WEIL BOUND FOR KLOOSTERMAN SUMS

KIM, SUNGJIN

1. THE ZETA FUNCTION FOR KLOOSTERMAN SUMS

Theorem 1. Let q be a prime power, and χ be a multiplicative character of \mathbb{F}_q^* . For a, b prime to p, the Kloosterman sum satisfies the bound

(1)
$$
\left| \sum_{x \in \mathbb{F}_q^*} \chi(x) e\left(\frac{ax + bx^{-1}}{q}\right) \right| \leq 2\sqrt{q}.
$$

We first consider when χ is trivial. Then the sum in (1) is just

(2)
$$
\sum_{x \in \mathbb{F}_q^*} e\left(\frac{ax + bx^{-1}}{q}\right)
$$

Let ψ and ϕ be the additive characters defined by $\psi(x) = e\left(\frac{\text{Tr}(ax)}{x}\right)$ $\binom{(ax)}{p}$, and $\phi(x) =$ $e\left(\frac{\text{Tr}(bx)}{n}\right)$ $\left(\frac{(bx)}{p}\right)$ respectively. Denote $S(\psi, \phi) = -\sum_{x \in \mathbb{F}^*} \psi(x) \phi(x^{-1})$ where $\mathbb{F} = \mathbb{F}_q$. Then the companion sums over the extension fields $\mathbb{F}_n = \mathbb{F}_{q^n}$ are

(3)
$$
S_n(\psi, \phi) = -\sum_{x \in \mathbb{F}_n^*} \psi(\text{Tr}(x))\phi(\text{Tr}(x^{-1})).
$$

The Kloosterman zeta function is

(4)
$$
Z(\psi, \phi) = \exp\left(\sum_{n\geq 1} \frac{S_n(\psi, \phi)}{n} T^n\right).
$$

Let $G \subset \mathbb{F}(X)$ be the group of quotients of monic polynomials defined and nonvanishing at 0. We define a character $\eta: G \longrightarrow \mathbb{C}^*$ by putting

$$
\eta(h) = \psi(a_1)\phi(a_{d-1}/a_d)
$$

for a monic polynomial $h \in G$, where we write

$$
h = X^d + a_1 X^{d-1} + \dots + a_{d-1} X + a_d
$$

(with $a_d \neq 0$ since $h \in G$). Then the L-function associated to η is given by

$$
L(s, \eta) = \sum_{h} \eta(h) N(h)^{-s} = 1 - S(\psi, \phi) q^{-s} + q^{1-2s}.
$$

This identity is verified through rearranging terms according to the degree of h. \mathcal{L}

$$
L(s, \eta) = \sum_{d \ge 0} \left(\sum_{\substack{\deg(h) = d \\ 1}} \eta(h) \right) q^{-ds}
$$

and evaluating the inner sums. For $d = 0$, we have only $h = 1$ and $\eta(1) = 1$. For $d = 1$, we have $h = X + a$ with $a \neq 0$, hence

$$
\sum_{\deg(h)=1} \eta(h) = \sum_{a \in \mathbb{F}^*} \eta(X+a) = \sum_{a \in \mathbb{F}^*} \psi(a)\phi(a^{-1}) = -S(\psi, \phi).
$$

For $d = 2$, we get

$$
\sum_{\deg(h)=2} \eta(h) = \sum_{\substack{a \in \mathbb{F} \\ b \in \mathbb{F}^*}} \eta(X^2 + aX + b) = \sum_{\substack{a \in \mathbb{F} \\ b \in \mathbb{F}^*}} \psi(a)\phi(ab^{-1})
$$

$$
= q - 1 + \left(\sum_{a \in \mathbb{F}^*} \psi(a)\right)\left(\sum_{b \in \mathbb{F}} \phi(b)\right) = q.
$$

Finally for $d \geq 3$, we get

$$
\sum_{\deg(h)=3} \eta(h) = \sum_{\substack{a \in \mathbb{F}^* \\ a_1 \cdots a_{d-1} \in \mathbb{F} \\ a_1, a_{d-1} \in \mathbb{F}}} \eta(X^d + a_1 X^{d-1} + \cdots + a_{d-1} X + a)
$$

$$
= q^{d-3} \sum_{\substack{a_1, a_{d-1} \in \mathbb{F} \\ a \in \mathbb{F}^*}} \psi(a_1) \phi(a_{d-1} a^{-1}) = 0
$$

since there is free summation over $a_1 \in \mathbb{F}$.

Lemma 1. For ψ and ϕ non-trivial, we have the identity

(5)
$$
Z(\psi, \phi)(q^{-s}) = L(s, \eta)^{-1} = \frac{1}{1 - S(\psi, \phi)q^{-s} + q^{1-2s}}.
$$

Proof. Taking the logarithmic derivative we get

$$
-\frac{1}{\log q} \frac{L'(s, \eta)}{L(s, \eta)} = \sum_{P} \deg(P) \sum_{r \ge 1} \eta(P)^r q^{-r \deg(P)s}
$$

$$
= \sum_{n \ge 1} \left(\sum_{rd=n} d \sum_{\deg(P)=d} \eta(P)^r \right) q^{-ns}
$$

 \Box

and it suffices to prove the formula

(6)
$$
\sum_{d=\deg(P)|n} d\eta(P)^{n/d} = -S_n(\psi, \phi)
$$

for $n \geq 1$. Let $P = X^d + a_1 X^{d-1} + \cdots + a_{d-1} X + a_d$ be one of the irreducible polynomials on the left side of (6), of degree $d|n$, and x_1, \dots, x_d its roots, which lie in \mathbb{F}_d . We have for each i,

$$
\text{Tr}(x_i) = \frac{n}{d} \text{Tr}_{\mathbb{F}_d/\mathbb{F}}(x_i) = -\frac{n}{d} a_1
$$

$$
\text{Tr}(x_i^{-1}) = \frac{n}{d} \text{Tr}_{\mathbb{F}_d/\mathbb{F}}(x_i^{-1}) = -\frac{n}{d} \frac{a_{d-1}}{a_d}.
$$

Hence

$$
\eta(P)^{n/d} = \psi\left(\frac{n}{d}a_1\right)\phi\left(\frac{n}{d}\frac{a_{d-1}}{a_d}\right) = \psi(\text{Tr}(-x_i))\phi(\text{Tr}(-x_i^{-1}))
$$

and summing over the roots x_i , then over the polynomials P of degree $d|n$, we obtain (6).

Now, we consider the case χ is non-trivial. Denote $S(\chi; \psi, \phi) = -\sum_{x \in \mathbb{F}} \chi(x) \psi(x) \phi(x^{-1})$ and its associated companions S_n and zeta function Z. We consider the same group $G \subset \mathbb{F}(X)$. We define a character η by

$$
\eta(h) = \chi(a_d)\psi(a_1)\phi\left(\frac{a_{d-1}}{a_d}\right)
$$

The associated L-function is

$$
L(s,\eta) = \sum_{h} \eta(h)N(h)^{-s} = \sum_{d \ge 0} \left(\sum_{\deg(h)=d} \eta(h)\right) q^{-ds}.
$$

For $d = 0$, $h = 1$ and $\eta(1) = 1$. For $d = 1$,

$$
\sum_{\deg(h)=1} \eta(h) = \sum_{a \in \mathbb{F}^*} \eta(X+a) = \sum_{a \in \mathbb{F}^*} \chi(a)\psi(a)\phi(a^{-1}) = -S(\chi; \psi, \phi).
$$

For $d=2$,

$$
\sum_{\substack{x \in \mathbb{F} \\ y \in \mathbb{F}^*}} \chi(y)\psi(x)\phi(xy^{-1}) = \sum_{\substack{x \in \mathbb{F}^* \\ y \in \mathbb{F}^*}} \chi(xy^{-1})e\left(\frac{\text{Tr}(ax)}{p}\right)e\left(\frac{\text{Tr}(by)}{p}\right)
$$

$$
= \sum_{x,y} \chi(x)\bar{\chi}(y)e\left(\frac{\text{Tr}(ax)}{p}\right)e\left(\frac{\text{Tr}(by)}{p}\right)
$$

$$
= \bar{\chi}(a)\tau(\chi)\chi(-b)\bar{\tau}(\chi)
$$

$$
= \bar{\chi}(-a)\chi(b)q.
$$

For $d \geq 3$,

$$
\sum_{\deg(h)=d} \eta(h) = \sum_{\substack{a \in \mathbb{F}^* \\ a_1, \cdots, a_{d-1} \in \mathbb{F}}} \eta(X^d + a_1 X^{d-1} + \cdots + a_{d-1} X + a)
$$

$$
= q^{d-3} \sum_{\substack{a_1, a_{d-1} \in \mathbb{F} \\ a \in \mathbb{F}^*}} \chi(a) \psi(a_1) \phi(a_{d-1} a^{-1}) = 0.
$$

To deduce the similar identity as in (5), it suffices to show that

$$
\sum_{d=\deg(P)|n} d\eta(P)^{n/d} = -S_n(\chi; \psi, \phi).
$$

Only difference in this case is that we have a multiplicative character χ . Let $P =$ $X^d + a_1 X^{d-1} + \cdots + a_{d-1} X + a_d$ be an irreducible polynomial with coefficients in \mathbb{F} , and x_1, \dots, x_d its roots.

$$
\eta(P)^{n/d} = \psi\left(\frac{n}{d}a_1\right)\phi\left(\frac{n}{d}\frac{a_{d-1}}{a_d}\right)\chi(a_d)^{n/d} = \psi(\text{Tr}(-x_i))\phi(\text{Tr}(-x_i)^{-1})\chi(\text{N}(-x_i)).
$$

Summing over roots and irreducible polynomials P of degree $d|n$, we obtain

Lemma 2. For a nontrivial multiplicative character χ , we have

(7)
$$
Z = (1 - S(\chi; \psi, \phi)q^{-s} + \bar{\chi}(-a)\chi(b)q^{1-2s})^{-1}.
$$

where $\psi(x) = e^{\int \frac{\text{Tr}(ax)}{x}}$ $\left(\frac{(ax)}{p}\right), \phi(x) = e\left(\frac{\text{Tr}(bx)}{p}\right)$ $\frac{(bx)}{p}$.

4 KIM, SUNGJIN

2. Stepanov's Method for Hyperelliptic Curves.

Let $\mathbb F$ be a finite field with q element, of characteristic p. We will only consider algebraic curves C_f over $\mathbb F$ given by equations of the type

$$
(8) \tCf: y2 = f(x)
$$

for some polynomial $f \in \mathbb{F}[X]$ of degree $m \geq 3$. We assume moreover the following condition

(9) The polynomial $Y^2 - f(X) \in \mathbb{F}[X, Y]$ is absolutely irreducible

Stepanov's elementary method yields a good bound for the number of solutions of C_f over $\mathbb F$.

Theorem 2. Assume that $f \in \mathbb{F}[X]$ satisfies (9), and $m = \deg(f) \geq 3$. If $q > 4m^2$, then $N = |C_f(\mathbb{F})|$ satisfies √

$$
|N - q| < 8m\sqrt{q}.
$$

We need the following lemma which relies on Hilbert Satz 90.

Lemma 3. For any $n \geq 1$ and any $x \in \mathbb{F}_n$, we have

(10)
$$
|\{y \in \mathbb{F}_n | y^q - y = x\}| = \sum_{\psi} \psi(\text{Tr}(x))
$$

where the sum ranges over all additive characters of $\mathbb F$ and Tr is the trace $\mathbb F_n \longrightarrow \mathbb F$.

Denote the Kloosterman sum by

$$
S(\psi_a, \psi_b) = -\sum_{x \in \mathbb{F}^*} \psi(ax + bx^{-1})
$$

for some $a, b \in \mathbb{F}$. We consider a and b as fixed and write $g = aX + bX^{-1}$. From this lemma we deduce that

$$
-\sum_{\psi} S_n(\psi_a, \psi_b) = \sum_{\psi} \sum_{x \in \mathbb{F}_n^*} \psi(\text{Tr}g(x))
$$

= $|\{(x, y) \in \mathbb{F}_n^* \times \mathbb{F}_n | y^q - y = g(x) \}| = N_n$

If $\psi = \psi_0$, the trivial character, we have $S_n(\psi_0, \psi_0) = 1 - q^n$. For $\psi \neq \psi_0$, let $\alpha_{\psi}, \beta_{\psi}$ be the roots of the Kloosterman sum $S(\psi_a, \psi_b)$, so we have $\alpha_{\psi}\beta_{\psi} = q$ and

$$
S_n(\psi_a, \psi_b) = \alpha_{\psi}^n + \beta_{\psi}^n,
$$

for all $n \geq 1$.

We can therefore write

$$
N_n = q^n - 1 - \sum_{\psi \neq \psi_0} (\alpha^n_{\psi} + \beta^n_{\psi}).
$$

We can transform the equation $y^q - y = g(x)$ into

$$
C_{a,b}: ax^2 - (y^q - y)x + b = 0
$$

Because $p \neq 2$, the number of solutions is equal to the number of solutions of the discriminant equation

$$
D_{a,b} : (y^q - y)^2 - 4ab = v^2,
$$

i.e. $N_n = |D_{a,b}(\mathbb{F}_n)|$. This is of the form (9) with $\deg(f) = 2q$, and because $4ab \neq 0$ it satisfies the assumptions of Theorem 2. Hence by Theorem 2 we have

$$
\left|N_n-q^n\right|<16q^{1+n/2}
$$

if n is large enough, so that $q^n > 16q$. This gives a sharp estimate for the roots $\alpha_{\psi}, \beta_{\psi}$, on average

(11)
$$
\frac{1}{q} \left| \sum_{\psi \neq \psi_0} (\alpha^n_{\psi} + \beta^n_{\psi}) \right| \le 16q^{n/2}
$$

for n large enough. The following lemma shows that the individual roots must be of modulus $\leq \sqrt{q}$.

Lemma 4. Let $\omega_1, \dots, \omega_r$ be complex numbers, A, B positive real numbers and assume that

$$
\left|\sum_{j=1}^r \omega_j^n\right| \le AB^n
$$

holds for all integers n large enough. Then $|\omega_j| \leq B$ for all j.

Proof. The proof uses the identity

$$
f(z) = \sum_{n\geq 1} (\sum_j \omega_j^n) z^n = \sum_j \frac{1}{1 - \omega_j z}.
$$

Compare the radius of convergence on each side.

For a nontrivial multiplicative character χ , we denote the Kloosterman sum by

$$
S(\chi; \psi_a, \psi_b) = -\sum_{x \in \mathbb{F}^*} \chi(x) \psi(g(x)).
$$

Then we have

(12)
$$
-\sum_{\psi} S_n(\chi; \psi_a, \psi_b) = \sum_{x \in \mathbb{F}_n^*} \chi(Nx) \sum_{\psi} \psi(\text{Tr}(g(x))).
$$

Note that the inner sum is $q^n + O(q^{n/2})$ by Theorem 2. We sum this equation over all Dirichlet character mod p , then we have

$$
N'_n = -\sum_{\chi} \sum_{\psi} S_n(\chi; \psi_a, \psi_b) = \sum_{\chi} \sum_{\psi} \sum_{x \in \mathbb{F}_n^*} \chi(\mathrm{N}x) \psi(\mathrm{Tr}(g(x))).
$$

This sum on the right-hand side denotes the number of solutions in the following equations

$$
y^{q-1} = x,
$$

$$
z^q - z = ax + \frac{b}{x}.
$$

with $x, y \in \mathbb{F}_n^*, z \in \mathbb{F}_n$.

We state more general version of Theorem 2, which is an extension of Stepanov's elementary methods due to Schmidt.

Theorem 3. Suppose $f(X, Y) \in \mathbb{F}_q[X, Y]$ is absolutely irreducible and of total degree $d > 0$, let N be the number of zeros of f in \mathbb{F}_q^2 . If $q > 250d^5$, then

$$
|N - q| < \sqrt{2}d^{5/2}q^{1/2}.
$$

6 KIM, SUNGJIN

The equations we considered before can be put together as

$$
z^{q} - z = ay^{q-1} + \frac{b}{y^{q-1}}
$$

with $y \in \mathbb{F}_n^*, z \in \mathbb{F}_n$. In polynomial form, this is

$$
-y^{2q-2} + (z^q - z)y^{q-1} - a = 0.
$$

The polynomial on the left-hand side is absolutely irreducible by Eisenstein's criterion. Thus, we can apply Theorem 3 and obtain the number of solutions N of this equation is $q^n + O(q^{n/2})$.

When χ is trivial, we have an estimate for the inner sum $q^{n} + O(q^{n/2})$, hence we have

(13)
$$
\sum_{\chi \neq \chi_0} \sum_{\psi} \sum_{x \in \mathbb{F}_n^*} \chi(\mathrm{N}x) \psi(\mathrm{Tr}(g(x))) = O(q^{n/2}).
$$

Let $\alpha_{\chi,\psi}, \beta_{\chi,\psi}$ be the roots of Kloosterman sum $S(\chi; \psi_a, \psi_b)$ so that we have

$$
S_n(\chi; \psi_a, \psi_b) = \alpha_{\chi, \psi}^n + \beta_{\chi, \psi}^n.
$$

Then Lemma 4 and (13) give us the estimates $|\alpha_{\chi,\psi}| \leq \sqrt{q}$, $|\beta_{\chi,\psi}| \leq \sqrt{q}$. This concludes the proof of Theorem 1.

REFERENCES

- [1] H. Iwaniec, I. Kowalski, Analytic Number Theory, volume 53, AMS Colloquium Publications.
- [2] W. Schmidt, Equations Over Finite Fields: An Elementary Approach. Second Edition, Kendrick Press.