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Theorem 1. (Vector-valued central limit theorem) Let ~X = (X1, · · · , Xd)
be a random variable taking values in Rd with finite second moment. Define the
covariance matrix Σ( ~X) to be the d×d matrix Σ whose ijth entry is the covariance
E(Xi − E(Xi))(Xj − E(Xj)).
• Covariance matrix is positive semi-definite real symmetric.

Proof. We normalize Xi by replacing Xi with Xi − E(Xi) to have mean 0. So, we
assume that E(Xi) = 0 for all i. Now, ijth entry of the covariance matrix Σ is
E(XiXj). We compute ~x · Σ~x for any ~x = (x1 · · ·xn)T ∈ Rd.∑

i,j

xixjE(XiXj) = E
∑
i,j

xixjXiXj = E(
∑
i

xiXi)2 ≥ 0.

Thus, Σ is positive semi-definite. �

• Conversely, given any positive definite real symmetric d × d matrix Σ and
µ ∈ Rd, the normal distribution N(µ,Σ)Rd , given by the absolutely continuous
measure

1
((2π)ddetΣ)1/2

e−(x−µ)·Σ−1(x−µ)/2dx,

has mean µ and covariance matrix Σ, and has a characteristic function given by

F (t) = e−iµ·te−t·Σt/2.

Proof. We use the Spectral Theorem to diagonalize Σ, let Σ = UTDU for some or-
thogonal matrix U = (U1 · · ·Ud), andD = diag(λ1, · · · , λd). Let U i = (U i1 · · ·U id)T .
As in the first part, we can assume µ = 0. Then we have to show that E(XiXj) =
Σij for each i, j. We make a change of variables x = UT y.

E(XiXj) =
∫

Rd

xixj
((2π)ddetΣ)1/2

e−x·Σ
−1x/2dx

=
∫

Rd

U iy · U jy
((2π)ddetΣ)1/2

e−y
TD−1y/2dy

=
∫

Rd

∑
r U

i
rU

j
r y

2
r

((2π)ddetΣ)1/2
e−(

∑
r λ

−1
r y2

r)/2dy

=
d∑
r=1

U irU
j
rλr = Σij .
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For the characteristic function,

E(eit· ~X) =
∫

Rd

eit·x

((2π)ddetΣ)1/2
e−x·Σ

−1x/2dx

=
∫

Rd

eit·U
T y

((2π)ddetΣ)1/2
e−y

TD−1y/2dy

After completing the square of the form,

− y
2

2λ
+ iay = − 1

2λ
(y − iaλ)2 − a2λ

2
,

Together with the substitution ar = t1U
1
r + · · ·+ tdU

d
r , we obtain∫

Rd

eit·U
T y

((2π)ddetΣ)1/2
e−y

TD−1y/2dy =
∫

Rd

1
((2π)ddetΣ)1/2

e−
∑

r((yr−iarλr)2/(2λr)+a2
rλr/2)dy

= e−(
∑

r a
2
rλr)/2 = e−t

TUTDUt/2 = e−t·Σt/2.

�

• (Degenerate Case) We define the normal distribution N(µ,Σ)Rd as below, then
we still have the characteristic function

F (t) = e−iµ·te−t·Σt/2.

Proof. Again, we normalize and assume µ = 0. As before, we use the change of
variable ~Y T = (Y1 · · ·Yd)T = U ~XT where Σ = UTDU , and D = diag(λ1, · · · , λd).
Further, we assume that there exists K < d such that λr > 0 for r ≤ K, and λr = 0
for K + 1 ≤ r ≤ d. There does not exist a probability density function in this case,
instead we use cumulative distribution function for ~Y defined by the measure

K∏
r=1

1
(2πλr)1/2

e−λ
−1
r y2

r/2dyr

d∏
r=K+1

δ(yr)dyr.

, where δ is the Dirac Delta.

Clearly this distribution has mean 0, and satisfies E(YiYj) = δijλi. This implies

E(XiXj) =
∑
r

U irU
j
rE(Y 2

r ) =
∑
r

U irU
j
rλr = Σij .

For the characteristic function, define ar as before, then we have

Eeit· ~X = Eeit·U
T ~Y = Eei

∑
r arYr .

After completing square for r ≤ K, we obtain

Eei
∑

r arYr

=
∏
r≤K

∫
R

1
(2πλr)1/2

e−((yr−iarλr)2/(2λr)+a2
rλr/2)dyr

d∏
r=K+1

∫
R
eiaryrδ(yr)dyr

= e−(
∑

r≤K a2
rλr)/2 = e−(

∑
r a

2
rλr)/2 = e−t

TUTDUt/2 = e−t·Σt/2.

Thus, our claim is proved. �
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• If ~Sn := ~X1 + · · · + ~Xn is the sum of n iid copies of ~X, then ~Zn =
~Sn−nµ√

n

converges in distribution to N(0,Σ(X))Rd .

Proof. The Taylor’s Theorem gives

F ~X(t) = Eeit· ~X

= 1 + Eit · ~X +
1
2

E(it · ~X)2 + o(|t|2)

= exp
(
−1

2
E(t · ~X)2 + o(|t|2)

)
.

Now, using independence condition, we have

F ~Zn
(t) = (Eeit· ~X/

√
n)n = F ~X

(
t√
n

)n
Using E(t1X1 + · · · tdXd)2 = E

∑
i,j titjXiXj =

∑
i,j titjEXiXj = t ·Σt, and letting

n→∞, we obtain

F ~X

(
t√
n

)n
→ exp

(
−1

2
E(t · ~X)2

)
= exp

(
−1

2
t · Σt

)
.

By the second part, it follows that

F ~Zn
(t)→ FN(0,Σ)(t).

�


