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1. Introduction

Let n =
∏
i≤m p

ei
i be the prime factorization of n. We denote Ω(n) by

∑
i≤m ei.

Then, for any fixed complex number z, we obtain a completely multiplicative func-
tion zΩ(n) as a function of n. There are many results on the average order of this
function zΩ(n). There are remarkable differences in the behavior of

∑
n≤x

zΩ(n) for

different values of z. If we consider main terms only, it is Cx(log x)z−1 when |z| < 2,
Cx(log x)2 when z = 2, and we have oscillation when z > 2. First two cases are
well-known, so in this paper, we will prove upper, lower bound results, and oscil-
latory behavior of

∑
n≤x

zΩ(n) when z > 2. Further, we will also prove oscillatory

behavior for all z such that |z| > 2, and z is not positive real. However, we will
only prove upper bound result for the case |z| = 2, and z 6= 2.

We briefly state the known results. For |z| < 2, Selberg(See [4], a special case of
Theorem 2) proved that:

(1)
∑
n≤x

zΩ(n) = x(log x)z−1

(
f(1, z)
Γ(z)

+O

(
1

log x

))
, where

f(s, z) =
∏
p

(
1− z

ps

)−1(
1− 1

ps

)z
.

This has been improved due to Selberg-Delange method(See [1], Theorem 2,
p202): for all δ, 0 < δ < 1, there exist positive constants c1 = c1(δ), c2 = c2(δ),
such that, uniformly for x ≥ 3, N ≥ 0, |z| ≤ 2− δ,

(2)
∑
n≤x

zΩ(n) = x(log x)z−1

(
N∑
k=0

νk(z)
(log x)k

+Oδ(RN (x))

)

, where RN (x) = e−c1
√

log x +
(
c2N+1
log x

)N+1

, and νk are functions depending only
on z.

When z = 2, Bateman(See [2], (3)) obtained a result:

(3)
∑
n≤x

2Ω(n) = C0x(log x)2 + C1x log x+O(x)

, where Ci are constant, and the error term O(x) is the best possible.
Now, we proceed on our results. Let |z| ≥ 2, and let p1 = 2 < · · · < pr ≤ |z| <

pr+1 < · · · be prime numbers. We define functions A and B which we will use
1
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throughout this paper:

(4) A(s) =
∏
p≤|z|

(
1− z

ps

)−1

=
∞∑
n=1

an
ns
,

(5) B(s) =
∏
p≤|z|

(
1− 1

ps

)z ∏
p>|z|

(
1− z

ps

)−1(
1− 1

ps

)z
=
∞∑
n=1

bn
ns
.

Also, we denote dz(n) by the identity:

(6) ζ(s)z =
∏
p

(
1− p−s

)−z =
∞∑
n=1

dz(n)n−s.

The Dirichlet series for A(s), B(s), and ζ(s)z are absolutely convergent respectively
on σ > log |z|

log 2 , σ > log |z|
log pr+1

, and σ > 1. Clearly, we have log |z|
log pr+1

< 1 ≤ log |z|
log 2 ,

since 2 ≤ |z| < pr+1. Then, the Dirichlet series F (s) =
∑∞
n=1 z

Ω(n)n−s satisfies the
identity:

(7) F (s) = A(s)B(s)ζ(s)z

, where the series is absolute convergent on σ > log |z|
log 2 . In case of z > 2, we see

that A(s) has singularities on s = log z+2kπi
log 2 for all integers k. Thus, using Perron’s

formula(See [3], Lemma 3.12, p60) directly on
∑
n≤x

zΩ(n) is difficult because of the

residues from too many singularities. Indeed, we derive Theorem 1,2, and Theorem
3 without using Perron’s formula. The first result is the upper and lower bound.

Theorem 1. Let z > 2 be fixed, and x ≥ 1. Then there exists a constant Bz such
that:

(8)
1
z
x

log z
log 2 ≤

∑
n≤x

zΩ(n) ≤ Bzx
log z
log 2 .

From Theorem 1, we can also derive the oscillatory behavior of
∑
n≤x

zΩ(n).

Theorem 2. Let z > 2 be fixed. Then,

(9) lim sup
x→∞

x−
log z
log 2

∑
n≤x

zΩ(n) − lim inf
x→∞

x−
log z
log 2

∑
n≤x

zΩ(n) ≥ 1.

On the other hand, we can extend z to non-real values.

Theorem 3. Let |z| > 2, and z is not a positive real number. For x ≥ 1, we have:

(10) Re
∑
n≤x

zΩ(n) = Ω±
(
x

log |z|
log 2

)
.

In the remaining case, we have an upper bound.

Theorem 4. Let |z| = 2, and z 6= 2. For x ≥ 3, we have:

(11)
∑
n≤x

zΩ(n) = O

(
x log x

(log log x)2−Rez

)
.
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2. Proof of Theorem 2

Now, we prove Theorem 2 from Theorem 1.
Proof of Theorem 2. Theorem 1 implies that, β(x) = x−

log z
log 2

∑
n≤x

zΩ(n) is a bounded

function of x. Consider a bounded sequence {SN}∞N=1,

(12) SN = β(2N − 1) = (2N − 1)−
log z
log 2

∑
n≤2N−1

zΩ(n).

We can find a subsequence {SNi
}∞i=1 which converges to Kz. Then, we have

β(2Ni) = (2Ni)−
log z
log 2

 ∑
n≤2Ni−1

zΩ(n) + zNi


=
(

2Ni − 1
2Ni

) log z
log 2

SNi
+ 1.

Since β(2Ni) → Kz + 1 as i → ∞, the difference between lim supx→∞ β(x), and
lim infx→∞ β(x) is at least 1. Hence, Theorem 2 is proved.

3. Proof of Theorem 1

A simple observation gives the lower bound,

(13)
∑
n≤x

zΩ(n) ≥
∑
2e≤x

ze ≥ zblog x/ log 2c ≥ z−1xlog z/ log 2.

We remark that
∑
n≤x an =

∑
p

e1
1 ···p

er
r ≤x z

e1+···+er , and derive the following lemma.

Lemma 1. For x ≥ 1,

(14)
∑
n≤x

an = O
(
x

log z
log 2

)
.

Proof. We use induction on r.

When r = 1, note that
∑

2e≤x z
e = z

b log x
log 2 c+1−1
z−1 ≤ z

z−1x
log z
log 2 .

Let r > 1, and assume the result for r − 1, namely,

(15)
∑

p
e1
1 ···p

er−1
r−1 ≤x

ze1+···+er−1 ≤ Cz,r−1x
log z
log 2 .

Then, we have∑
p

e1
1 ···p

er
r ≤x

ze1+···+er =
∑
per

r ≤x

zer

∑
p

e1
1 ···p

er−1
r−1 ≤xp

−er
r

ze1+···+er−1

≤
∑
per

r ≤x

zerCz,r−1

(
x

per
r

) log z
log 2

≤ Cz,rx
log z
log 2

, where Cz,r = Cz,r−1

∑
e

(
z1−log pr/ log 2

)e
= Cz,r−1

(
1− z1−log pr/ log 2

)−1
. This

gives the result for r, and completes the proof of Lemma 1. Further, we can write
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down Lemma 1 in the form:

(16)
∑
n≤x

an ≤ Czx
log z
log 2

, where

(17) Cz =
z

z − 1

∏
2<p≤z

(
1− z1− log p

log 2

)−1

.

�

Now, we are ready to prove Theorem 1.
Proof of Theorem 1 (upper bound). By (7), we have

∑
n≤x z

Ω(n) =
∑
uvw≤x budz(v)aw.

Then by Lemma 1,∑
uvw≤x

budz(v)aw =
∑
uv≤x

budz(v)
∑
w≤ x

uv

aw

≤
∑
uv≤x

|bu|dz(v)Cz
( x
uv

) log z
log 2

≤ Cz
∑
u

|bu|
u

log z
log 2

∑
v

dz(v)

v
log z
log 2

x
log z
log 2 .

The u-sum is convergent, since the Dirichlet series for B(s) is absolutely convergent
for σ > log z

log pr+1
. Also, the v-sum is just ζ( log z

log 2 )z. Hence, we can write down
Theorem 1 in the form:

(18)
∑
n≤x

zΩ(n) ≤ Bzx
log z
log 2

, where

(19) Bz = Cz

(∑
u

|bu|
u

log z
log 2

)
ζ

(
log z
log 2

)z
.

4. Proof of Theorem 3

We begin with an oscillation lemma. For the proof, see [1], Theorem 8, p112.

Lemma 2. Let G(s) =
∑∞
n=1 ann

−s be a Dirichlet series with real coefficients
having a finite abscissa of convergence. Suppose there exists a real number σ0 > 0
such that G(s) has an analytic continuation which is regular at all points of the
half line [σ0,∞) and has a pole on the vertical line σ = σ0. Then the associated
summatory function satisfies

(20)
∑
n≤x

an = Ω±(xσ0).

Proof of Theorem 3. Note that |z| > 2 and z is not positive real. Let F (s) =

A(s)B(s)ζ(s)z as before. ThenG(s) = F (s)+F (s̄)
2 has a Dirichlet series

∑∞
n=1 Re(zΩ(n))n−s.

Let z = |z|eiθ, then F has singularities on the set;

(21)
{

log |z|+ i(2πk ± θ)
log 2

: k ∈ Z
}
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Since this set does not contain log |z|
log 2 , the Dirichlet seriesG(s) satisfies all hypotheses

for the Lemma 2 with σ0 = log |z|
log 2 . Hence, by Lemma 2,

(22)
∑
n≤x

Re(zΩ(n)) = Ω±(x
log |z|
log 2 ).

5. Proof of Theorem 4

Let A(s), B(s) be defined by:

(23) A(s) =
(

1− z

2s
)−1

=
∞∑
n=1

an
ns
,

(24) B(s) =
(

1− 1
2s

)z∏
p>2

(
1− z

ps

)−1(
1− 1

ps

)z
=
∞∑
n=1

bn
ns
.

Then we have F (s) =
∑∞
n=1 z

Ω(n)n−s = A(s)B(s)ζ(s)z as before. The Selberg-
Delange method(See [1], Theorem 5, p191) implies that

(25)
∑
uv≤x

budz(v) =
B(1)
Γ(z)

x(log x)z−1 +O
(
x(log x)Rez−2

)
.

Thus, it follows that∑
n≤x

zΩ(n) =
∑

uvw≤x

aubvdz(w)

=
∑
u≤x/2

au
∑

vw≤x/u

bvdz(w) +
∑

x/2<u≤x

au
∑

vw≤x/u

bvdz(w)

=
∑
u≤x/2

au

(
B(1)
Γ(z)

x

u

(
log

x

u

)z−1

+O

(
x

u

(
log

x

u

)Rez−2
))

+O(x).

We treat the second error term first,∑
u≤x/2

∣∣∣au
u

∣∣∣ (log
x

u

)Rez−2

=
∑

u≤x/(2 log x)

∣∣∣au
u

∣∣∣ (log
x

u

)Rez−2

+
∑

x/(2 log x)<u≤x/2

∣∣∣au
u

∣∣∣ (log
x

u

)Rez−2

= O

(
log x

(log log x)2−Rez

)
+O(log log x) = O

(
log x

(log log x)2−Rez

)
.

Using partial summation, we find that the first term is small compared to the error
term above. Let S(t) =

∑
u≤t

au

u , and note that S(t) is bounded function of t.∑
u≤x/2

au
u

(
log

x

u

)z−1

=
∫ x/2

1−

(
log

x

t

)z−1

dS(t)

=
(

log
x

t

)z−1

S(t) |x/21− +
∫ x/2

1−

1
t
S(t)(z − 1)

(
log

x

t

)z−2

dt

= O(1) +O

(∫ x/2

1

1
t

(
log

x

t

)Rez−2

dt

)

=
{
O(1) +O

(
(log x)Rez−1

)
if Rez 6= 1

O(1) +O(log log x) if Rez = 1.
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Since Rez − 1 < 1, we obtain the result:

(26)
∑
n≤x

zΩ(n) = O

(
x log x

(log log x)2−Rez

)
.

6. Further Remarks

In fact, the upper bound in Theorem 4 can be improved toON (x(log x)(log log x)Rez−N )
using a better error term in (25)(See [1], Theorem 5, p191). There are still some
open problems. In the Theorem 2, we obtained oscillatory behavior of the function
β(x) = x−

log z
log 2

∑
n≤x

zΩ(n). However, we do not know how to obtain lim supx→∞ βz(x),

and lim infx→∞ βz(x) explicitly as a function of z. Also, in the Theorem 4, we only
have upper bound result, and still do not know what the best possible bound is.
In case of Theorem 4, the function F (s) =

∑∞
n=1 z

Ω(n)n−s does not satisfy the
hypothesis of Lemma 2, but the author conjectures that Re

∑
n≤x

zΩ(n) = Ω±(x)

holds.
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