Stirling Number of Second Kind Identities

Sungjin Kim

Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of all natural numbers and $k, m \in \mathbb{N}$. Denote by $[n]$ the set $\mathbb{N} \cap [1,n]$. Let m-coloring on a set X be a function from X to $[m]$.

Definition 0.1. $S(k, m)$ is the number of ways to partition [k] into m sets. For convention, we put $S(n, 0) = \delta(n, 0)$.

 $S(k, m)m!$ is the number of m-colorings of $[k]$ which all colors are used, that is, the number of surjective functions from $[k]$ to $[m]$.

Theorem 0.1. For any $x \in \mathbb{C}$,

$$
x^k = \sum_{m=0}^k S(k, m)(x)_m
$$

where $(x)_m = x(x-1)\cdots(x-m+1)$ is the falling factorial.

Proof. It suffices to prove the identity for all natural number x . The LHS is the number of x-colorings of $[k]$. The summand in the RHS,

$$
S(k, m)m!\binom{x}{m},
$$

is the number of ways to select m colors from x colors and color $[k]$ using all selected colors. \Box

Corollary 0.1. For any $x \in \mathbb{C}$,

$$
(-x)^{k} = \sum_{m=0}^{k} S(k, m)m!(-1)^{m} {x + m - 1 \choose m}.
$$

Proof. Put $-x$ into x in Theorem 0.1 and note that $\binom{-x}{m} = (-1)^m \binom{x+m-1}{m}$ $\binom{m-1}{m}$. \Box **Corollary 0.2.** For $|x| < 1$, we have

$$
\sum_{\nu=0}^{\infty} \nu^k x^{\nu} = \frac{1}{1-x} \sum_{m=1}^{k} S(k, m) m! \left(\frac{x}{1-x}\right)^m.
$$

Proof. Expanding

$$
\sum_{m=1}^{k} S(k, m) m! x^{m} (1 - x)^{-m-1}
$$

by the binomial series, the coefficient of x^{ν} is

$$
\sum_{m=1}^{k} \sum_{\substack{w\geq 0\\ m+w=\nu}} S(k,m)m! \binom{m+w}{w} = \sum_{m\geq 1} S(k,m)m! \binom{\nu}{m}.
$$

The result follows by $S(k, 0) = 0$ and Theorem 0.1.

 \Box

Theorem 0.2. Let m be an integer with $1 \leq m \leq k$. We have

$$
S(k, m)m! = \sum_{i=0}^{m} (-1)^{i} {m \choose i} (m - i)^{k}.
$$

Proof. Apply Inclusion-Exclusion Principle. Let A_j be the set of functions from [k] to [m] such that j is excluded from the image. The term $\binom{m}{i}(m-i)^k$ is the number of ways to select i members of $[m]$ and exclude them from the image, that is, the number of elements in *i*-fold intersections of A_j . \Box

Corollary 0.3. Let r be a nonnegative integer. Then we have

$$
S(k, r + 1)(r + 1)! = \sum_{m=1}^{k} S(k, m)m!(-1)^{m-k} \binom{m-1}{r}.
$$

Proof. By Theorem 0.2 and Corollary 0.1,

$$
S(k, r+1)(r+1)! = \sum_{i=0}^{r+1} (-1)^i {r+1 \choose i} (r+1-i)^k
$$

=
$$
\sum_{i=0}^{r+1} (-1)^i {r+1 \choose i} \sum_{m=1}^k S(k, m) (-1)^{m-k} m! {r+m-i \choose m}
$$

=
$$
\sum_{m=1}^k S(k, m) m! (-1)^{m-k} \sum_{i=0}^{r+1} (-1)^i {r+1 \choose i} {r+m-i \choose m}
$$

The inner sum is $\binom{m-1}{r}$ by noting that $(-1)^i\binom{r+1}{i}$ ⁺¹) is the coefficient of x^i in $(1-x)^{r+1}$, $\binom{r+m-i}{m}$ $\binom{m-i}{m}$ is the coefficient of x^{r+1-i} in $x(1-x)^{-m-1}$, and $(-1)^r\binom{r-m}{r}$ $r^{(m)}(r) = {m-1 \choose r}$ is the coefficient of x^{r+1} of $x(1-x)^{r+1-m-1} = x(1-x)^{r-m}$.

Note that $r = 0$ case is proved by putting $x = 1$ in Corollary 0.1.

There is a combinatorial proof of Corollary 0.3. The case $r = 0$ also has a combinatorial proof by involution between even number of parts and odd number of parts.

We construct an involution T_k , mapping odd ordered partitions of k-element set to even and vice versa: if partition has part $\{k\}$, take a union with the previous part; otherwise move k into new separate part after itself.

Example: $({3, 4}, {5}, {1, 2}) \leftrightarrow ({3, 4, 5}, {1, 2}).$

For ordered partitions of the form $({k}, \ldots)$, use previous involution T_{k-1} and so on.

Example: $({5}, {4}, {1, 3}, {2}) \leftrightarrow ({5}, {4}, {1}, {3}, {2}).$

The only partition without pair will be $({k}, {k-1}, \ldots, {1})$ which is counted in $S(k, k)k!$. Therefore, we have

$$
\sum_{m \text{ is even}} S(k, m)m! = \sum_{m \text{ is odd}} S(k, m)m! + (-1)^k.
$$

Then consider an ordered partition of $m \geq r+1$ parts, put r part-dividers among possible $m - 1$ positions. We nudge all colors between these dividers to one color. Then we have a surjective function from all m-coloring of $[k]$ using all colors to all $r+1$ -coloring of [k] using all colors. Consider a coloring of [k] using all $r+1$ colors with part sizes a_1, \ldots, a_{r+1} . This particular coloring appears

$$
\left(\sum_{j=0}^{a_1} S(a_1,j)j!(-1)^{a_1-j}\right)\cdots\left(\sum_{j=0}^{a_{r+1}} S(a_{r+1},j)j!(-1)^{a_{r+1}-j}\right)=1
$$

times on the RHS. Thus, this shows that Corollary 0.3 for special case $r = 0$ imply the full version of Corollary 0.3.

Corollary 0.4 (ec1-Chapter 3, Exercise 141(d)). For any $t \in \mathbb{C}$,

$$
\sum_{m=1}^{k} S(k, m)m!t^{m-1} = \sum_{m=1}^{k} S(k, m)m!(-1)^{m-k}(t+1)^{m-1}.
$$

Proof. $S(k, r + 1)(r + 1)!$ is the coefficient of t^r *oof.* $S(k, r + 1)(r + 1)!$ is the coefficient of t^r on the LHS and $\frac{k}{m-1} S(k, m)m!(-1)^{m-k}\binom{m-1}{r}$ is the coefficient of t^r on the RHS. The result follows \sum by Corollary 0.3. \Box

Corollary 0.5. Let $v_k = 2^k - 1$. The expression

$$
\rho(x) = (1-x)^{v_k} \sum_{\nu=0}^{\infty} ((\nu+1)^k - \nu^k) x^{\nu}
$$

with the power series converges for $|x| < 1$, is a polynomial of degree $v_k - 1$ satisfying

$$
\rho(x) = (-1)^{k-1} x^{v_k - 1} \rho(\frac{1}{x}).
$$

Proof. By Corollary 0.2, we have

$$
\sum_{\nu=0}^{\infty} ((\nu+1)^k - \nu^k) x^{\nu} = \frac{1}{x} \sum_{m=1}^{k} S(k,m)m! \left(\frac{x}{1-x}\right)^m.
$$

Then

$$
\rho(x) = (1-x)^{v_k} \frac{1}{x} \sum_{m=1}^{k} S(k, m) m! \left(\frac{x}{1-x}\right)^m.
$$

Putting $1/x$ into $\rho(x)$, we have

$$
\rho(1/x) = \left(1 - \frac{1}{x}\right)^{v_k} x \sum_{m=1}^{k} S(k, m) m! \left(\frac{1}{x-1}\right)^m.
$$

Then

$$
x^{v_k-1}\rho(\frac{1}{x}) = (x-1)^{v_k} \sum_{m=1}^k S(k,m)m! \left(\frac{1}{x-1}\right)^m
$$

= -(1-x)^{v_k} \sum_{m=1}^k S(k,m)m! \left(\frac{1}{x-1}\right)^m.

It suffices to prove that

$$
\frac{1}{x}\sum_{m=1}^{k}S(k,m)m!\left(\frac{x}{1-x}\right)^m=-(-1)^{k-1}\sum_{m=1}^{k}S(k,m)m!\left(\frac{1}{x-1}\right)^m.
$$

Put $t = \frac{x}{1-x} = -1 - \frac{1}{x-1}$ $\frac{1}{x-1}$, then we have $x = \frac{t}{t+1}$. Thus, we need to prove

$$
\frac{t+1}{t}\sum_{m=1}^{k}S(k,m)m!t^{m} = -(-1)^{k-1}\sum_{m=1}^{k}S(k,m)m!(-1)^{m}(t+1)^{m}.
$$

This is in fact Corollary 0.4.

The polynomial $\rho(x)$ has another expression

$$
\rho(x) = \sum_{m=0}^{k} \left(S(k,m)m! + S(k,m+1)(m+1)! \right) (1-x)^{v_k-m} x^m.
$$

References

- [ec1] R. Stanley, Enumerative Combinatorics, volume 1, 2nd ed, Cambridge University Press.
- [mse] Grigory M, An answer to the post 395139, available at https://math.stackexchange.com/questions/395139/ combinatorial-proof-of-a-stirling-number-identity

 \Box