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1. Introduction

Let x ≥ 2 and p be a prime number. Let
(
n
p

)
be the Legendre symbol. We

investigate some character sums of the type

(1.1)
∑
p≤x

∑
n<log p

f(p)
(
n

p

)
,

where f is a function satisfying f(x) → 0 as x → ∞. We expect nontrivial can-
cellations in these sums. Since, the length of the inner sum is short compared to
p, we do not have enough techniques to detect the cancellations in the inner sums.
Instead, we change the order of summation

(1.2)
∑

n<log x

∑
en<p≤x

f(p)
(
n

p

)
.

Then we can apply Siegel-Walfisz theorem(See [2], page 124) and partial summation
to the inner sums.

The first application of this technique is the following theorem.

Theorem 1.1. Let N∗p be the number of square-free quadratic nonresidues n modulo
p such that 0 < n < log p, and S∗p be the number of square-free integers in 0 < n <
log p. Then we have

(1.3)
∑
p≤x

(
N∗p
S∗p
− 1

2

)2

=
π2

24
x

(log x)2
+O

(
x

(log x)
5
2

)
.

This result can be interpreted as ”The variance of N∗
p

S∗p
over p ≤ x approaches

to 0 as x→∞”. The following corollary can be obtained directly by P. Erdos [1],
however it can also be followed from Theorem 1.1.

Corollary 1.1. Let np be the first quadratic nonresidue modulo p, and let Nx be
the number of primes p ≤ x such that np > log p. Then

(1.4) Nx = O

(
x

(log x)2

)
.

Proof. If np > log p then N∗p = 0. Hence,

(1.5)
1
4
Nx ≤

∑
p≤x

(
N∗p
S∗p
− 1

2

)2

= O

(
x

(log x)2

)
.
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Now, we drop the square-free conditions in Theorem 1.1. It contributes to a
bigger error term.

Theorem 1.2. Let Np be the number of quadratic nonresidues n modulo p such
that 0 < n < log p. Then we have

(1.6)
∑
p≤x

(
Np

log p
− 1

2

)2

=
3x log log x
2π2(log x)2

+O

(
x

(log x)2

)
.

This result can also be interpreted as ”The variance of Np
log p over p ≤ x approaches

to 0 as x→∞”. As a corollary, we have the following asymptotic equidistribution
result.

Corollary 1.2. Given any 0 < ε < 1, define Eεx by the set of primes p ≤ x such
that

∣∣∣ Nplog p −
1
2

∣∣∣ ≥ (log p)−1/2+ε/2. Then

(1.7) |Eεx| = O

(
x log log x
(log x)1+ε

)
.

Proof. We use Theorem 1.2 with N = |Eεx|,

(1.8)
N

(log x)1−ε
≤
∑
p∈Eεx

1
(log p)1−ε

≤
∑
p∈Eεx

(
Np

log p
− 1

2

)2

= O

(
x log log x
(log x)2

)
.

�

2. Proof of the main theorem

Throughout this paper,
∑∗ is the sum over square-free integers, and

∑′ is the
sum over non-square integers.

Note that N∗p − 1
2S
∗
p = − 1

2

∑
n<log p

∗
(
n
p

)
. The left-hand side of the equation

(1.1) is then

∑
p≤x

(
N∗p
S∗p
− 1

2

)2

=
∑
p≤x

1
(S∗p)2

−1
2

∑
n<log p

∗
(
n

p

)2

=
∑
p≤x

1
4(S∗p)2

∑
n1,n2<log p

∗
(
n1n2

p

)
.

We divide into two cases, first we consider the case n1n2 is not a square. In fact,
n1n2 is square if and only if n1 = n2 since they are square-free. By changing the
order of summation∑

p≤x

1
(S∗p)2

∑
n1,n2<log p

∗
(
n1n2

p

)
=

∑
n1,n2<log x

∗ ∑
max(en1 ,en2 )<p≤x

1
(S∗p)2

(
n1n2

p

)

If n1n2 is not a square,
(
n1n2
·
)

is a nontrivial real character modulo n1n2. We

can find a primitive real character
(
n
·
)

such that
(
n
p

)
=
(
n1n2
p

)
for all p in
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max(en1 , en2) < p ≤ x. Define A(t) =
∑
p≤t

(
n
p

)
, then by Siegel-Walfisz theo-

rem, we have the estimate A(t) = O
(
n t

(log t)A

)
for any A > 0.

∑
p≤x

1
(S∗p)2

(
n

p

)
=
∑

3≤t≤x

1
(S∗t )2

(A(t)−A(t− 1))

=
A(x)
(S∗x)2

− A(2)
(S∗3 )2

+
∑

3≤t≤x−1

A(t)
(

1
(S∗t )2

− 1
(S∗t+1)2

)
.

It is clear that A(x)
(S∗x)2 −

A(2)
(S∗3 )2 = O

(
n x

(log x)A+2

)
, and note that 1

(S∗t )2 −
1

(S∗t+1)
2 =

(S∗t+1−S
∗
t )(S∗t+1+S

∗
t )

(S∗t S
∗
t+1)

2 . Recall that S∗t+1 − S∗t is the number of square-free integers in

the interval log t ≤ n < log(t + 1). Since there are only ∼ 6
π2 log x square free

integers in 0 < n < log x, it follows that S∗t+1 − S∗t = 1 for only ∼ 6
π2 log x times,

and = 0 otherwise. Thus,

∑
3≤t≤x−1

A(t)
(

1
(S∗t )2

− 1
(S∗t+1)2

)
= O

n ∑
x−log x≤t≤x−1

t

(log t)A+3


= O

(
n

x

(log x)A+2

)
.

Hence, we have

(2.1)
∑
p≤x

1
(S∗p)2

(
n

p

)
= O

(
n

x

(log x)A+2

)
.

Also, changing A if necessary, it follows that

(2.2)
∑
p≤x

1
(S∗p)2

∑
n1,n2<log p
n1 6=n2

∗
(
n1n2

p

)
= O

(
x

(log x)A

)
.

When n1 = n2, we see that the character gives 1 always. The sum is in fact,

(2.3)
∑
p≤x

∑
n<log p

∗ 1
4(S∗p)2

=
∑
p≤x

1
4S∗p

=
π2

24
x

(log x)2
+O

(
x

(log x)
5
2

)
.

Combining (2.2), and (2.3), we obtain Theorem 1.1.

3. Removal of square-free conditions

We now prove Theorem 1.2. Notice thatNp can be obtained byNp =
∑
n<log p

′ 1
2

(
1−

(
n
p

))
.

The proof starts with the same line as in Theorem 1.1.

∑
p≤x

− 1
2

∑
n<log p

′
(
n
p

)
+O(1)

log p

2

=
∑
p≤x

− 1
2

∑
n<log p

′
(
n
p

)
log p

2

+O

(
x

(log x)2

)

=
∑
p≤x

1
4(log p)2

∑
n1,n2<log p

′
(
n1n2

p

)
+O

(
x

(log x)2

)
.
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Similarly as before, we have

(3.1)
∑
p≤x

1
(log p)2

∑
n1,n2<log p

n1n2 is not a square

′
(
n1n2

p

)
= O

(
x

(log x)A

)
.

However, we need a slight modification of the argument. Change the order of
summation, and find a primitive character

(
n
·
)

such that
(
n
p

)
=
(
n1n2
p

)
for primes

in max(en1 , en2) < p ≤ x. Then we apply Siegel-Walfisz theorem with integration
by part for inner sums.

Now, we take care of the remaining sum in which n1n2 is a square. In this case,(
n1n2
p

)
is always 1. For, we need the following estimate of the sum

(3.2)
∑

n1,n2<x
n1n2 is a square

′
1 =

6
π2
x log x+O(x).

We introduce a new variable n0 which is the least number that makes n1n0 a square.∑
n1,n2<x

n1n2 is a square

′
1 =

∑
n1<x

′ ∑
n0t2<x

1

=
∑
n1<x

′
√

x

n0
+O(x)

=
∑
n0<x

∗
(√

x

n0

)2

+O(x)

=
6
π2
x log x+O(x).

Then we have,
(3.3)∑
p≤x

∑
n1,n2<log p

n1n2 is a square

′ 1
(log p)2

=
∑
p≤x

6 log log p
π2 log p

+O

∑
p≤x

1
log p

 =
6x log log x
π2(log x)2

+O
(

x

(log x)2

)
.

Combining (3.1), and (3.3), we obtain Theorem 1.2.
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