System Modeling / Class Diagram

Agenda (Lecture)

e System modeling

Agenda (Lab)

Create CRC cards for your group project

Create a system-level (analysis-level) class diagram
(Lab Assignment #6) for your group project.

Quizzes (hours 2 and 4)
Weekly progress report

Submit the progress report and class diagram by the
end of the Wednesday lab session.

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrole it

Howe the Business Consuliant
describad it

How the project was
documentaed

What operations installed

Howe the customer was billed

How it was supported

What the customer really
needad

Topics covered

Context models
Interaction models
Structural models
Behavioral models
Model-driven engineering

System modeling

e System modeling is the process of developing
abstract models of a system, with each model
presenting a different view or perspective of that

system.

e System modeling has now come to mean
representing a system using some kind of graphical
notation, which is now almost always based on

notations in t

e System mode
the functiona

ne Unified Modeling Language (UML).
ling helps the analyst to understand

ity of the system and models are used

to communicate with customers.

Existing and planned system models

Models of the existing system are used during requirements
engineering. They help clarify what the existing system does and
can be used as a basis for discussing its strengths and weaknesses.
These then lead to requirements for the new system.

Models of the new system are used during requirements
engineering to help explain the proposed requirements to other
system stakeholders. Engineers use these models to discuss design
proposals and to document the system for implementation.

In a model-driven engineering process, it is possible to generate a
complete or partial system implementation from the system model.

System perspectives

An external perspective, where you model the context or
environment of the system.

An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

A structural perspective, where you model the
organization of a system or the structure of the data that
is processed by the system.

A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events.

UML diagram types

Activity diagrams, which show the activities involved in a
process or in data processing .

Use case diagrams, which show the interactions between
a system and its environment.

Sequence diagrams, which show interactions between
actors and the system and between system components.

Class diagrams, which show the object classes in the
system and the associations between these classes.

State diagrams, which show how the system reacts to
internal and external events.

Use of graphical models

As a means of facilitating discussion about an existing
or proposed system

— Incomplete and incorrect models are OK as their role is to
support discussion.

As a way of documenting an existing system

— Models should be an accurate representation of the
system but need not be complete.

As a detailed system description that can be used to
generate a system implementation

— Models have to be both correct and complete.

Context models

 Context models are used to illustrate the operational
context of a system - they show what lies outside the
system boundaries.

e Social and organisational concerns may affect the
decision on where to position system boundaries.

e Architectural models show the system and its
relationship with other systems.

System boundaries

e System boundaries are established to define what is
inside and what is outside the system.

— They show other systems that are used or depend on the
system being developed.

 The position of the system boundary has a profound
effect on the system requirements.

* Defining a system boundary is a political judgment

— There may be pressures to develop system boundaries that
increase / decrease the influence or workload of different
parts of an organization.

The context of the MHC-PMS

'] T
Masagement
repoating
Fpstem

K5y SHE M2
H i statfistirs
S EE M

esypstpms
Patient recosd
systerm
afgstame
Admsgprs,
Peetamy
enysteme
AH C-PRAS
i S b
. s Pregoription
. HEbem
S EAEMs
Appoindments
sysiem

Chapter 5 System modeling

13

Process perspective

 Context models simply show the other systems in the
environment, not how the system being developed is
used in that environment.

* Process models reveal how the system being
developed is used in broader business processes.

e UML activity diagrams may be used to define
business process models.

Process model of involuntary
detention

.~ ™
| | Il Tramsior b)
P Jracamalohle] | pokce staion)
Setention | . ™ -
| decison | Fnd secue
A - ! sl '
S L of Tarsterta Y - < mberm
L | _ . § - }
. Hangs [ircnlnd i .Ls_mri hHF*"'“'_ r ‘ \ sociall cane 7
I.*"' I ndnamm ™ : .
= patient of .) (o)
Y fighe) L -
:.d- -.-\‘- - - - .Fr ...H-.
| deﬁf;'l;n:gn 7 Admitto - A i;;ll::t:r i
y, dedsion N s
i 5 ol rh'-l"t'lil :
) =EYEL EMa
2 s teame MHC-PMS
S Llrriezimme
MHCPAIS Fywhey

Chapter 5 System modeling

Interaction models

Modeling user interaction is important as it helps to
identify user requirements.

Modeling system-to-system interaction highlights the
communication problems that may arise.

Modeling component interaction helps us
understand if a proposed system structure is likely to
deliver the required system performance and
dependability.

Use case diagrams and sequence diagrams may be
used for interaction modeling.

Use case modeling

Use cases were developed originally to support
requirements elicitation and now incorporated into
the UML.

Each use case represents a discrete task that involves
external interaction with a system.

Actors in a use case may be people or other systems.

Represented diagramatically to provide an overview
of the use case and in a more detailed textual form.

Transfer-data use case

e A use case in the MHC-PMS

% s Trancfer data ~ %

Madical recapk anist Pal =m! recnrd aesham

Chapter 5 System modeling

18

Tabular description of the ‘Transfer
data’ use-case

Actors Medical receptionist, patient records system (PRS)

Description A receptionist may transfer data from the MHC-PMS to a
general patient record database that is maintained by a
health authority. The information transferred may either
be updated personal information (address, phone
number, etc.) or a summary of the patient’s diagnosis
and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security
permissions to access the patient information and the
PRS.

Chapter 5 System modeling

Use cases in the MHC-PMS involving
the role ‘Medical Receptionist’

% :

£l
bl gk

Chapter

£ Fi..':EI:TI'I.’" Ty
W, patient .-"'l

£ Unregister ™y
, patierit

#View patiend ™

% info v

.~ i "
| Translor data
ey, L

. "{'_:.m.;fr' e
W [patient 4

5 System modeling

20

Sequence diagrams

Sequence diagrams are part of the UML and are used to
model the interactions between the actors and the
subsystems, (objects) within a system.

A sequence diagram shows the sequence of interactions
that take place during a particular use case or use case
instance.

The subsystems, (objects) and actors involved are listed
along the top of the diagram, with a dotted line drawn
vertically from these.

Interactions between subsystems, (objects) are indicated
by annotated arrows.

Sequence diagram for View patient
information

Fiedics Reréplenr. ot

% | F: Fatientirfo . -I,'.I'.'u'IHl:F'l.n'IE-[!-ﬂ-. ..:.5 n.ut-..-.r:a:.¢-.]
[s Gy
. s :ﬂ!{liﬂ. AD,
il P ——
antor
T[]
[
1 [
alt | T T
[auith crizatson O] P alet e
E]
[autharization fail] .
_.! 0 [Mdren) .

Chapter 5 System modeling 22

Sequence diagram for Transfer Data

Liedea Ketaplnr @

7

[5endinde

- dpdyabdal § i

[sendSummary]
Imill“l'“e

P Patiemtinfo

2

D MHCFMS -DE | ASC Bt an z.etn}ﬂl

. bogn {3 .
st gl D)
* | awtheare P L
artarenisn 1_|
* - vty (A1)
Spirie OF

ﬂﬂ'ﬂﬂlﬁl
l.liu-t‘l'F.l.ﬂil'
e
r I'I'S-Jl'l‘l'l‘-?lf'fl
| ey
e L g PSR
bopal] J

Chapter 5 System modeling 23

Structural models

e Structural models of software display the
organization of a system in terms of the components
that make up that system and their relationships.

e Structural models may be static models, which show
the structure of the system design, or dynamic
models, which show the organization of the system
when it is executing.

* You create structural models of a system when you
are discussing and designing the system architecture.

Class diagrams

Class diagrams are used when developing an object-
oriented system model to show the classes in a system
and the associations between these classes.

An object class can be thought of as a general definition
of one kind of system object.

An association is a link between classes that indicates
that there is some relationship between these classes.

When you are developing models during the early stages
of the software engineering process, objects represent
something in the real world, such as a patient, a
prescription, doctor, etc.

UML classes and association

I'| Patient

Fabee II"I':':'I-I

Chapter 5 System modeling

26

Classes and associations in the MHC-
PMS

Lonsufant

i
redered Ao

I_I
Canditi I 1. o LG I Cemeral
it ’ abend " ey
I':-ﬁﬂrﬁ'lifl'l- - loeree b_f prachiacnes
vuilh LR
L s
- pPrescnikes _
Consulation - Medicaban
1 _ . L2 1.}
1 | |
r.I05 Fi‘llil"ihlﬁi.
1.4 ;- 14 Treatrment
Hospital
Doctor

Chapter 5 System modeling

The Consultation class

TanrsalLalivng

[aactars

[rarte

ime

Clinac

Eeason

Wedication presonbed
Teatment prescnbed
Voics motoc

ranscrpk

Mew -:'L:
Prescribe {)
RecordMotes {)
Transonbe {)

Chapter 5 System modeling

28

Key points

A model is an abstract view of a system that ignores system details.
Complementary system models can be developed to show the system’s
context, interactions, structure and behavior.

Context models show how a system that is being modeled is positioned in
an environment with other systems and processes.

Use case diagrams and sequence diagrams are used to describe the
interactions between users and systems in the system being designed. Use
cases describe interactions between a system and external actors;
sequence diagrams add more information to these by showing
interactions between system objects.

Structural models show the organization and architecture of a system.
Class diagrams are used to define the static structure of classes in a
system and their associations.

Generalization

 Generalization is an everyday technique that we use
to manage complexity.

e Rather than learn the detailed characteristics of
every entity that we experience, we place these
entities in more general classes (animals, cars,
houses, etc.) and learn the characteristics of these
classes.

e This allows us to infer that different members of
these classes have some common characteristics e.g.
squirrels and rats are rodents.

Generalization

In modeling systemes, it is often useful to examine the classes in a
system to see if there is scope for generalization. If changes are
proposed, then you do not have to look at all classes in the system to
see if they are affected by the change.

In object-oriented languages, such as Java, generalization is
implemented using the class inheritance mechanisms built into the
language.

In a generalization, the attributes and operations associated with
higher-level classes are also associated with the lower-level classes.

The lower-level classes are subclasses inherit the attributes and
operations from their superclasses. These lower-level classes then add
more specific attributes and operations.

A generalization hierarchy

[E=<IE"
Haospital 'IH'..,'J
Goctor o]
oy tant T ke ma s
Train e O 3hilled
Ao E

Chapter 5 System modeling

32

A generalization hierarchy with added
detail

Dhc-char

hame
Py o

BT

aREinr]
de g star i1

Hosspital doctor ey [racicener

CEmit & 1=t g
Pager # Aciclress

Chapter 5 System modeling

Object class aggregation models

 An aggregation model shows how classes that are
collections are composed of other classes.

e Aggregation models are similar to the part-of
relationship in semantic data models.

The aggregation association

Pabszrst recoad
| = S |
| 1.7
Fatient |_‘."._-:||'|5| lkazion

Chapter 5 System modeling

Behavioral models

 Behavioral models are models of the dynamic
behavior of a system as it is executing. They show
what happens or what is supposed to happen when
a system responds to a stimulus from its
environment.

e You can think of these stimuli as being of two types:

— Data Some data arrives that has to be processed by the
system.

— Events Some event happens that triggers system
processing. Events may have associated data, although this
is not always the case.

Data-driven modeling

 Many business systems are data-processing systems
that are primarily driven by data. They are controlled
by the data input to the system, with relatively little
external event processing.

e Data-driven models show the sequence of actions
involved in processing input data and generating an
associated output.

 They are particularly useful during the analysis of
requirements as they can be used to show end-to-
end processing in a system.

An activity model of the insulin pump’s
operation

Blkowd SLERF | _I"’r Gel -rmr"‘ll | e " Lompuse N [Bland sugm
[TRTE aal e dndn sagar koo s
b o g
i I'Jul::.ll.ll 1
| naill |
%, dalivery
mauin (" Crat o umponto | [aladabe ™, Iraulir
fuirip | \._ pLTIp)’ zearvrms wl: -wrr_m" dg R ffa BN

Chapter 5 System modeling 38

Order processing

" wrpge affergs

St
[| --:I:t:sl:n-'i:--
% Dirder | Buad ge | ‘ ponrond %

FlR | i-'-- "i'::hi"l

[l ¥t &% o]
| Uil e

el Sored [

Chapter 5 System modeling

39

Event-driven modeling

* Real-time systems are often event-driven, with
minimal data processing. For example, a landline
phone switching system responds to events such as
‘receiver off hook’ by generating a dial tone.

* Event-driven modeling shows how a system responds
to external and internal events.

e |tis based on the assumption that a system has a
finite number of states and that events (stimuli) may
cause a transition from one state to another.

State machine models

These model the behaviour of the system in response to
external and internal events.

They show the system’s responses to stimuli so are often used
for modelling real-time systems.

State machine models show system states as nodes and
events as arcs between these nodes. When an event occurs,
the system moves from one state to another.

Statecharts are an integral part of the UML and are used to
represent state machine models.

State diagram of a microwave oven

Fa i Full power ™y
- | dai 52t rn.'-'--%'l
= gLAp
I:'."i n Fe l""I
. Timer
..,-" Viaiting ™,
*' 1 da: d-l:pll:,' | Bl -~ Sﬁ[;imp. — " ._..-m -y
\ tirms 3 ' . . :
L ™ . . g il d ::'3": F.-._In_'l"l_'llﬂ;l' 1 do: op ke ‘
Half 'kli?ﬂ sef [-nw:ﬂ,.n' L DA .
il P — " A
L Tirre aeped L gl
Py gl
. T N . L ! B -
¢ Half power ¢ Enabled P ¢ Waiting ™,
= o set power Dcor | dic: display do- display
L,_*_ - THx A olamar L% Feady y, N, BmE g
A
—- F =
;" Desabded "vl I!,.I
| die: digplay =
i Wailmy' }
. -

Chapter 5 System modeling 42

States and stimuli for the microwave

oven (a)

Waiting
Half power
Full power

Set time

Disabled

Enabled

Operation

The oven is waiting for input. The display shows the current time.
The oven power is set to 300 watts. The display shows ‘Half power’.
The oven power is set to 600 watts. The display shows ‘Full power’.

The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook'.

Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

Chapter 5 System modeling 43

States and stimuli for the microwave

oven (b)

Half power

Full power

Timer

Number
Door open
Door closed
Start

Cancel

The user has pressed the half-power button.

The user has pressed the full-power button.

The user has pressed one of the timer buttons.

The user has pressed a numeric key.
The oven door switch is not closed.
The oven door switch is closed.

The user has pressed the Start button.

The user has pressed the Cancel button.

Chapter 5 System modeling

44

Microwave oven operation

4 r Dperation i ™
T T
l-.l'- .
Checking ™, - |'Hrm|
di: ehick 'I-d-:-: iy |
Stafiis Feneratar
. J , g
e faai
- Alanmi -“ ﬁd-u- :I:'"t
|) - bugzer on
clox: sy .| far & secs
et ——
., o
i] Dead ”:’.'_I_'H Lance
| Disabled) |\ Myaiting J
p. o)

Chapter 5 System modeling

Model-driven engineering

 Model-driven engineering (MDE) is an approach to
software development where models rather than
programs are the principal outputs of the development
process.

e The programs that execute on a hardware/software
platform are then generated automatically from the
models.

 Proponents of MDE argue that this raises the level of
abstraction in software engineering so that engineers no
longer have to be concerned with programming language
details or the specifics of execution platforms.

Usage of model-driven engineering

Model-driven engineering is still at an early stage of
development, and it is unclear whether or not it will have

a significant effect on software engineering practice.

* Pros
— Allows systems to be considered at higher levels of abstraction

— Generating code automatically means that it is cheaper to adapt
systems to new platforms.

* Cons
— Models for abstraction and not necessarily right for
implementation.

— Savings from generating code may be outweighed by the costs
of developing translators for new platforms.

Model driven architecture

 Model-driven architecture (MDA) was the precursor
of more general model-driven engineering

e MDA is a model-focused approach to software
design and implementation that uses a subset of
UML models to describe a system.

 Models at different levels of abstraction are created.
From a high-level, platform independent model, it is
possible, in principle, to generate a working program
without manual intervention.

Types of model

A computation independent model (CIM)

— These model the important domain abstractions used in a
system. CIMs are sometimes called domain models.

* A platform independent model (PIM)

— These model the operation of the system without reference to
its implementation. The PIM is usually described using UML
models that show the static system structure and how it
responds to external and internal events.

e Platform specific models (PSM)

— These are transformations of the platform-independent model
with a separate PSM for each application platform. In principle,
there may be layers of PSM, with each layer adding some
platform-specific detail.

MDA transformations

Computation ~ Hatiarm Platfe I Exacutaile
II.L'H:T::I:;:E.“ l IIHJ:I::I":I;;:I!TI[P‘ speife I':"I'Ir:ll-dl';"l rads
¥

Tram=|sbar Tram=lsbsr Trzm=latair

' 4

& 1
Domain specific Flatfarm Language
. . h
TR R || | 2R

Chapter 5 System modeling

Multiple platform-specific models

‘JJEE Trans|atar | DI ”Ef_lfpdi.”ﬁt |- o Jivacode ‘ | Jova program
X FLIEE Y
A
Flatfarm
independent
madel
.
|
e | NET spiecific Cf code I
‘."Jﬂ Translatar -~ model |- ™ ceneraor = C¥ program

Chapter 5 System modeling

51

Agile methods and MDA

 The developers of MDA claim that it is intended to

support an iterative approach to development and so can
be used within agile methods.

 The notion of extensive up-front modeling contradicts
the fundamental ideas in the agile manifesto and |

suspect that few agile developers feel comfortable with
model-driven engineering.

e If transformations can be completely automated and a
complete program generated from a PIM, then, in
principle, MDA could be used in an agile development
process as no separate coding would be required.

Executable UML

 The fundamental notion behind model-driven
engineering is that completely automated
transformation of models to code should be possible.

* This is possible using a subset of UML 2, called
Executable UML or xUML.

Features of executable UML

e To create an executable subset of UML, the number of
model types has therefore been dramatically reduced to
these 3 key types:

— Domain models that identify the principal concerns in a system.
They are defined using UML class diagrams and include objects,
attributes and associations.

— Class models in which classes are defined, along with their
attributes and operations.

— State models in which a state diagram is associated with each
class and is used to describe the life cycle of the class.
e The dynamic behavior of the system may be specified
declaratively using the object constraint language (OCL),
or may be expressed using UML’s action language.

Key points

Behavioral models are used to describe the dynamic behavior of an
executing system. This behavior can be modeled from the
perspective of the data processed by the system, or by the events
that stimulate responses from a system.

Activity diagrams may be used to model the processing of data,
where each activity represents one process step.

State diagrams are used to model a system’s behavior in response
to internal or external events.

Model-driven engineering is an approach to software development
in which a system is represented as a set of models that can be
automatically transformed to executable code.

Class

* A classis a cohesive entity used to group related
fields (attributes) and methods (functions).

e A class supports object-oriented concepts such as
inheritance, polymorphism, etc.

Object

 An object is an instance (or instantiation) of a class

 An object-oriented product (system) is made up of
interacting objects to provide services to actors

* Objects are basic building blocks for the product

CRC Card

e ACRCcardsis anindex card that is use to represent
the responsibilities of classes and the interaction
between the classes.

e CRC cards are an informal approach to object
oriented modeling.

e The name CRC comes from Class, Responsibilities,
and Collaborators

CRC Card Layout

Class Name

Responsibilities Collaborators

Class Diagram (1)

 UML class diagrams show the static structure of the
system, that is, what classes there are and how they

are related

e Building class diagrams starts identifying classes and
their relationships among them

Class Diagram (2)

 The production of class diagrams is an iterative
process.

* At the beginning, only a rudimentary “wire-frame”
class diagram may be produced reflecting the
requirements of the system being modeled.

 These diagrams can then be refined through an
iterative process of review and further development.

A S

The Process of Development of
Class diagrams

|dentify and define the classes

|dentify and define the relationships

ldentity and define class attributes

Extend the class attributes with visibility, type, etc.

Extend the relationships with navigability, name,
multiplicity, etc.

The Process of Development of
Class diagrams

ldentify and define the methods (after sequence
diagrams are created)

Assign the methods to classes

design the complex methods (using pseudo code or
activity diagram)

Validate the class diagram and go back to the previous
steps, if necessary.

Different Types of Classes

 Boundary classes
— Input and output

e Entity classes

— Manage a set of data

e Control classes

— Controller, complex computation and algorithms

Association
Aggregation
Composition
Generalization

Relationships

ATM System

|
Operator
}
Session
Customer
«include»

| «extend»

Transaction
«include»

Deposit

Bank

Card

Money Log
A\
| /(
|
1
CashDispenser EnvelopeAcceptor NetworkToBank
CustomerConsole OperatorPanel
ATMController
CardReader ReceiptPrinter F-- —> Receipt
Session — Transaction
Withdrawal Deposit Transfer Inquiry
N ' 4 7
~ \ ,’ -

\

\ /
\ /
/
\\J V //

/ -

-

Account

