertext model is extended with two new primitives:

• Activity: An activity is represented by an area tagged with a marker “A.”
The whole hypertext contained in the area is the implementation of the
activity.

• Workflow link: Workflow links are links that traverse the boundary of
any activity area. They are used for hypertext navigation, but their
behavior includes workflow logic, which is not explicitly visible in the
hypertext. Every link entering an activity represents the start of the
execution of the activity; every outgoing link represents the end of the
activity. The actual behavior of the workflow links is specified by a
category associated with the link.

Incoming links can be classified as Start link, allowing an existing

activity to start from scratch; Start case link, allowing one to create a new
case and a new activity and to start them; Create link, allowing one to create
a new activity and start it; Resume link, allowing one to resume the
execution of an activity once it has been suspended.

Outgoing links can be classified as Complete link, which closes the
activity and sets its status to completed; Complete case link, which closes the
activity and the whole case, setting their status to completed; Suspend link,
which suspends the execution of an activity (that can be resumed later
through a resume link); Terminate link, which closes the activity and sets its
status to terminated (e.g., for exception management).

Notice that if and switch units can be used to express navigation
conditions. Moreover, a specific approach has been studied for managing
exceptions within workflow-based Web applications (Brambilla et al., 2005;
Brambilla and Tziviskou, 2005), but it is not discussed here for the sake of

 Activity

ActivityID
ActivityName
ActivityStatus
ActivityType
/CaseID
/CaseName
StartTimestamp
EndTimestamp

Case

CaseID
CaseName
CaseStatus
StartTimestamp
EndTimestamp

1:1 0:N

Derived attributes:
/CaseID {Self.Activity2Case.CaseID}
/CaseName {Self.Activity2Case.CaseName}

246 M. Brambilla et al.

brevity. Moreover, by combining workflows and Web services extensions,
the design of distributed processes can be obtained (Brambilla et al., 2006).

9.4.2.5 Mapping Workflow Schemas to Hypertext Models

Workflow activities are realized in the hypertext model by suitable
configurations of pages and units, enclosed within an activity area.
Workflow constraints must be turned into navigation constraints among the
pages of the activities and into data queries on the workflow meta-data for
checking the status of the process, thus ensuring that the data shown by the
application and user navigation respect the constraints described by the
process specification. The description of how the precedence and
synchronization constraints between the activities can be expressed in the
hypertext model is specified in Brambilla et al. (2003), which describes the
mapping between each workflow pattern and the corresponding hypertext.

A flexible transformation, depending on several tuning and style
parameters, has been included in the methodology for transforming
workflow models into skeletons of WebML hypertext diagrams.

The produced WebML model consists of an application data model,
workflow meta-data, and hypertext diagrams. The transformation supports
all the main WfMC precedence constraints, which include sequences of
activities, AND-, OR-, XOR- splits and joins, and basic loops.

Since no semantics is implied by the activity descriptions, the generated
skeleton can only implement the empty structure of each activity and the
hypertext and data queries that are needed for enforcing the workflow
constraints. The designer remains in charge of implementing the interface
and business logic of each activity. Additionally, it is possible to annotate
the activities with a set of predefined labels (e.g., create, update, delete,
browse), thus allowing the transformer tool to map the activity to a coarse
hypertext that implements the specified behavior.

Once the transformation has been accomplished, the result can be edited
with WebRatio (WebModels, 2006), thus allowing the designer to refine the
generated hypertext and to implement the internal behaviour of each activity.

9.4.2.6 Workflow-Based Hypertext Example

Figure 9.14 shows the hypertext diagram for the Personal Data

Submission activity, which is part of the example process depicted in Figure
9. Notice that the shown implementation is the final result of the two steps
of automatic hypertext skeleton generation and of hypertext refinement by
the designer. The link marked with the “…” label may come from any
hypertext fragment in the site view.

12.

9. Designing Web Applications with WebML and WebRatio 247

Before starting the activity, a condition is checked for verifying that the
Company data submission activity is not started yet, since it is defined
as mutually exclusive with respect to the Personal Data Submission

activity (a corresponding XOR-split decision gateway is shown in Figure
9.14). Hence, the condition to be checked before starting Personal Data
Submission is that the instance of Company data submission activity
within the current case has a status not yet Active. Notice that we assume an
ordered set of possible values for the status (Created < Inactive < Active <
Suspended < Resumed < Completed), and at most one instance of the activity
Company data submission exists within a case, because of the construction
rules of the instances of the workflow. Therefore, the condition extracts the
activity of type Company data submission not yet started. If this instance
exists, the Start link is followed and the Personal Data Submission
activity is started (i.e., its status in the database is set to Active). The user
submits his own information and the Modify unit updates the database, then
the Complete link closes the activity and redirects the user to the home page.

Figure 9.14. Example of hypertext representing the Personal data submission activity.

9.4.3 Context-Aware Web Applications

WebML has also been applied to the design of adaptive, context-aware Web
applications (Ceri et al., 2003, 2006, 2007). The overall design process for
context-aware applications follows the activity flow typically used for
conventional Web applications. However, some new issues must be
considered for modeling and exploiting the context at the data level and for
modeling adaptive behaviors in the hypertext interface.

 User siteview

Personal data submission activity
Home page

Personal data submission page

[CurrentCase .CaseToActivity .
Status < “Active” AND

CurrentCase .CaseToActivity .
ActivityID = “CompanySubm”]

If unit
Data entry Modify

User

H

S
...

C
false

true

A

248 M. Brambilla et al.

9.4.3.1 Modeling User and Context Data

During data design, the user and context requirements can be translated into
three different subschemas complementing the application data (see Figure
9.15):

• The User subschema, which clusters data about users and their access

rights to application data. In particular, the entity User provides a basic
profile of the application’s users, the entity Group allows access rights for
a group of users to be managed, and the entity SiteView allows users
(and user groups) to be associated with specific hypertexts. In the case of
adaptive context-aware applications, users may require different
interaction and navigation structures, according to the varying properties
of the context.

• The Personalization subschema, which consists of entities from the
application data associated with the User entity by means of relationships
expressing user preferences for some entity instances, or the user’s
ownership of some entity instances. For example, the relationship
between the entities User and UserComment in Figure 9.15 enables the
selection and the presentation to the user of the comments she has posted.
The relationship between the entities User and Movie represents the
preferences of the user for specific movies. The role of this subschema is
to support the customization of contents and services, which is one
relevant facet of adaptive Web applications.

Figure 9.15. Three subschemas representing context data.

1:N 1:N
UserComment

Comment
Rate
Title
Comment_Date

Personalization
sub-schema Basic user sub-schema

Activity
Name
Handycap
Description

0:N

Context sub-schema

Group
GroupName

SiteView
SiteViewID

Movie
Title
Year
Description
Official _Site

1:N0:N
User

UserName
Password
EMail

0:N 1:N

1:1

0:N

0:N

Cinema
Name
Address
Description
Picture

Location
MinLon
MaxLon
MinLat
MaxLon

1:1
0:N

Device
CPU
InputDevice
Display
Memory

1:N

1:1

1:N 1:1

9. Designing Web Applications with WebML and WebRatio 249

• The Context subschema, including entities such as Device, Location,
and Activity, which describe context properties relevant for providing
adaptivity. Context entities are connected to the entity User to associate
each user with his (personal) context.

9.4.3.2 Identifying Context-Aware Pages

During hypertext design, adaptive requirements are considered to augment
the application’s front end with reactive capabilities. As illustrated in Figure
9.16, context-awareness in WebML can be associated with selected pages,
and not necessarily with the whole application. Location-aware applications,
for example, adapt “core” contents to the position of a user, but typical
“access pages” (including links to the main application areas) might not be
affected by the context of use.

We therefore tag adaptive pages with a C label (standing for “Context-
aware”) to distinguish them from conventional pages. This label indicates
that some adaptivity actions must be associated with the page. During
application execution, such actions must be evaluated prior to the
computation of the page, since they can serve to customize the page content
or to modify the navigation flow defined in the model.

Siteview

Context-aware Page

Source

Data Unit

P: Context Parameter

OID: Object

 Identifier

C

Conventional

Page 1
Conventional

Page 2

Figure 9.16. Hypertext schema highlighting context-aware pages. Context-aware pages are
labeled with a “C” and are associated with a context cloud.

As shown in Figure 9.16, adaptivity actions are clustered within a context

cloud. The cloud is external to the page, and the adaptivity actions that it
clusters are kept separate from the page specification. Such a notation
highlights the different roles played by pages and context clouds: The former

250 M. Brambilla et al.

act as providers of content and services, the latter act as modifiers of such
content and services.

In order to monitor the state of the context and execute adaptivity actions,
C-pages must be provided with autonomous intervention capabilities. The
standard HTTP protocol underlying most of today’s Web applications
implements a strict pull paradigm. In the absence of a proper push
mechanism, reactive capabilities can therefore be achieved by periodically
refreshing the viewed page and by triggering the execution of adaptivity
actions before the computation of the page content. This polling mechanism
“simulates” the active behavior necessary for making pages sensitive to the
context changes.

9.4.3.3 Specifying Adaptivity Actions in Context Clouds

Context clouds contain adaptivity actions expressed as sequences of WebML
operations and are associated with a page by means of a directed arrow, i.e.,
a link, exiting the C label. This link ensures communication between the
page logic and the cloud logic, since it can transport parameters derived from
the content of the page, useful for computing the actions specified within the
cloud. Vice versa, a link from the cloud to the page can transport parameters
computed by the adaptivity actions, which might affect the page contents
with respect to a new context.

The specification of adaptivity actions relies both on the use of the
standard WebML primitives and on a few novel constructs, related to the
acquisition and use of context data:

1. Acquisition and management of context data. This may consist of the

retrieval of context data from the context model stored within the data
source, or of the acquisition of fresh context data provided by device-
or client-side-generated URL parameters, which are then stored in the
application data source. These are the first actions executed every time
a C-page is accessed, for gathering an updated picture of the current
context.

2. Condition evaluation. The execution of some adaptivity actions may
depend on some conditions, e.g., evaluating whether the context has
changed and hence triggering some adaptivity actions.

3. Page content adaptivity. Parameters produced by context data
acquisition actions and by condition evaluation can be used for page
computation. They are sent back to the page by means of a link exiting
the context cloud and going to the page. The result is the display of a
page where the content is adapted to the current context.

4. Navigation adaptivity. The effect of executing the adaptivity actions
within the context cloud can be the redirection to a different page. The

9. Designing Web Applications with WebML and WebRatio 251

specification of context-triggered navigation just requires a link exiting
the context cloud to be connected to pages other than the cloud’s
source page.

5. Adaptivity of the hypertext structure. To deal with coarse-grained
adaptivity requirements, e.g., the change of device, role, or activity, the
adaptivity actions may lead to the redirection toward a completely
different site view.

6. Adaptivity of presentation properties. To support finer-grained
adjustments of the interface, the adaptivity actions may induce the run-
time modification of the presentation properties (look and feel, content
position and visibility, and so on).

Figure 9.17. The WebML specification of adaptivity actions providing users with context-
aware information about cinemas.

Figure 9.17 illustrates an example of adaptivity actions, applied to the
Current Area Cinemas page. Upon page access, some adaptivity actions in
the cloud are executed, which may change the content of the page based on
the geographical position of the user. Specifically, the user’s Latitude and
Longitude are retrieved by the Get Longitude and Get Latitude units,
which are examples of the GetClientParameter operation unit, introduced in
WebML to access context data sensed at the client side. In the example, the
two parameters Longitude and Latitude represent the position coordinates
sensed through a user’s device equipped with a GPS module. The retrieved
position values are used by the Get Location unit to identify a (possible)

Current Area Cinemas Page C

Get Longitude

Longitude

@
Get Latitude

Latitude

@

Get Location

Location
[minLat < Lat < maxLat]

[minLon < Lon < maxLon]

Lon Lat

Location.OID

IF

[Location.OID != null]

[result=true]

[result=false]

OK

OK

Alert Page C

L: Location.OID

Cinemas IndexTo Showtimes
Page

Cinema
[Location_Cinema(L)]

L

252 M. Brambilla et al.

location stored in the database for the current user’s position. Get Location
is a Get Data unit, a content unit for retrieving values (both scalars and sets)
from an entity of the data model without displaying them on a page. The
location OID is evaluated through an If unit: If it is not null (i.e., the sensed
coordinates fall into a location stored in the application data source), the list
of cinemas in that location is visualized in the Current Area Cinemas page;
otherwise, the user is automatically redirected to the Alert page, where a
message notifies of the absence of information about cinemas in the current
area.

Figure 9.17 also models the Alert page as context-aware; in particular,
this page shares its adaptivity actions with the Current Area Cinemas page.
Therefore, as soon as an automatic refresh of the Alert page occurs, the
shared actions are newly triggered and the application is adapted to the
user’s new position.

More details on the WebML extensions for adaptivity and context-
awareness and on their implementation in WebRatio can be found in Ceri

9.5 INDUSTRIAL EXPERIENCE

We conclude the illustration of WebML with an overview of the most
significant aspects of transferring model-driven development to industrial
users. The reported activities are based on WebML and WebRatio, but we
deem that the achieved results demonstrate the effectiveness and economic
sustainability of MDD in a more general sense. As a case study, we focus on
the applications developed by Acer EMEA, the Europe, Middle East, and
South Africa branch of Acer, for which five years of experience and data are
available. In particular, we will review some of the realized projects,
highlighting their functional and nonfunctional requirements, their
dimensional parameters, and the key aspects of their development,
deployment, evolution, and economic evaluation. The experience started
with the first version of the Acer-Euro application (http://www.acer-
euro.com), which aimed at establishing a software infrastructure for
managing and Web-deploying the marketing and communication content of
an initial group of 14 countries out of the 31 European Acer national
subsidiaries. The content of Acer-Euro 1.0 included the following main
areas: About Acer, Products, News, Service & Support, Partner Area, and
Where to buy.

et al. (2003, 2006, 2007).

9. Designing Web Applications with WebML and WebRatio 253

Figure 9.18. The WebML specification of the home page of a national site of Acer-Euro (left)
and its rendition in HTML (right).

Figure 9.18 shows the home page of a national site of Acer-Euro (left)
and its rendition in HTML generated by WebRatio. The Acer-Euro 1.0
system supported two main functions:

Figure 9.19 shows the schedule and milestones of the Acer-Euro 1.0
project. Only 7 weeks elapsed from the approval of the new site map and
visual identity to the publishing of the 14 national Web sites and to the
delivery of the CMS to Acer employees. In this period, two distinct
prototypes were formally approved by the management: Prototype 1, with
50% of functionality, was delivered at the end of week 2; prototype 2, with
90% of functionality, at week 5. Overall, nine prototypes were constructed in
six weeks: two formal, seven for internal assessment.

The development team consisted of four persons: one business expert and
one junior developer from Acer, and one analyst and one Java developer
from Politecnico di Milano.

1. Content publishing: comprising the architecture, tools, and processes

to make content about the Acer European Web sites available on the
Web to the users of the target countries.

2. Content management: comprising the architecture, tools, and
processes needed to gather, store, update, and distribute to the
destination countries the content related to the Acer European Web
sites.

254 M. Brambilla et al.

Figure 9.19. The schedule and milestones of the Acer-Euro 1.0 project.

of development plus one week of testing were sufficient for analyzing,
designing, implementing, verifying, documenting, and deploying a set of
midsized, functionally complex, multilingual Web applications. As illustrated

 1. The high degree of automation brought to the process by the use of
the model-driven approach: More than 90% of the application and
database code were synthesized automatically by the WebRatio
development environment from the WebML models of the
applications, without the need to manually intervene on the produced
code.

2. The overall productivity of the development process: The productivity
value is obtained by counting the number of function points (FPs) of
the project and dividing this value by the number of staff-months

Figure 9.19 shows the most relevant figures of the project: only six weeks

by the dimensional and economic parameters reported in Table 9.6, such result
has to be ascribed to

9. Designing Web Applications with WebML and WebRatio 255

employed in the development. The result is an average productivity
rate of 131.5 FP/staff month, which is 30% greater than the maximum
value expected for traditional programming languages in the Software
Productivity Research Tables (SPR, 2006). This latter result is a
consequence of the former: High automation implies a substantial
reduction of the manually written repetitive code and a high reuse of
design patterns.

Table 9.6 Main Dimensional and Economic Parameters of the Acer-Euro Project

Class Dimension Value

Number of elapsed workdays 49

Number of development staff-months

(analysts and developers)

6 staff-months (6 weeks × 4

persons)

Total number of prototypes 9

Average elapsed man days between consecutive

prototypes

5,4

Time &

effort

Average number of development man days per prototype 15,5

Number of localized B2C Web sites 14

Number of localized CMS applications 4 (Admin, News, Product, Other)

Number of supported languages 12 for B2C Web sites, 5 for CMS

Number of data entry masks 39

Number of automatically generated database tables 46

Number of automatically generated database views 82

Number of automatically generated database queries 279 for extraction, 89 for update

Number of automatically generated JSP page templates 48

Number of automatically generated or reused Java classes 250

Size

Number of automatically generated Java lines of code 12,500 Noncommented lines of

code

Number of manually written SQL statements 17 (SQL constraints)

Percentage of automatically generated SQL code 96%

Number of manually written/adapted Java classes /JSP

templates

10% JSP templates manually

adapted

Degree of

automation

Percentage of automatically generated Java and JSP code 90% JSP templates, 100% Java

classes

Number of function points 177 (B2C web site) + 612 (CMS) =

789

Productivity

Average number of FP delivered per staff-month 131.5

Another critical success factor has been the velocity in focusing the

requirements, thanks to the rapid production of realistic prototypes. At the
end of week 2, the top management could already evaluate an advanced

256 M. Brambilla et al.

prototype, which incorporated 50% of the requested functionality, and this
initial round of requirement validation proved essential to the delivery of a
compliant solution in such a limited time. With respect to traditional
prototyping, which exploits a simplified architecture, WebRatio generates
code directly for the actual delivery platform; in this way, stress test and
architecture tuning could already start at week 1 on the very first prototype,
greatly improving the parallelism of work and further reducing time to
market.

The benefits of MDD were manifested not only in the development of the
first version, but were even more sensible in the maintenance and evolution
phase. Figure 9.20 shows the timeline of the additional releases and spin-off
projects of Acer-Euro. Four major releases of Acer-Euro were delivered
between 2001 and 2006, and the number of applications grew from the initial
5 to 13 intranet and Internet applications, serving more corporate roles and
supporting more sophisticated workflow rules.

Figure 9.20. The evolution of the Acer-Euro project in five years.

At the end of 2005, Acer-Euro was rolled out in 26 European countries

and extended also to the Acer Pan-American subsidiaries, including Latin
America and the United States. As early as June 2001, an extension of the
Acer-Euro platform was scheduled, to address the delivery and management
of content for the channel operators (Acer partners). This spin-off project,
called Acer Connect, is a multi-actor extranet application targeted to Acer
partners, characterized by the following features:

1. the segmentation of the users accessing the site into a hierarchy of

groups corresponding to both Acer’s and partners’ business functions
2. the definition of different access privileges and information visibility

levels to groups

9. Designing Web Applications with WebML and WebRatio 257

3. the provision of an Acer European administration role, able to
dynamically perform via the Web all administrative and monitoring tasks

4. the provision of an arbitrary number of nation-based and partner-based
administration roles, with responsibility for local content creation and
publishing, and local user administration

5. a number of group-tailored Web applications (e.g., sales, marketing)
targeting content to corporate-specific or partner-specific user
communities

6. the management of administrative and business functions in multiple
languages flexibly set by administrators and users

7. a security model storing group and individual access rights into a
centrally managed database, to enforce global control over a largely
distributed application

8. content personalization based on group-specific or user-specific
characteristics, for ensuring one-to-one relationships with partners

9. advanced communication and monitoring functions for the effective
tracking of partners’ activity and of Acer’s quality of services

The first version of Acer Connect was deployed in Italy and the UK in

December 2001, after only seven months of development and with an effort
of 24 staff-months. Today, Acer Connect is rolled out in 25 countries and
hosts 65,000 registered partners, delivering content and services to a
community of over 80,000 users. Acer Connect and Acer-Euro share part of
the marketing and communication content, and therefore the former project
was realized as an evolution of the latter; starting from the data model of
Acer-Euro, the specific functions of Acer Connect were added, and new
applications were modeled and automatically generated. The model-driven
approach greatly reduced the complexity of integration, because the high-
level models of the two systems were an effective tool for reasoning about
the functionality to reuse and develop.

Besides Acer Connect, several other projects were spun off, to exploit the
customer and partner communities gathered around these two portals. Figure
9.21 overviews the delivered B2C projects, which collectively total over
10,800,000 visits per month.

As a remark on the long-term sustainability of MDD, we note that,
despite their complexity and multinational reach, both Acer-Euro and Acer
Connect are maintained and evolved by one junior developer each, working
on the project at part time. In total, only 5 junior developers, allocated to the
projects at part time, maintain the 56 mission-critical Web applications
implemented by Acer with WebML.

258 M. Brambilla et al.

Figure 9.21. The main applications developed in Acer with WebML.

On the negative side of MDD, the initial training and switching costs

have been reported as the most relevant barrier. MDD requires nontechnical
knowledge on the modeling of software solutions, which must be acquired
with a mix of conventional and on-the-job training. Furthermore, developers
have their own previous consolidated skills and professional history, and
switching to a completely new development paradigm is felt to be a potential
risk. Acer estimates that it takes developers from 4 to 6 months to become
fully acquainted and productive with MDD, WebML, and WebRatio.
However, Acer’s figures demonstrate that the initial investment in human
capital required by MDD pays off in the mid-term. The number of
applications developed and maintained per unit of development personnel
increases with the developers’ expertise and exceeds 10 fully operational,
complex, and distributed Web applications per developer.

9.6 CONCLUDING REMARKS

In this chapter we have described the Web Modeling Language, a conceptual
notation for specifying the design of complex, distributed, multi-actor, and
adaptive applications deployed on the Web and on service-oriented
architectures using Web services. WebML was born in academia but soon
spun off to the industrial battlefield, where it faced the development of
complex systems with requirements often exceeding the expressive power of
the language. This fruitful interplay of academic design and industrial
experience made the language evolve from a closed notation for data-centric

9. Designing Web Applications with WebML and WebRatio 259

Web applications to an open and extensible framework for generalized
component-based development. The core capability of WebML is expressing
application interfaces as a network of collaborating components, which sit
on top of the core business objects. WebML incorporates a number of built-
in, off-the-shelf components for data-centric, process-centric, and Web
service-centric applications and lets developers define their own
components, by wrapping existing software artifacts and reverse-engineering
them. In other words, the essence of WebML boils down to a standard way
of describing components, their interconnection and passage of parameters,
their exposition in a user interface, and the rules for generating code from
their platform-independent model.

This flexibility allowed several extensions of the language, in the
direction of covering both new application requirements and deployment
architectures. The ongoing work is pursuing a number of complementary
objectives:

1. Extending the model-driven approach to all the phases of the

application life cycle: WebML is being used as a vehicle to investigate
the impact of MDD on development activities like business
requirement elicitation and reengineering, cost and effort estimation,
testing, quality evaluation, and maintenance.

2. Extending the capability of the user interface beyond classical
hypertexts: The expressive power of WebML is presently inadequate
to express Rich Internet Applications and classical client-server
applications; research is ongoing to identify the minimal set of
concepts needed to capture the Web interfaces of the future.

3. Broadening the range of deployment platforms: WebML and
WebRatio are being extended to target code generation for
nonconventional infrastructures. A version of WebRatio for digital
television has been already built, and experimentation is ongoing for
deploying applications on top of embedded systems and mobile
appliances for the DVB-H standard.

REFERENCES

Baresi, L., Fraternali, P., Tisi, M., and Morasca, S., 2005, Towards model-driven testing of a
Web application generator. Proceedings 5th International Conference on Web

Engineering (ICWE'05), Sydney, Australia, pp. 75–86.
Beck, K., 1999, Embracing change with extreme programming. IEEE Computer, 32(10): 70–77.
Boehm, B., 1988, A spiral model of software development and enhancement. IEEE

Computer, 21(5): 61–72.
Booch, G., Rumbaugh, J., and Jacobson, I., 1999, The Unified Modeling Language User

Guide (Object Technology Series), Addison-Wesley, Reading, MA.

260 M. Brambilla et al.

Brambilla, M., 2003, Extending hypertext conceptual models with process-oriented
primitives. Proceedings Conceptual Modeling (ER 2003), Chicago, IL, pp. 246–262.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P., and Manolescu, I., 2003, Specification and
design of workflow-driven hypertexts. Journal of Web Engineering, 1(2): 163–182.

Brambilla, M., Ceri, S., Comai, S., and Tziviskou, C., 2005, Exception handling in workflow-
driven Web applications. Proceedings World Wide Web International Conference
(WWW'05), Chiba, Japan, May 10–13, pp. 170–179.

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I., 2007, Process modeling in Web
applications. ACM Transactions on Software Engineering and Methodology. In print.

Brambilla, M., Ceri, S., Passamani, M., and Riccio, A., 2004, Managing asynchronous Web
services interactions. Proceedings ICWS 2004, pp. 80–87.

Brambilla, M., and Tziviskou, C., 2005, Fundamentals of exception handling within
workflow-based Web applications. Journal of Web Engineering, 4(1): 38–56.

Ceri, S., Daniel, F., Facca, F., Matera, M., and the MAIS Consortium, 2006, Front-end
methods and tools for the development of adaptive applications. In Mobile Information

Systems. Infrastructure and Design for Flexibility and Adaptivity, B. Pernici, ed., Springer-
Verlag, pp. 209–246.

Ceri, S., Daniel, F., and Matera, M., 2003, Extending WebML for modelling multi-channel
context-aware Web applications. Proceedings WISE '03 Workshops, IEEE Press, pp. 225–
233.

Ceri, S., Daniel, F., Matera, M., and Facca, F., 2007, Model-driven development of context-
aware Web applications. ACM Transactions on Internet Technology, 7(1), Article No. 2.

Ceri, S., Fraternali, P., and Bongio, A., 2000, Web Modeling Language (WebML): A
modeling language for designing Web sites. Computer Networks, 3(1–6): 137–157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M., 2002,
Designing Data-Intensive Web Applications, Morgan Kaufmann, San Francisco.

Conallen, J., 2000, Building Web Applications with UML (Object Technology Series),
Addison-Wesley, Reading, MA.

Fraternali, P., Lanzi, P.L., Matera, M., and Maurino, A., 2004, Model-driven Web usage
analysis for the evaluation of Web application quality. Journal of Web Engineering, 3(2):
124–152.

Fraternali, P., Matera, M., and Maurino, A., 2003, Conceptual-level log analysis for the
evaluation of Web application quality. Proceedings LA-WEB 2003, IEEE Press, pp. 46–57.

Garzotto, F., Paolini, P., and Schwabe, D., 1993, HDM—A model-based approach to
hypertext application design. ACM Transactions on Information Systems, 11(1): 1–26.

Kruchten, P., 1999, The Rational Unified Process: An Introduction, Addison-Wesley,
Reading, MA.

Isakowitz, T., Sthor, E.A., and Balasubranian, P., 1995, RMM: A methodology for structured
hypermedia design. Communications of the ACM, 38(8): 34–44.

Lanzi, P.L., Matera, M., and Maurino, A., 2004, A framework for exploiting conceptual
modeling in the evaluation of Web application quality. Proceedings ICWE 2004, Springer-
Verlag, pp. 50–54.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and Fraternali, P., 2005, Model-driven
design and deployment of service-enabled Web applications. ACM Transactions on

Internet Technology, 5(3): 439–479.
Meo, R., and Matera, M., 2006, Designing and mining Web applications: A conceptual

modeling approach. In Web Data Management Practices: Emerging Techniques and

Technologies, A. Vakali and G. Pallis, eds., Idea Group Publishing, Hershey, PA.
SPR (Software Productivity Research), 2006, SPR Programming Language Table—Version

PLT2005a. Retrieved February 2006 from http://www.spr.com.

9. Designing Web Applications with WebML and WebRatio 261

WebModels, 2006. WebRatio Tool Suite. Retrieved October 2006 from
http://www.webratio.com.

W3C, 2006, WSDL Web Service Description Language. Retrieved October 2006 from
https://www.w3.org/2002/ws/desc.

