Stirling Number of Second Kind Identities

Sungjin Kim

Let $\mathbb{N} = \{1, 2, 3, ...\}$ be the set of all natural numbers and $k, m \in \mathbb{N}$. Denote by [n] the set $\mathbb{N} \cap [1, n]$. Let *m*-coloring on a set X be a function from X to [m].

Definition 0.1. S(k,m) is the number of ways to partition [k] into m sets. For convention, we put $S(n,0) = \delta(n,0)$.

S(k, m)m! is the number of *m*-colorings of [k] which all colors are used, that is, the number of surjective functions from [k] to [m].

Theorem 0.1. For any $x \in \mathbb{C}$,

$$x^k = \sum_{m=0}^k S(k,m)(x)_m$$

where $(x)_m = x(x-1)\cdots(x-m+1)$ is the falling factorial.

Proof. It suffices to prove the identity for all natural number x. The LHS is the number of x-colorings of [k]. The summand in the RHS,

$$S(k,m)m!\binom{x}{m},$$

is the number of ways to select m colors from x colors and color [k] using all selected colors.

Corollary 0.1. For any $x \in \mathbb{C}$,

$$(-x)^k = \sum_{m=0}^k S(k,m)m!(-1)^m \binom{x+m-1}{m}.$$

Proof. Put -x into x in Theorem 0.1 and note that $\binom{-x}{m} = (-1)^m \binom{x+m-1}{m}$. \Box Corollary 0.2. For |x| < 1, we have

$$\sum_{\nu=0}^{\infty} \nu^k x^{\nu} = \frac{1}{1-x} \sum_{m=1}^k S(k,m)m! \left(\frac{x}{1-x}\right)^m.$$

Proof. Expanding

$$\sum_{m=1}^{k} S(k,m)m!x^{m}(1-x)^{-m-1}$$

by the binomial series, the coefficient of x^{ν} is

$$\sum_{m=1}^{k} \sum_{\substack{w \ge 0 \\ m+w=\nu}} S(k,m)m! \binom{m+w}{w} = \sum_{m \ge 1} S(k,m)m! \binom{\nu}{m}.$$

The result follows by S(k, 0) = 0 and Theorem 0.1.

Theorem 0.2. Let *m* be an integer with $1 \le m \le k$. We have

$$S(k,m)m! = \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} (m-i)^{k}.$$

Proof. Apply Inclusion-Exclusion Principle. Let A_j be the set of functions from [k] to [m] such that j is excluded from the image. The term $\binom{m}{i}(m-i)^k$ is the number of ways to select i members of [m] and exclude them from the image, that is, the number of elements in i-fold intersections of A_j .

Corollary 0.3. Let r be a nonnegative integer. Then we have

$$S(k, r+1)(r+1)! = \sum_{m=1}^{k} S(k, m)m!(-1)^{m-k} \binom{m-1}{r}$$

Proof. By Theorem 0.2 and Corollary 0.1,

$$S(k, r+1)(r+1)! = \sum_{i=0}^{r+1} (-1)^i \binom{r+1}{i} (r+1-i)^k$$

= $\sum_{i=0}^{r+1} (-1)^i \binom{r+1}{i} \sum_{m=1}^k S(k, m) (-1)^{m-k} m! \binom{r+m-i}{m}$
= $\sum_{m=1}^k S(k, m) m! (-1)^{m-k} \sum_{i=0}^{r+1} (-1)^i \binom{r+1}{i} \binom{r+m-i}{m}$

The inner sum is $\binom{m-1}{r}$ by noting that $(-1)^i \binom{r+1}{i}$ is the coefficient of x^i in $(1-x)^{r+1}$, $\binom{r+m-i}{m}$ is the coefficient of x^{r+1-i} in $x(1-x)^{-m-1}$, and $(-1)^r \binom{r-m}{r} = \binom{m-1}{r}$ is the coefficient of x^{r+1} of $x(1-x)^{r+1-m-1} = x(1-x)^{r-m}$. \Box

Note that r = 0 case is proved by putting x = 1 in Corollary 0.1.

There is a combinatorial proof of Corollary 0.3. The case r = 0 also has a combinatorial proof by involution between even number of parts and odd number of parts.

We construct an involution T_k , mapping odd ordered partitions of k-element set to even and vice versa: if partition has part $\{k\}$, take a union with the previous part; otherwise move k into new separate part after itself.

Example: $(\{3,4\},\{5\},\{1,2\}) \leftrightarrow (\{3,4,5\},\{1,2\})$.

For ordered partitions of the form $(\{k\},\ldots)$, use previous involution T_{k-1} and so on.

Example: $(\{5\}, \{4\}, \{1, 3\}, \{2\}) \leftrightarrow (\{5\}, \{4\}, \{1\}, \{3\}, \{2\}).$

The only partition without pair will be $(\{k\}, \{k-1\}, \ldots, \{1\})$ which is counted in S(k, k)k!. Therefore, we have

$$\sum_{m \text{ is even}} S(k,m)m! = \sum_{m \text{ is odd}} S(k,m)m! + (-1)^k.$$

Then consider an ordered partition of $m \ge r+1$ parts, put r part-dividers among possible m-1 positions. We nudge all colors between these dividers to one color. Then we have a surjective function from all m-coloring of [k] using all colors to all r+1-coloring of [k] using all colors. Consider a coloring of [k] using all r+1 colors with part sizes a_1, \ldots, a_{r+1} . This particular coloring appears

$$\left(\sum_{j=0}^{a_1} S(a_1, j)j!(-1)^{a_1-j}\right) \cdots \left(\sum_{j=0}^{a_{r+1}} S(a_{r+1}, j)j!(-1)^{a_{r+1}-j}\right) = 1$$

times on the RHS. Thus, this shows that Corollary 0.3 for special case r = 0 imply the full version of Corollary 0.3.

Corollary 0.4 (ec1-Chapter 3, Exercise 141(d)). For any $t \in \mathbb{C}$,

$$\sum_{m=1}^{k} S(k,m)m!t^{m-1} = \sum_{m=1}^{k} S(k,m)m!(-1)^{m-k}(t+1)^{m-1}.$$

Proof. S(k, r+1)(r+1)! is the coefficient of t^r on the LHS and $\sum_{m=1}^k S(k, m)m!(-1)^{m-k}\binom{m-1}{r}$ is the coefficient of t^r on the RHS. The result follows by Corollary 0.3.

Corollary 0.5. Let $v_k = 2^k - 1$. The expression

$$\rho(x) = (1-x)^{\nu_k} \sum_{\nu=0}^{\infty} ((\nu+1)^k - \nu^k) x^{\nu}$$

with the power series converges for |x| < 1, is a polynomial of degree $v_k - 1$ satisfying

$$\rho(x) = (-1)^{k-1} x^{v_k - 1} \rho(\frac{1}{x}).$$

Proof. By Corollary 0.2, we have

$$\sum_{\nu=0}^{\infty} ((\nu+1)^k - \nu^k) x^{\nu} = \frac{1}{x} \sum_{m=1}^k S(k,m) m! \left(\frac{x}{1-x}\right)^m.$$

Then

$$\rho(x) = (1-x)^{v_k} \frac{1}{x} \sum_{m=1}^k S(k,m)m! \left(\frac{x}{1-x}\right)^m.$$

Putting 1/x into $\rho(x)$, we have

$$\rho(1/x) = \left(1 - \frac{1}{x}\right)^{\nu_k} x \sum_{m=1}^k S(k, m) m! \left(\frac{1}{x - 1}\right)^m$$

Then

$$x^{v_k-1}\rho(\frac{1}{x}) = (x-1)^{v_k} \sum_{m=1}^k S(k,m)m! \left(\frac{1}{x-1}\right)^m$$
$$= -(1-x)^{v_k} \sum_{m=1}^k S(k,m)m! \left(\frac{1}{x-1}\right)^m.$$

It suffices to prove that

$$\frac{1}{x}\sum_{m=1}^{k}S(k,m)m!\left(\frac{x}{1-x}\right)^{m} = -(-1)^{k-1}\sum_{m=1}^{k}S(k,m)m!\left(\frac{1}{x-1}\right)^{m}.$$

Put $t = \frac{x}{1-x} = -1 - \frac{1}{x-1}$, then we have $x = \frac{t}{t+1}$. Thus, we need to prove

$$\frac{t+1}{t}\sum_{m=1}^{k}S(k,m)m!t^{m} = -(-1)^{k-1}\sum_{m=1}^{k}S(k,m)m!(-1)^{m}(t+1)^{m}.$$

This is in fact Corollary 0.4.

The polynomial $\rho(x)$ has another expression

$$\rho(x) = \sum_{m=0}^{k} \left(S(k,m)m! + S(k,m+1)(m+1)! \right) (1-x)^{v_k - m} x^m.$$

References

- [ec1] R. Stanley, *Enumerative Combinatorics*, volume 1, 2nd ed, Cambridge University Press.
- [mse] Grigory M, An answer to the post 395139, available at https://math.stackexchange.com/questions/395139/ combinatorial-proof-of-a-stirling-number-identity