A DISJOINTNESS CRITERION FOR BEATTY'S SEQUENCES

KIM, SUNGJIN

1. INTRODUCTION

Let α be an irrational number with $\alpha > 1$. We denote $S(\alpha)$ by

 $S(\alpha) = \{|n\alpha||n \in \mathbb{N}\}.$

In 1926, Sam Beatty [1] proved that if α , β are positive irrational numbers, then the disjoint union of $S(\alpha)$ and $S(\beta)$ is N if and only if $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. It is easy to see that if α , β are positive irrational numbers and

$$
\frac{k}{\alpha} + \frac{l}{\beta} = 1
$$

for some positive integers k, l, then $S(\alpha) \cap S(\beta) = \phi$.

In this note, we shall show that the converse of this statement is also valid. In addition, we deduce that $S(\alpha) \cap S(\beta)$ is either empty or infinite.

Theorem. For irrational numbers α , $\beta > 1$,

$$
S(\alpha) \cap S(\beta) = \phi
$$

if and only if

$$
\frac{k}{\alpha} + \frac{l}{\beta} = 1
$$

for some positive integers k, l .

2. Lemmas

We denote $B(x, y, r)$ by an open ball in \mathbb{R}^2 centered at (x, y) with radius r. For a real number x, (x) denotes the fractional part of x. For real numbers α and β , we define $S(\alpha, \beta)$ by

$$
S(\alpha, \beta) = \{ ((n\alpha), (n\beta)) | n \in \mathbb{N} \}.
$$

Lemma 1. Let m, n, r be positive integers. Then, $\lfloor n\alpha \rfloor = \lfloor m\beta \rfloor = r - 1$ if and only if $\left(\frac{r}{\alpha}\right) \leq \frac{1}{\alpha}$ and $\left(\frac{r}{\beta}\right) \leq \frac{1}{\beta}$.

Proof. We observe that $\lfloor n\alpha \rfloor = \lfloor m\beta \rfloor = r - 1$ is equivalent to any of the following statements:

$$
n\alpha < r \leq n\alpha + 1, \ m\beta < r \leq m\beta + 1;
$$
\n
$$
n < \frac{r}{\alpha} \leq n + \frac{1}{\alpha}, \ m < \frac{r}{\beta} \leq m + \frac{1}{\beta};
$$
\n
$$
0 < \left(\frac{r}{\alpha}\right) \leq \frac{1}{\alpha}, \ 0 < \left(\frac{r}{\beta}\right) \leq \frac{1}{\beta}.
$$

Thus, Lemma 1 follows.

Lemma 2 (Kronecker's Theorem). If 1, α , β are linearly independent over \mathbb{Q} , then the set $S(\alpha, \beta)$ is dense in $[0, 1]^2$.

Proof. See [2], p382.

Lemma 3. Let $\alpha > 1$, $\beta > 1$ be irrational numbers satisfying $\frac{k}{\alpha} + \frac{l}{\beta} = m$ with k, l, m relatively prime integers and $l > 0$. Then $S(\frac{1}{\alpha}, \frac{1}{\beta})$ is dense in

$$
[0,1]^2 \cap \{(x,y)|kx + ly \in \mathbb{Z}\}.
$$

Proof. Let $(x, y) \in [0, 1]^2$ be such that $kx + ly = z$ for some $z \in \mathbb{Z}$ and $0 < \varepsilon < d/2$, where d is the distance between two lines, $kx + ly = 0$, $kx + ly = 1$. Using the pigeon hole principle, we get

$$
v = (v_1, v_2) = \left(\left(\frac{n_2}{\alpha} \right) - \left(\frac{n_1}{\alpha} \right), \left(\frac{n_2}{\beta} \right) - \left(\frac{n_1}{\beta} \right) \right)
$$

with positive integers n_1 , n_2 $(n_1 < n_2)$, and $|v| < \varepsilon < \frac{d}{2}$. Since $(k, l, m) = 1$, for any $z \in \mathbb{Z}$, there is a triple (n, z_1, z_2) with $n \in \mathbb{N}$, $z_1 \in \mathbb{Z}$ and $z_2 \in \mathbb{Z}$ such that

 $mn + kz_1 + lz_2 = z$

From $|v| < d$, we have $kv_1 + iv_2 = 0$. Then, we get

$$
k\left(\frac{n}{\alpha} + z_1 + Nv_1\right) + l\left(\frac{n}{\beta} + z_2 + Nv_2\right) = mn + kz_1 + lz_2 = z
$$

for any $N \in \mathbb{N}$. Hence, we can find a positive integer N and integers u_1, u_2 such that

$$
\left(\frac{n}{\alpha} + z_1 + Nv_1, \frac{n}{\beta} + z_2 + Nv_2\right) \in B(u_1 + x, u_2 + y, \varepsilon)
$$

Thus, Lemma 3 follows.

3. Proof of the Theorem

Let $\alpha > 1$, $\beta > 1$ be irrational numbers satisfying $S(\alpha) \cap S(\beta) = \phi$. 1, $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are either linearly independent over $\mathbb Q$ or linearly dependent over $\mathbb Q$. The latter case we multiply a nonzero integer to get $\frac{k}{\alpha} + \frac{l}{\beta} = m$, with k, l, m relatively prime integers, and $l > 0$. Since $k \neq 0$, we divide the latter into two cases $k < 0$, and $k > 0$.

Case 1. 1, $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are linearly independent over Q.

By Lemma 2, $S(\frac{1}{\alpha}, \frac{1}{\beta})$ is dense in $[0, 1]^2$. Then we have

$$
S\Big(\frac{1}{\alpha},\frac{1}{\beta}\Big)\cap\Big(0,\frac{1}{\alpha}\Big]\times\Big(0,\frac{1}{\beta}\Big]
$$

is an infinite set. This implies

$$
\left(\frac{r}{\alpha}\right)\leq \frac{1}{\alpha},\ \left(\frac{r}{\beta}\right)\leq \frac{1}{\beta}
$$

for infinitely many positive integers r. Using this and Lemma 1, we have $S(\alpha) \cap S(\beta)$ is an infinite set.

Case 2. $\frac{k}{\alpha} + \frac{l}{\beta} = m$, with k, l, m relatively prime integers, $l > 0$ and $k < 0$.

$$
\sqcup
$$

The set

$$
\{(x,y)|kx+ly\in\mathbb{Z}\}\cap\left(0,\frac{1}{\alpha}\right]\times\left(0,\frac{1}{\beta}\right]
$$

contains a line segment of $kx + ly = 0$. By Lemma 3, the set

$$
S\left(\frac{1}{\alpha},\frac{1}{\beta}\right) \cap \left(0,\frac{1}{\alpha}\right] \times \left(0,\frac{1}{\beta}\right]
$$

is an infinite set. This implies $S(\alpha) \cap S(\beta)$ is an infinite set as in Case 1.

Case 3. $\frac{k}{\alpha} + \frac{l}{\beta} = m$ with k, l, m relatively prime integers, $l > 0$ and $k > 0$. Since $S(\alpha) \cap S(\beta) = \phi$, we have

(1)
$$
S\left(\frac{1}{\alpha}, \frac{1}{\beta}\right) \cap \left(0, \frac{1}{\alpha}\right] \times \left(0, \frac{1}{\beta}\right] = \phi
$$

by Lemma 1. It follows that

$$
\{(x,y)|kx + ly \in \mathbb{Z}\} \cap \left(0, \frac{1}{\alpha}\right] \times \left(0, \frac{1}{\beta}\right]
$$

does not contain any line segment, otherwise it contradicts (1) by Lemma 3. This implies

$$
\frac{1}{\beta} \le -\frac{k}{l}\frac{1}{\alpha} + \frac{1}{l}
$$

which is equivalent to $m \leq 1$. Thus, we obtain $m = 1$.

By Cases 1–3, we complete the proof of the Theorem.

REFERENCES

- 1. Sam, Beatty, Problem 3173, Amer. Math. Monthly, 1926, p159.
- 2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th edition, Oxford At The Clarendon Press, 1960.