A DISJOINTNESS CRITERION FOR BEATTY'S SEQUENCES

KIM, SUNGJIN

1. INTRODUCTION

Let α be an irrational number with $\alpha > 1$. We denote $S(\alpha)$ by

 $S(\alpha) = \{ \lfloor n\alpha \rfloor | n \in \mathbb{N} \}.$

In 1926, Sam Beatty [1] proved that if α , β are positive irrational numbers, then the disjoint union of $S(\alpha)$ and $S(\beta)$ is \mathbb{N} if and only if $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. It is easy to see that if α , β are positive irrational numbers and

$$\frac{k}{\alpha} + \frac{l}{\beta} = 1$$

for some positive integers k, l, then $S(\alpha) \cap S(\beta) = \phi$.

In this note, we shall show that the converse of this statement is also valid. In addition, we deduce that $S(\alpha) \cap S(\beta)$ is either empty or infinite.

Theorem. For irrational numbers α , $\beta > 1$,

$$S(\alpha) \cap S(\beta) = \phi$$

if and only if

$$\frac{k}{\alpha} + \frac{l}{\beta} = 1$$

for some positive integers k, l.

2. Lemmas

We denote B(x, y, r) by an open ball in \mathbb{R}^2 centered at (x, y) with radius r. For a real number x, (x) denotes the fractional part of x. For real numbers α and β , we define $S(\alpha, \beta)$ by

$$S(\alpha,\beta) = \{((n\alpha), (n\beta)) | n \in \mathbb{N}\}.$$

Lemma 1. Let m, n, r be positive integers. Then, $\lfloor n\alpha \rfloor = \lfloor m\beta \rfloor = r - 1$ if and only if $\left(\frac{r}{\alpha}\right) \leq \frac{1}{\alpha}$ and $\left(\frac{r}{\beta}\right) \leq \frac{1}{\beta}$.

Proof. We observe that $\lfloor n\alpha \rfloor = \lfloor m\beta \rfloor = r - 1$ is equivalent to any of the following statements:

$$n\alpha < r \le n\alpha + 1, \ m\beta < r \le m\beta + 1;$$

$$n < \frac{r}{\alpha} \le n + \frac{1}{\alpha}, \ m < \frac{r}{\beta} \le m + \frac{1}{\beta};$$

$$0 < \left(\frac{r}{\alpha}\right) \le \frac{1}{\alpha}, \ 0 < \left(\frac{r}{\beta}\right) \le \frac{1}{\beta}.$$

Thus, Lemma 1 follows.

Lemma 2 (Kronecker's Theorem). If 1, α , β are linearly independent over \mathbb{Q} , then the set $S(\alpha, \beta)$ is dense in $[0, 1]^2$.

Proof. See [2], p382.

Lemma 3. Let $\alpha > 1$, $\beta > 1$ be irrational numbers satisfying $\frac{k}{\alpha} + \frac{l}{\beta} = m$ with k, l, m relatively prime integers and l > 0. Then $S(\frac{1}{\alpha}, \frac{1}{\beta})$ is dense in

$$[0,1]^2 \cap \{(x,y) | kx + ly \in \mathbb{Z}\}$$

Proof. Let $(x, y) \in [0, 1]^2$ be such that kx + ly = z for some $z \in \mathbb{Z}$ and $0 < \varepsilon < d/2$, where d is the distance between two lines, kx + ly = 0, kx + ly = 1. Using the pigeon hole principle, we get

$$v = (v_1, v_2) = \left(\left(\frac{n_2}{\alpha}\right) - \left(\frac{n_1}{\alpha}\right), \left(\frac{n_2}{\beta}\right) - \left(\frac{n_1}{\beta}\right) \right)$$

with positive integers n_1 , n_2 $(n_1 < n_2)$, and $|v| < \varepsilon < \frac{d}{2}$. Since (k, l, m) = 1, for any $z \in \mathbb{Z}$, there is a triple (n, z_1, z_2) with $n \in \mathbb{N}$, $z_1 \in \mathbb{Z}$ and $z_2 \in \mathbb{Z}$ such that

 $mn + kz_1 + lz_2 = z$

From |v| < d, we have $kv_1 + lv_2 = 0$. Then, we get

$$k\left(\frac{n}{\alpha} + z_1 + Nv_1\right) + l\left(\frac{n}{\beta} + z_2 + Nv_2\right) = mn + kz_1 + lz_2 = z$$

for any $N \in \mathbb{N}$. Hence, we can find a positive integer N and integers u_1 , u_2 such that

$$\left(\frac{n}{\alpha} + z_1 + Nv_1, \frac{n}{\beta} + z_2 + Nv_2\right) \in B(u_1 + x, u_2 + y, \varepsilon)$$

Thus, Lemma 3 follows.

3. Proof of the Theorem

Let $\alpha > 1$, $\beta > 1$ be irrational numbers satisfying $S(\alpha) \cap S(\beta) = \phi$. 1, $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are either linearly independent over \mathbb{Q} or linearly dependent over \mathbb{Q} . The latter case we multiply a nonzero integer to get $\frac{k}{\alpha} + \frac{l}{\beta} = m$, with k, l, m relatively prime integers, and l > 0. Since $k \neq 0$, we divide the latter into two cases k < 0, and k > 0.

Case 1. 1, $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are linearly independent over \mathbb{Q} .

By Lemma 2, $S(\frac{1}{\alpha}, \frac{1}{\beta})$ is dense in $[0, 1]^2$. Then we have

$$S\left(\frac{1}{\alpha}, \frac{1}{\beta}\right) \cap \left(0, \frac{1}{\alpha}\right] \times \left(0, \frac{1}{\beta}\right]$$

is an infinite set. This implies

$$\left(\frac{r}{\alpha}\right) \le \frac{1}{\alpha}, \ \left(\frac{r}{\beta}\right) \le \frac{1}{\beta}$$

for infinitely many positive integers r. Using this and Lemma 1, we have $S(\alpha) \cap S(\beta)$ is an infinite set.

Case 2. $\frac{k}{\alpha} + \frac{l}{\beta} = m$, with k, l, m relatively prime integers, l > 0 and k < 0.

The set

$$\{(x,y)|kx+ly\in\mathbb{Z}\}\cap\left(0,\frac{1}{\alpha}\right]\times\left(0,\frac{1}{\beta}\right]$$

contains a line segment of kx + ly = 0. By Lemma 3, the set

$$S\left(\frac{1}{\alpha}, \frac{1}{\beta}\right) \cap \left(0, \frac{1}{\alpha}\right] \times \left(0, \frac{1}{\beta}\right)$$

is an infinite set. This implies $S(\alpha) \cap S(\beta)$ is an infinite set as in Case 1.

Case 3. $\frac{k}{\alpha} + \frac{l}{\beta} = m$ with k, l, m relatively prime integers, l > 0 and k > 0. Since $S(\alpha) \cap S(\beta) = \phi$, we have

(1)
$$S\left(\frac{1}{\alpha},\frac{1}{\beta}\right) \cap \left(0,\frac{1}{\alpha}\right] \times \left(0,\frac{1}{\beta}\right] = \phi$$

by Lemma 1. It follows that

$$\{(x,y)|kx+ly\in\mathbb{Z}\}\cap\left(0,\frac{1}{\alpha}\right]\times\left(0,\frac{1}{\beta}\right]$$

does not contain any line segment, otherwise it contradicts (1) by Lemma 3. This implies

$$\frac{1}{\beta} \le -\frac{k}{l}\frac{1}{\alpha} + \frac{1}{l}$$

which is equivalent to $m \leq 1$. Thus, we obtain m = 1.

By Cases 1–3, we complete the proof of the Theorem.

References

- 1. Sam, Beatty, Problem 3173, Amer. Math. Monthly, 1926, p159.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th edition, Oxford At The Clarendon Press, 1960.