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Problem 1.

From Whitney’s Embedding Theorem, we can assume that N is an embedded
submanifold of RK for some K > 0. Then it is possible to define distance function.
Now we use ε-Neighborhood Theorem. There exists an open neighborhood

U = Mε =
⋃
y∈M
{w ∈ N : |w − y| < ε(y)}

where ε : M → R is a smooth positive function on M, and π : U → M is a
submersion defined by π(w) being the unique closest point from w to M . Then,
we claim that the inclusion i : M → U is proper. For, let K ⊆ U be a compact set
in U . We have compactness of π(K) by continuity of π, and
i−1(K) = K ∩ M ⊆ π(K) is a closed subset of a compact set, thus i−1(K) is
compact. Hence, i : M → U is proper.

Problem 2.

First, we remark that M(n, p; k+), the set of matrices in M(n, p) whose rank
is at least k, is an open subset of M(n, p). This can be shown by considering the
function f : M(n, p)→ R given by:

f(A) =
∑

B∈Ak×k

(detB)2

where Ak×k is the set of all k × k submatrices of A. Indeed, M(n, p; k+) = {A ∈
M(n, p)|f(A) > 0}, and the continuity of f gives the result.
Define the sets of matrices M(n, p; k)1, and M(n, p; k+)1, whose determinant of
the first k× k submatrix is nonzero. These sets form an open subset of M(n, p; k),
and M(n, p; k+) respectively, by the continuity of determinant. We claim that
M(n, p; k)1 is a np − (n − k)(p − k) dimensional submanifold of M(n, p; k+)1.
Then, the global result will follow from this local result. Now, define a map
g : M(n, p; k+)1 → R(n−k)(p−k) by

g(A) = (detAij)k+1≤i≤n
k+1≤j≤p

where Aij is a (k + 1) × (k + 1) submatrix obtained by attaching the column

vector

a1j

...
akj

 to the right of the first k × k submatrix Ak of A, the row vector

(
ai1 · · · aik

)
to the bottom, and (aij) to the right bottom corner, where A =

(auv)1≤u≤n
1≤v≤p

. Then, clearly g is a smooth function, and M(n, p; k)1 = g−1(0). We
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claim that 0 ∈ R(n−k)(p−k) is a regular value of g, then the result will follow from
the preimage theorem. To show this, we find the jacobian of g.

Jg =
(

∂

∂auv
detAij

)
k+1≤i≤n
k+1≤j≤p
1≤u≤n
1≤v≤p

.

For each (i, j) with k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ p, we have

∂

∂auv
detAij =

{
detAk 6= 0 if u = i, v = j

0 if k + 1 ≤ u ≤ n, k + 1 ≤ v ≤ p, u 6= i, v 6= j.

This shows that the Jg has rank (n− k)(p− k), so 0 is the regular value of g. By
the preimage theorem, M(n, p; k)1 = g−1(0) is a dimM(n, p; k+)1 − (n− k)(p− k)
dimensional submanifold of M(n, p; k+)1. Since M(n, p; k+)1 is an open subset of
M(n, p), we have dimM(n, p; k+)1 = dimM(n, p) = np. Hence, we have the global
result M(n, p; k) is a np− (n− k)(p− k) dimensional submanifold of M(n, p).

Problem 3.

•(Green’s Formula) Let W be a compact domain in R2 with smooth boundary
∂W = γ. Then, ∫

γ

fdx+ gdy =
∫
W

(
∂g

∂x
− ∂f

∂y

)
dxdy.

Proof. Let w = fdx+ gdy, then

dw = df ∧ dx+ dg ∧ dy

=
(
∂f

∂x
dx+

∂f

∂y
dy

)
∧ dx+

(
∂g

∂x
dx+

∂g

∂y
dy

)
∧ dy

=
∂f

∂y
dy ∧ dx+

∂g

∂x
dx ∧ dy

=
(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

By the generalized Stokes theorem, we have∫
γ

fdx+ gdy =
∫
∂W

w =
∫
W

dw =
∫
W

(
∂g

∂x
− ∂f

∂y

)
dxdy.

•(Stokes Theorem) Let S be a compact oriedted two-manifold in R3 with bound-
ary, and let ~F = (f1, f2, f3) be a smooth vector field in a neighborhood of S. Then,∫

S

(curl ~F · ~n)dA =
∫
∂S

f1dx1 + f2dx2 + f3dx3.

Proof. Let w = f1dx1 + f2dx2 + f3dx3, then by the similar calculation above, we
have:

dw = g1dx2 ∧ dx3 + g2dx3 ∧ dx1 + g3dx1 ∧ dx2,

where

g1 =
∂f3

∂x2
− ∂f2

∂x3
, g2 =

∂f1

∂x3
− ∂f3

∂x1
, g3 =

∂f2

∂x1
− ∂f1

∂x2
.

We need a lemma: Let ~n = (n1, n2, n3) be the outward pointing normal. Then,

dA = n1dx2 ∧ dx3 + n2dx3 ∧ dx1 + n3dx1 ∧ dx2
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, and
n1dA = dx2 ∧ dx3

n2dA = dx3 ∧ dx1

n3dA = dx1 ∧ dx2.

For, the first formula is equivalent to

dA(v, w) = det

vw
~n


where v, w ∈ TxS, and this is precisely the definition of dA. To prove other equa-
tions, let z ∈ R3. Since v × w = α~n for some α ∈ R, we have

〈z, ~n〉〈v × w,~n〉 = 〈z, ~n〉α = 〈z, α~n〉 = 〈z, v × w〉.
By plugging in e1, e2, e3 in place of z, we obtain above three formulae.
Thus, we have

dw = g1dx2 ∧ dx3 + g2dx3 ∧ dx1 + g3dx1 ∧ dx2 = (g1, g2, g3) · ~ndA = (curl ~F · ~n)dA

By the generalized Stokes theorem, we have∫
S

(curl ~F · ~n)dA =
∫
S

dw =
∫
∂S

w =
∫
∂S

f1dx1 + f2dx2 + f3dx3.

•(Divergence Theorem) Let W be a compact domain in R3 with smooth bound-
ary, and let ~F = (f1, f2, f3) be a smooth vector field on W . Then∫

W

(div ~F )dxdydz =
∫
∂W

(~n · ~F )dA.

Proof. Let w = f1dx2 ∧ dx3 + f2dx3 ∧ dx1 + f3dx1 ∧ dx2. Then,

dw =
(
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂x3

)
dx1 ∧ dx2 ∧ dx3 = (div ~F )dx1 ∧ dx2 ∧ dx3

Now, we use the lemma in the proof of Stokes theorem, we have w = (~n · ~F )dA. By
the generalized Stokes theorem, we have∫

W

(div ~F )dxdydz =
∫
W

dw =
∫
∂W

w =
∫
∂W

(~n · ~F )dA.

Problem 4.

• Topological and differential structure on G(k, n):
Let P ∈ G(k, n), and denote P⊥ the orthogonal complement of P in Rn, and let
UP = {W ∈ G(k, n)|W ∩ P⊥ = (0)}. Let L(P, P⊥) denote the vector space of
linear maps from P to P⊥. Define a map φP : L(P, P⊥)→ UP by:

A ∈ L(P, P⊥) 7→W = {x+Ax|x ∈ P}.
Then, it follows from the definition of UP , that φP is bijective for each P . Now,
we claim that {(UP , φ−1

P )|P ∈ G(k, n)} forms a topological and smooth structure
on G(k, n). We can define a topological structure to be the smallest topology that
makes every φP homeomorphism. In particular, we have

{φP (V )|P ∈ G(k, n), V ⊆ L(P, P⊥) is open}
as a basis for this topology.
It remains to show that if UP ∩ UQ is nonempty, then φ−1

Q ◦ φP : φ−1
P (UP ∩ UQ)→
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φ−1
Q (UP ∩ UQ) is smooth. For, let W ∈ UP ∩ UQ, and A′ = φ−1

Q ◦ φP (A). Then,
we have W = {x + Ax|x ∈ P} = {x′ + A′x′|x′ ∈ Q}. Let IA : P → Rn denote
the map IA(x) = x + Ax, and πQ : Rn → Q the projection onto Q. Note that
πQ ◦ IA : P → Q is an isomorphism. If x′ ∈ Q then, we can find x ∈ P such that
x′ +A′x′ = x+Ax. and πQ ◦ IA(x) = x′. From this, we have

A′x′ = IA ◦ (πQ ◦ IA)−1(x′)− x′.
Now, plugging in the orthonormal basis for Q in place of x′ gives the smoothness of
φ−1
Q ◦ φP . Hence, {(UP , φ−1

P )|P ∈ G(k, n)} defines a smooth structure on G(k, n).
Since L(P, P⊥) is isomorphic to M(k, n − k) ' Rk(n−k), it follows that G(k, n) is
k(n− k) dimensional smooth manifold.
• Compactness of G(k, n):

Let O(n) be the group of real n × n orthogonal matrices. We define Ψ : O(n) →
G(k, n) by:

A ∈ O(n) 7→ span{A1, · · · , Ak} ∈ G(k, n),
where A1, · · · , Ak are the first k columns of A. We claim that Ψ is continuous.
Without loss of generality, it suffices to show that there exists an open set BI ⊆
O(n) containing I with φ−1

I ◦ Ψ|BI
: BI → UIk

→ L(Ik, Ik⊥) is continuous at I
where Ik = span{I1, · · · , Ik}. This follows from the continuity of the determinant
of the first k × k block. Thus, we have proved the claim. Since O(n) is a compact
manifold and Ψ is continuous, we have Ψ(O(n)) is compact. By Gram-Schmidt
process, it follows that Ψ is surjective. Hence, G(k, n) is compact manifold.
• G(k, n) is diffeomorphic to G(n− k, n):

Define Φ : G(k, n)→ G(n− k, n) by Φ(P ) = P⊥. Consider the following composi-
tions,

L(P, P⊥)
φP−−→ G(k, n) Φ−→ G(n− k, n)

φ−1
P⊥−−−→ L(P⊥, P )

A 7→W 7→W⊥ 7→ A′.

If W = {x + Ax|x ∈ P}, then we have W⊥ = {x′ − ATx′|x′ ∈ P⊥}. Thus,
Φ(A) = A′ = −AT is an isomorphism of L(P, P⊥) and L(P⊥, P ). Hence, G(k, n)
is diffeomorphic to G(n− k, n).

Problem 5.

We need the following two propositions:
Proposition1: Suppose f : X → Y is transversal to Z. If X = ∂W , W is compact,
f : X → Y extends to F : W → Y , and F is transversal to Z, then I(f, Z) = 0.
Proposition2: Homotopic maps always have the same intersection numbers.
•(i) Under our assumptions, we can extend u : M ×N → Sn−1 to v : D ×N →

Sn−1 defined by:

v(x, y) =
F (x)− g(y)
‖F (x)− g(y)‖

.

Since we have ∂(D × N) = (∂D) × N = M × N , we can use proposition1 with
Z = {y} ⊆ Sn−1. Hence, by proposition1, I(u, {y}) = deg(u) = L(f, g) = 0.
•(ii) Let ft, gt be homotopy of f0, and g0 respectively. In addition, suppose we

have im(ft) does not intersect im(gt) for each t ∈ [0, 1]. Then,

ut =
ft(x)− gt(y)
‖ft(x)− gt(y)‖

.
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is a homotopy of u0. Hence, by proposition2, we have L(f1, g1) = I(u1, {y}) =
I(u0, {y}) = L(f0, g0).

Problem 6.

•(i)
•(ii)
•(iii)

Problem 7.

• (I) We claim that there exists a natural orientation on some neighborhood of
the diagonal ∆ in X ×X.
Proof. We can cover a neighborhood of ∆ by local parametrizations φ×φ : U×U →
X ×X, where φ : U → X is a local parametrization of X. We can give a product
orientation on X ×X by the orientation of φ × φ, and this does not depend on a
specific choice of orientation of X.
• (II) Let Z be a compact submanifold of Y , both oriented, with dimZ = 1

2dimY .
We have I(Z,Z) = I(Z × Z,∆), where ∆ is the diagonal of Y .
Proof. I(Z,Z) = I(i, Z) = I(i, i) = (−1)dimZI(i × i,∆) = (−1)dimZI(Z × Z,∆),
and if dimZ is odd, then I(Z,Z) = (−1)dimZI(Z × Z,∆) = 0.
• (III) If Z is a compact submanifold of Y with dimZ = 1

2dimY , and Z is not
oriented. By (I) we have an open neighborhood Y of the diagonal ∆ in Z×Z. Then,
we have dimZ = 1

2dimY . We define the Euler Characteristic χ(Z) = I(Z × Z,∆).
This is well defined, since Y is orientable by (I). Also, this definition fits in orientable
case, by (II).

Problem 8.

• (I) We claim that if a vector field ~v on Rl has finitely many zeros, and the sum
of the indices of its zeros is 0. Then there exists a vecter field that has no zeros,
yet equals ~v outside a compact set. To prove this, we need a series of lemmas:
◦(1) Let f : U → Rk be any smooth map defined on an open subset U of Rk, and

let x be a regular point, with f(x) = z. Let B be a sufficiently small closed ball
centered at x, and define ∂f : ∂B → Rk to be the restriction of f to the boundary
of B. Then W (∂f, z) = +1 if f preserves orientation at x and W (∂f, z) = −1 if f
reverses orientation at x.
Proof. For simplicity, take x = 0 = z, and set A = df0. By regularity, A is
bijective. Write f(x) = Ax+ε(x), where ε(x)/|x| → 0 as |x| → 0(This is possible by
multivariable Taylor’s Theorem). Take B small enough that the map F : ∂B×I →
Rk defined by F (x, t) = (Ax+ tε(x))/|Ax+ tε(x)| is a homotopy. Since homotopic
maps have the same intersection numbers, we have W (A, 0) = W (∂f, 0). Here,
W (A, 0) = +1 if detA is positive, and −1 otherwise, which is precisely the same
conditions whether f preserves orientation, or otherwise.
◦(2) Let f : B → Rk be a smooth map defined on some closed ball B in Rk.

Suppose that z is a regular value of f that has no preimages on the boundary
sphere on the boundary sphere ∂B, and consider ∂f : ∂B → Rk. Then the number
of preimages of z, counted with our usual orientation convention, equals the winding
number W (∂f, z).
Proof. Circumscribe small balls Bt around each preimage points. then the degree
of the directional map u on the boundary of B′ = B−∪tBt is zero(since u extends
to all of B′). i.e. W (f |∂B′ , z) = 0. Thus, W (∂f, z) =

∑
tW (f |∂Bt

, zt), where zt are
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the center of Bt. By (1), the preimages zt are counted with our usual orientation
convention.
◦(3) Let B be a closed ball in Rk, and let f : Rk − Int(B)→ Y be any smooth

map defined outside the open ball Int(B). If the restriction ∂f : ∂B → Y is
homotopic to a constant, then f extends to a smooth map defined on all of Rk into
Y .
Proof. Assume B is centered at 0, let gt : ∂B → Y be homotopy with g1 = ∂f ,
g0 = const. Then a continuous extension of f through B is given by f(tx) = gt(x),
x ∈ ∂B and t ∈ [0, 1]. To extend smoothly, we use the smooth function ρ : R→ R
with ρ(t) = 0 if t ≤ 1/4, and ρ(t) = 1 if t ≥ 3/4.
◦(4) Let f : Rk → Rk be a smooth map with 0 as a regular value. Suppose that

f−1(0) is finite and the number of preimage points in f−1(0) is zero when counted
with the usual orientation convention. Assuming the special case in dimension k−1,
there exists a mapping g : Rk → Rk − {0} such that g = f outside a compact set.
Proof. l = 1 is a trivial case, for l > 1, we use induction. Take a large ball B
around the origin that contains all of f−1(0). (2) implies that ∂f : ∂B → Rk −{0}
has winding number zero. The inductive hypothesis(Any smooth map f : Sl →
Rl+1 − {0} having winding number 0 with respect to the origin is homotopic to
a constant, here l = k − 1) implies that ∂f : ∂B → Rk − {0} is homotopic to a
constant. By (3), f can be extended to all B. We can use this extended f to prove
the case l = k.
◦(Proof of the claim) Use f = v in (4).
• (II) We also claim that any compact manifold X there exists a vector field

with only finitely many zeros.
Proof. Assume that X ⊆ RN , and let T (X) be its tangent bundle. Define ρ :
X × RN → T (X) by making ρ(x, v) be the orthogonal projection of the vector
v into Tx(X). Then ρ is a submersion since it is a projection. We apply the
Transversality Theorem with S = RN , Y = T (X), and Z = X × {0}. For some v,
the vector field x → ρ(x, v) is transversal to X × {0}. Thus, its inverse image of
X × {0} is 0 dimensional submanifold of X. Since X is compact, it follows that
this preimage is finite.
• (III) We use a varient of isotopy lemma(Given points yi and zi, i = 1, · · · , n

in a connected manifold Y , we can find a diffeomorphism h : Y → Y isotopic to
identity, with h(yi) = zi for i = 1, · · ·n), to pull the vector field back to RN . Here,
we require an additional condition that the finitely many zeros of the vector field
are all contained in an open set U . Then, we use (I) to obtain a vector field without
zero.
• (IV) Now, we construct an isotopy of identity without fixed points using the

nonvanishing vector field on M . To do this, we use a theorem about the flow of a
given vector field.

Theorem 1.

Let X be a smooth vector field on a smooth manifold M . For each m ∈M there
exists a(m) and b(m) in R ∪ {±∞}, and a smooth curve

γm : (a(m), b(m))→M

such that
(a) 0 ∈ (a(m), b(m)) and γm(0) = m.
(b) γm is an integral curve of X.
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(c) (a(m), b(m)) is maximal that γm can be extended.
(d) For each m ∈M , there exists an open neighborhood V of m and an ε > 0 such
that the map

(t, p) 7→ Xt(p)
is defined and is smooth from (−ε, ε)× V into M .
(e) Let Dt = {m ∈M |t ∈ (a(m), b(m))}, then Dt is open for each t.
(f) ∪t>0Dt = M .
(g) Let Xt(m) = γm(t), then Xt : Dt → D−t is a diffeomorphism with inverse X−t.
Since M is compact in our case, we can find some t0 > 0 such that M = Dt0 , and
Xt has no fixed points for each t < t0. Hence, we have Xtt0/2 is the desired isotopy
of identity without fixed points(We have X0 = id).


