214A HOMEWORK

KIM, SUNGJIN

1.1 Let A = k[[T]] be the ring of formal power series with coefficients in a field k. Determine SpecA.

Proof. We begin with a claim that $A^{\times} = \{\sum a_i T^i \in A : a_i \in k, \text{ and } a_0 \in k^{\times}\}$. Let $\sum a_i T^i \in A^{\times}$, then there exists $\sum b_i T^i \in A$ such that $(\sum a_i T^i)(\sum b_i T^i) = 1$. The constant term in both side should agree, so we have $a_0b_0 = 1$, giving that $a_0 \in k^{\times}$. Conversely, let $a_0 \in k^{\times}$. By multiplying a_0^{-1} , we can assume that $a_0 = 1$. Let $g = -\sum_{i\geq 1} a_i T^i$, then we have $\sum a_i T^i = 1 - g$. The formal power series for $\sum_{i\geq 0} g^i$ is the desired inverse for $\sum a_i T^i$. Thus, our claim is proved.

Let $P \subset A$ be a nonzero prime ideal in A. Denote the number $min\{n \in \mathbb{N} : T^n \in P\}$ by n(P). By our previous claim, we have $n(P) \geq 1$, and we also have $T^{n(P)} \in P$. $n(P) \geq 2$ cannot happen because P is a prime ideal. Thus, we must have n(P) = 1, i.e. $T \in P$. It follows that P = (T). Hence $\operatorname{Spec} A = \{(0), (T)\}$. \Box

1.2 Let $\varphi : A \longrightarrow B$ be a homomorphism of finitely generated algebras over a field k. Show that the image of a closed point under Spec φ is a closed point.

Proof. Let \mathfrak{m} be a maximal ideal in B, it suffices to show that $\operatorname{Spec}\varphi(\mathfrak{m}) = \varphi^{-1}(\mathfrak{m})$ is a maximal ideal in A. By 1st isomorphism theorem, φ induces an embedding $A/\varphi^{-1}(\mathfrak{m}) \hookrightarrow B/\mathfrak{m}$. Then Weak Nullstellensatz shows that B/\mathfrak{m} is a finite field extension of k. It follows that $A/\varphi^{-1}(\mathfrak{m})$ is an integral domain which is finite dimensional k-vector space. For any $a \in (A/\varphi^{-1}(\mathfrak{m})) \setminus \{0\}$, the set $\{1, a, a^2, \cdots\}$ is linearly dependent over k. Thus, a satisfies a polynomial equation $\sum_{i \leq N} c_i a^i = 0$ with $c_i \in k$ and $c_0 \neq 0$. This implies that $a \sum_{1 \geq i \geq N} c_i a^{i-1} = -c_0 \in k^{\times}$. Hence a is invertible in $A/\varphi^{-1}(\mathfrak{m})$, giving that $A/\varphi^{-1}(\mathfrak{m})$ is a field. \Box

1.3 Let $k = \mathbb{R}$ be the field of real numbers. Let $A = k[X, Y]/(X^2 + Y^2 + 1)$. We wish to describe SpecA. Let x, y be the respective images of X, Y in A.

(a) Let \mathfrak{m} be a maximal ideal of A. Show that there exist $a, b, c, d \in k$ such that $x^2 + ax + b, y^2 + cy + d \in \mathfrak{m}$. Using the relation $x^2 + y^2 + 1 = 0$, show that \mathfrak{m} contains an element $f = \alpha x + \beta y + \gamma$ with $(\alpha, \beta) \neq (0, 0)$. Deduce from this that $\mathfrak{m} = fA$.

Proof. Note that $A/\mathfrak{m} = \mathbb{C}$. This is because it is a finite extension of k by Weak Nullstellensatz, and it contain x, y with $x^2 + y^2 + 1 = 0$. Thus, it is clear that x, y satisfy some quadratic equation over k. We add up those quadratic equations to obtain

$$ax + cy + b + d - 1 = 0 \in A/\mathfrak{m}.$$

(Case1) $(a, c) \neq (0, 0)$: We may take $f = ax + cy + b + d - 1 \in \mathfrak{m}$.

(Case2) a = c = 0, and hence b+d = 1: Either $x, y \in A/\mathfrak{m}$ are both pure imaginary, or one of them is real. Note that x, y are not both 0. Thus, we can find α, β, γ such that $\alpha x + \beta y + \gamma = 0 \in A/\mathfrak{m}$.

KIM, SUNGJIN

We now consider A/fA, assume that $f = \alpha x + \beta y + \gamma$ with $\alpha \neq 0$. Then A/fA becomes

$$k[X,Y]/(X^2 + Y^2 + 1, f) = k[X]/(X^2 + ((-\beta/\alpha)x - \gamma/\alpha)^2 + 1) = \mathbb{C}.$$

Therefore, fA is a maximal ideal in A, and combined with $fA \subset \mathfrak{m}$, we have $\mathfrak{m} = fA$.

(b) Show that the map $(\alpha, \beta, \gamma) \mapsto (\alpha x + \beta y + \gamma)A$ establishes a bijection between the subset $\mathbb{P}(k^3) \setminus \{(0, 0, 1)\}$ of the projective space $\mathbb{P}(k^3)$ and the set of maximal ideals of A.

Proof. The same argument that we showed $\mathfrak{m} = fA$ in part (a), shows that the map is well-defined. Moreover, part (a) itself shows surjectivity. Suppose that two distinct members (α, β, γ) and $(\alpha', \beta', \gamma')$ in $\mathbb{P}(k^3) \setminus \{(0, 0, 1)\}$ map to the same maximal ideal \mathfrak{m} in A. We may consider the following cases without loss of generality, (Case1) $\alpha = \alpha' = 1, \beta = \beta', \gamma \neq \gamma'$: This gives a contradiction, since $\gamma - \gamma' \in k^{\times} \cap \mathfrak{m}$ cannot hold.

(Case2) $\alpha = \alpha' = 1, \beta \neq \beta'$: By subtraction, we obtain a real number y_0 such that $y_0 \in A/\mathfrak{m}$. Plugging in $y = y_0$, we obtain a real number x_0 such that $x_0 \in A/\mathfrak{m}$. Furthermore, $x_0^2 + y_0^2 + 1 = 0$ must hold, which is a contradiction.

(Case3) $\alpha = 1, \beta = 0, \alpha' = 0, \beta' = 1$: This also give two real numbers $x_0, y_0 \in A/\mathfrak{m}$ with $x_0^2 + y_0^2 + 1 = 0$, which is a contradiction. Hence, the map is injective. \Box

(c) Let \mathfrak{p} be a non-maximal prime ideal of A. Show that the canonical homomorphism $k[X] \longrightarrow A$ is finite and injective. Deduce from this that $\mathfrak{p} \cap k[X] = 0$. Let $g \in \mathfrak{p}$, and let $g^n + a_{n-1}g^{n-1} + \cdots + a_0 = 0$ be an integral equation with $a_i \in k[X]$. Show that $a_0 = 0$. Conclude that $\mathfrak{p} = 0$.

Proof. The homomorphism $k[X] \longrightarrow A$ is injective, since its kernel is $k[X] \cap (X^2 + Y^2 + 1) = 0$. It is clear that A is an integral extension of k[X]. It is also true that A/\mathfrak{p} is an integral extension of $k[X]/\mathfrak{p} \cap k[X]$. They are both integral domains. Since A/\mathfrak{p} is not a field, $k[X]/\mathfrak{p} \cap k[X]$ is not a field. In k[X], only non-maximal prime ideal is (0). Thus, $\mathfrak{p} \cap k[X] = 0$.

Suppose \mathfrak{p} contains a nonzero member g. Choose the integral equation for g with minimal degree n. From the integral equation, we have $a_0 \in \mathfrak{p} \cap k[X]$. Thus $a_0 = 0$. Dividing g gives another integral equation for g with degree n-1. This contradicts minimality of n. Hence, \mathfrak{p} must be 0.

1.8 Let $\varphi : A \longrightarrow B$ be an integral homomorphism.

(a) Show that $\operatorname{Spec}\varphi : \operatorname{Spec}B \longrightarrow \operatorname{Spec}A$ maps a closed point to a closed point, and that any preimage of a closed point is a closed point.

Proof. We use a lemma: $A \subset B$ is integral extension, A and B are integral domains. Then A is a field if and only if B is a field.

Let $\mathfrak{p} \subset B$ be a prime ideal. Then φ induces an embedding $A/\varphi^{-1}(\mathfrak{p}) \hookrightarrow B/\mathfrak{p}$. Since $A/\varphi^{-1}(\mathfrak{p})$ and B/\mathfrak{p} are both integral domains, the lemma applies. Thus, $A/\varphi^{-1}(\mathfrak{p})$ is a field if and only if B/\mathfrak{p} is a field. Equivalently, $\varphi^{-1}(\mathfrak{p})$ is a closed point(i.e. maximal ideal) if and only if \mathfrak{p} is a closed point.

(b) Let $\mathfrak{p} \in \operatorname{Spec} A$. Show that the canonical homomorphism $A_{\mathfrak{p}} \longrightarrow B \otimes_A A_{\mathfrak{p}}$ is integral.

$\mathbf{2}$

214A HOMEWORK

Proof. It is enough to show that any simple tensor $b \otimes_A a$ is integral over $A_{\mathfrak{p}}$. Consider an integral equation for b, namely $\sum_{i \leq n} a_i b^i = 0$ with $a_i \in A$, $a_0 \neq 0$, and $a_n = 1$. Then clearly, $(\sum_{i \leq n} a_i b^i) \otimes_A a = 0$. This implies $\sum_{i \leq n} a_i (b \otimes_A a)^i = 0$. Hence $b \otimes_A a$ is integral over $A_{\mathfrak{p}}$.

(c) Let $T = \varphi(A \mid \mathfrak{p})$. Let us suppose that φ is injective. Show that T is a multiplicative subset of B, and that $B \otimes_A A_{\mathfrak{p}} = T^{-1}B \neq 0$. Deduce from this that Spec φ is surjective if φ is integral and injective.

Proof. Let $\bar{\varphi}$ be the canonical homomorphism in part (b). Note that if $\mathfrak{q}' \in \operatorname{Max} T^{-1}B$, then $\bar{\varphi}^{-1}(\mathfrak{q}')$ is a maximal ideal in $A_{\mathfrak{p}}$. In fact, $\bar{\varphi}^{-1}(\mathfrak{q}') = \mathfrak{p}A_{\mathfrak{p}}$, since $A_{\mathfrak{p}}$ is a local ring. Consider the diagram,

Apply Spec(-) to this diagram,

By commutativity, we have

$$\operatorname{Spec}\epsilon\circ\operatorname{Spec}\bar{\varphi}(\mathfrak{q}')=\operatorname{Spec}\varphi\circ\operatorname{Spec}\epsilon(\mathfrak{q}')=\mathfrak{p}$$

Hence, $\operatorname{Spec}\varphi$ is surjective.

1.9 Let A be a finitely generated algebra over a field k.

(a) Let us suppose that A is finite over k. Show that SpecA is a finite set, of cardinality bounded from above by the dimension $\dim_k A$ of A as a vector space. Show that every prime ideal of A is maximal.

Proof. Suppose that we could find $r = \dim_k A+1$ distinct maximal ideals $\mathfrak{m}_1, \cdots, \mathfrak{m}_r$. Then, $\mathfrak{m}_i + \mathfrak{m}_j = A$ for $i \neq j$. We can construct a strictly descending chain of ideals $\mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \cdots \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_r$. This makes a strictly increasing chain of k-vector spaces $A/\mathfrak{m}_1 \subsetneq A/\mathfrak{m}_1 \mathfrak{m}_2 \subsetneq \cdots \subsetneq A/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_r$. However, this implies that $r \leq \dim_k A/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_r \leq \dim_k A = r - 1$, which leads to a contradiction. Hence, the number of distinct maximal ideals in A is bounded above by $\dim_k A$.

Now, we show that every prime ideal \mathfrak{p} in A is indeed maximal. A/\mathfrak{p} is an integral domain which is finite dimensional k-vector space. For any $a \in (A/\mathfrak{p}) \setminus \{0\}$, the set $\{1, a, a^2, \cdots\}$ is linearly dependent over k. Thus, a satisfies a polynomial equation $\sum_{i \leq N} c_i a^i = 0$ with $c_i \in k$ and $c_0 \neq 0$ (This is possible, since A/\mathfrak{p} is an integral domain). This implies that $a \sum_{1 \geq i \geq N} c_i a^{i-1} = -c_0 \in k^{\times}$. Hence a is invertible in A/\mathfrak{p} , giving that A/\mathfrak{p} is a field.

(b) Show that
$$\text{Spec}k[T_1, \cdots, T_d]$$
 is infinite if $d \ge 1$.

Proof. We begin with proving that Speck[T] is infinite. If k is infinite, then (T-a) is maximal ideal for any $a \in k$, thus Speck[T] is infinite. If k is finite, still we have \bar{k} is infinite. This implies that there are infinitely many irreducible polynomials in k[T], thus Speck[T] is infinite in this case too.

For the case $d \geq 2$, we define an injective function given by

$$\operatorname{Spec} k[T_1] \longrightarrow \operatorname{Spec} k[T_1, \cdots, T_d]$$
$$(p(T_1)) \mapsto (p(T_1), T_2, \cdots, T_d)$$

Hence, $\operatorname{Spec} k[T_1, \cdots, T_d]$ is infinite if $d \geq 1$.

(c) Show that $\operatorname{Spec} A$ is finite if and only if A is finite over k.

Proof. (\Leftarrow) This is done in part (a).

(⇒) Suppose that A is infinite over k. Then A is transcendental over k. Noether Normalization Theorem applies to obtain T_1, \dots, T_d which are algebraically independent over k, and an integral extension $k[T_1, \dots, T_d] \subset k[T_1, \dots, T_d, t_{d+1}, \dots, t_r] = A$. Similarly as in (b), we can form an injective map

$$\operatorname{Speck}[T_1, \cdots, T_d] \longrightarrow \operatorname{Speck}[T_1, \cdots, T_d, t_{d+1}, \cdots, t_r]$$
$$P \mapsto P + (t_{d+1}, \cdots, t_r).$$

By part (b), it follows that SpecA is infinite.

2.2 Let \mathcal{F} be a sheaf on X. Let $s, t \in \mathcal{F}(X)$. Show that the set of $x \in X$ such that $s_x = t_x$ is open in X.

Proof. Let $x \in X$, and $s_x = t_x$. Then there exists an open neighborhood U_x of x such that $s|_{U_x} = t|_{U_x}$. For any $y \in U_x$, consider the natural map $\mathcal{F}(X) \longrightarrow \mathcal{F}_y$. Since this natural map is given by $a \in \mathcal{F}(X) \mapsto [X, a]$ where [X, a] denotes the equivalence class represented by (X, a). But, $s|_{U_x} = t|_{U_x}$ implies that $s_y = [X, s] = [U_x, s|_{U_x}] = [U_x, t|_{U_x}] = [X, t] = t_y$. Hence, the set of $x \in X$ such that $s_x = t_x$ is open in X.

2.7 Let \mathfrak{B} be a base of open subsets on a topological space X. Let \mathcal{F}, \mathcal{G} be two sheaves on X. Suppose that for every $u \in \mathfrak{B}$ there exists a homomorphism $\alpha(U) : \mathcal{F}(U) \longrightarrow \mathcal{G}(U)$ which is compatible with restrictions. Show that this extends in a unique way to a homomorphism of sheaves $\alpha : \mathcal{F} \longrightarrow \mathcal{G}$. Show that if $\alpha(U)$ is surjective(resp. injective) for every $U \in \mathfrak{B}$, then α is surjective (resp. injective).

Proof. Note that every open set $U \subset X$ is a union of members in \mathfrak{B} , say $U = \bigcup_i U_i$, where $U_i \in \mathfrak{B}$. Let $\beta_i \in \mathcal{F}(U_i)$, and $\beta_j \in \mathcal{F}(U_j)$, and $\beta_i|_{U_i \cap U_j} = \beta_j|_{U_i \cap U_j}$ for all i, j, which data uniquely determine $\beta \in \mathcal{F}(U)(\because \mathcal{F}$ is a sheaf). We know that $g_i = \alpha(U_i)(\beta_i) \in \mathcal{G}(U_i), g_j = \alpha(U_j)(\beta_j) \in \mathcal{G}(U_j)$, and $\alpha(U_i \cap U_j)(\beta_i|_{U_i \cap U_j}) = \alpha(U_i \cap U_j)(\beta_j|_{U_i \cap U_j}) \in \mathcal{G}(U_i \cap U_j)$. Since the homomorphism α is compatible with restrictions on members of \mathfrak{B} , we have

$$g_i|_{U_i\cap U_j} = \alpha(U_i\cap U_j)(\beta_i|_{U_i\cap U_j}) = \alpha(U_i\cap U_j)(\beta_j|_{U_i\cap U_j}) = g_j|_{U_i\cap U_j}.$$

Thus, this data uniquely determine $g \in \mathcal{G}(U)(::\mathcal{G} \text{ is a sheaf})$. Define $\alpha(U)(\beta) = g$, then this is the unique extension to a homomorphism of sheaves $\alpha : \mathcal{F} \longrightarrow \mathcal{G}$.

We use the fact that sequence of sheaves $\mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H}$ is exact if and only if $\mathcal{F}_x \longrightarrow \mathcal{G}_x \longrightarrow \mathcal{H}_x$ is exact for each $x \in X$. In fact, $\alpha(U)$ is surjective(resp. injective) for every $U \in \mathfrak{B}$ imply $\mathcal{F}_x \longrightarrow \mathcal{G}_x \longrightarrow \mathfrak{O}(\text{resp. } 0 \longrightarrow \mathcal{F}_x \longrightarrow \mathcal{G}_x)$ is exact

for each $x \in X$. This in turn, implies that $\mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0$ (resp. $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G}$) is an exact sequence in sheaves. Hence α is surjective(resp. injective).

2.11 Let X, Y be two ringed topological spaces. We suppose given an open covering $\{U_i\}_i$ of X and morphisms $f_i : U_i \longrightarrow Y$ such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ (as morphisms) for every i, j. Show that there exists a unique morphism $f : X \longrightarrow Y$ such that $f|_{U_i} = f_i$. This is the glueing of the morphisms f_i .

Proof. We define $f : X \longrightarrow Y$ by $f(x) = f_i(x)$ where $x \in U_i$ for some *i*. The glueing data $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ gives that $f : X \longrightarrow Y$ is a continuous function. Moreover, continuous function with this property has to be unique.

The morphism of sheaves $f_i^{\#} : \mathcal{O}_Y \longrightarrow f_{i*}\mathcal{O}_{U_i}$ gives the ring homomorphism $f_i^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_{U_i}(f_i^{-1}(V)) = \mathcal{O}_X(f^{-1}(V) \cap U_i)$. The glueing data gives that $f_i|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_i \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V) \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_Y(V) \cap U_j \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_Y(V) \cap U_j \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \longrightarrow \mathcal{O}_Y(V) \cap U_j \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) : \mathcal{O}_Y(V) \cap U_j \cap U_j \cap U_j \cap U_j) = f_j|_{U_i \cap U_j}^{\#}(V) \cap U_j \cap U_j \cap$

Together with the compatibility of restriction, $\alpha \in \mathcal{O}_Y(V) \mapsto a_i \in \mathcal{O}_X(f^{-1}(V) \cap U_i)$ has the glueing data $a_i|_{U_i \cap U_j} = a_j|_{U_i \cap U_j}$. Since $\mathcal{O}_X(f^{-1}(V) \cap -)$ is a sheaf, we obtain a unique $a \in \mathcal{O}_X(f^{-1}(V))$ such that $a|_{U_i} = a_i$ for each *i*. Define $f^{\#} : \mathcal{O}_Y \longrightarrow$ $f_*\mathcal{O}_X$ by $\alpha \in \mathcal{O}_Y(V) \mapsto a \in \mathcal{O}_X(f^{-1}(V))$. Then $(f, f^{\#}) : (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$ is the desired morphism of ringed topological spaces. \Box

3.19 Let K be a number field. Let \mathcal{O}_K be the ring of integers of K. Using the finiteness theorem of the class group cl(K), show that every open subset of $\operatorname{Spec}\mathcal{O}_K$ is principal. Deduce from this that every open subscheme of $\operatorname{Spec}\mathcal{O}_K$ is affine.

Proof. Let U be an open subset of $\operatorname{Spec}\mathcal{O}_K$, then $(\operatorname{Spec}\mathcal{O}_K)\setminus U = V(I)$ for some ideal $I \subset \mathcal{O}_K$. This ideal I belongs to an ideal class $[Q] \in \operatorname{cl}(K)$. Thus, there are $a, b \in \mathcal{O}_K \setminus \{0\}$ such that aI = bQ. This implies that I = (b/a)Q, and there is some $n \geq 0$ such that $I^n = (b/a)^n Q^n = \gamma \mathcal{O}_K$ for some $\gamma \in K$ (In particular, we can take $n = \#\operatorname{cl}(K)$). Since $I^n \subset \mathcal{O}_K$, we have $\gamma \mathcal{O}_K \subset \mathcal{O}_K$. This proves that $\gamma \in \mathcal{O}_K$, and that I^n is a principal ideal. Hence, $V(I) = V(I^n) = V(\gamma \mathcal{O}_K)$ is a principal closed subset, or equivalently, $U = D(\gamma)$ is a principal open set.

Therefore, every open subscheme $U = D(\gamma)$ of $\operatorname{Spec}\mathcal{O}_K$ is isomorphic to $\operatorname{Spec}\mathcal{O}_K[1/\gamma]$, which is affine.

4.1 Let k be a field and $P \in k[T_1, \dots, T_n]$. Show that $\text{Spec}(k[T_1, \dots, T_n]/(P))$ is reduced (resp. irreducible; resp. integral) if and only if P has no square factor (resp. admits only one irreducible factor; resp. is irreducible).

Proof. Let $A = k[T_1, \dots, T_n]/(P)$, and $\mathfrak{q} \in \operatorname{Spec} A$. Then the following are equivalent:

(1) $\mathcal{O}_{A,\mathfrak{q}} = A_{\mathfrak{q}}$ is reduced for all $\mathfrak{q} \in \operatorname{Spec} A$.

(2) Only nilpotent element in $A_{\mathfrak{q}}$ is 0.

(3) $\cap \{ \mathfrak{q}' \in \operatorname{Spec} k[T_1, \cdots, T_n] : (P) \subset \mathfrak{q}' \subset \mathfrak{q} \} = (P).$

(4) P has no square factor.

Equivalence of (1),(2), and (3) is direct from definition. We show the equivalence of (3), and (4). This follows from

$$\cap \{ \mathfrak{q}' \in \operatorname{Spec} k[T_1, \cdots, T_n] : (P) \subset \mathfrak{q}' \subset \mathfrak{q} \} = (P_0),$$

where P_0 is the product of all irreducible factors of P.

KIM, SUNGJIN

Remark that $\operatorname{Spec} A \neq \emptyset$ is irreducible if and only if $\sqrt{(0)}$ is prime. Equivalently,

$$\cap \{ \mathfrak{q}' \in \operatorname{Spec} k[T_1, \cdots, T_n] : (P) \subset \mathfrak{q}' \} = (P_0)$$

is prime. Similarly as before, P_0 is the product of all irreducible factors of P. Now, (P_0) is prime if and only if there is only one irreducible factor in P.

A is integral if and only if A is both reduced and irreducible. Therefore, A is integral if and only if P has no square factor and admits only one irreducible factor, i.e. P is irreducible.