MATH 210C - FINAL EXAM - TAKE HOME

2009 June 1

Deadline: Friday June 12 at 12:00 pm, noon.

Question 1. Show that a commutative ring A is artinian if and only if it is noetherian and Spec(A) = Max(A) (i.e. it has Krull dimension zero). Does left artinian imply left noetherian for non-commutative rings too?

Question 2. Show that a local noetherian domain A of dimension one (i.e. $\text{Spec}(A) = \{0, \mathfrak{m}\}\$ with $\mathfrak{m} \neq 0$) which is integrally closed is a DVR.

Question 3. Let G be a finite group of exponent m. Let K be a field whose characteristic does not divide the order of G (for instance char(K) = 0). Is it enough for K to contain a primitive m-th root of unity to be a splitting field of G?

Question 4. Let G be a finite group whose character table contains the following two rows :

χ_1 :	1	1	1	ω^2	ω	ω^2	ω
χ_2 :	2	-2	0	-1	-1	1	1

where ω is a primite cubic root of unity. Determine the rest of the character table. Give as much information on G as you can.

Question 5. Since S_3 and S_4 are solvable, what is the general solution by radicals of a polynomial equation of degree three and four? (Give formulas.)