210C FINAL EXAM

KIM, SUNGJIN

Problem1.

 \Leftarrow) We do this in two steps:

(1) If A has a composition series, then A is noetherian and artinian.

(2) A has an A-composition series.

Proof of (1).

Suppose A has a composition series S of length n . If either chain condition fails to hold, one can find submodules

$$
A = A_0 \supsetneq A_1 \supsetneq A_2 \supsetneq \cdots \supsetneq A_n \supsetneq A_{n+1},
$$

which form a normal series T of length $n + 1$. By Shreier's theorem, S and T have refinements that are equivalent. This is a contradiction since S has length n , and refinement of T has length at least $n + 1$. Therefore, A satisfies both chain conditions.

Proof of (2).

Using the fact that A is noetherian, any ideal of A contains a finite product of prime ideals. In particular, the ideal (0) contains a finite product $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ of prime ideals $\mathfrak{m}_1, \cdots, \mathfrak{m}_n$ which are also maximal ideals. Thus, we have a filtration

$$
0=\mathfrak{m}_1\cdots\mathfrak{m}_n\subset\mathfrak{m}_1\cdots\mathfrak{m}_{n-1}\subset\cdots\subset\mathfrak{m}_1\subset A.
$$

Each quotient $m_1 \cdots m_i/m_1 \cdots m_{i+1}$ is a finitely generated module over a field A/\mathfrak{m}_{i+1} , and therefore has an A-composition series. It follows that A-module A has an A -composition series, so A is artinian by (1) .

 \Rightarrow) We do this in two steps:

- (3) Left artinian DOES imply left noetherian for noncommutative rings too.
- (4) If A is an artinian commutative ring, then $Spec(A) = Max(A)$.

Proof of (3).

Note that if A is artinian, then $\overline{A} = A/Rad(A)$ is semisimple, and Rad(A) is nilpotent.(cf. Homework6 Problem4.) For $J = \text{Rad}(A)$, fix n such that $J^n = 0$. Consider the filtration

$$
A \supset J \supset J^2 \supset \cdots \supset J^n = 0.
$$

It is enough to show that J^{i}/J^{i+1} has a composition series. But J^{i}/J^{i+1} is artinian as module over \bar{A} . Since \bar{A} is semisimple, J^{i}/J^{i+1} is semisimple \bar{A} -module, so it is a direct sum of simple \bar{A} -modules. The chain condition on J^{i}/J^{i+1} implies that this direct sum must be finite, so J^{i}/J^{i+1} does have a composition series as \bar{A} -module. Hence, A has a composition series as A -module. By (1) , it follows that A is left noetherian.

Proof of (4).

Let $\mathfrak{p} \subset A$ be a prime ideal of A. Then A/\mathfrak{p} is an integral domain. Thus, it is

enough to show that artinian integral domain is a field. Let $a \in A/\mathfrak{p}$ be a nonzero element. Consider a chain of ideals in A/\mathfrak{p} ,

$$
(a) \supset (a^2) \supset \cdots.
$$

Since A/\mathfrak{p} is artinian, this chain has to stop, say $(a^n) = (a^{n+1})$. Then $a^n = ba^{n+1}$ for some $b \in A/\mathfrak{p}$. This implies that $a^{n}(1 - ba) = 0$. Since $a^{n} \neq 0$, we must have $1 - ba = 0$. Hence A/\mathfrak{p} is a field.

Problem2.

A fractional ideal I is a nonzero A-submodule I such that $aI \subset A$ for some nonzero $a \in A$. Let J be a fractional ideal in A. Denote

$$
J^{-1} = \{ a \in K | aJ \subset A \}.
$$

Let P be the unique nonzero prime ideal in A. Since A is local, we have $P = \mathfrak{m}$. It is enough to show that A is a PID. This require the following facts.

(1) Let K be the quotient field of A, for a fractional ideal I in A, then

$$
\bar{I} = \{ a \in K | aI \subset I \} = A.
$$

 (2) $A \subsetneq P^{-1}$. (3) P is invertible. (4) ∩_{n≥0} $Pⁿ = 0$. (5) P is principal.

We assume $(1), \dots, (5)$, let I be a proper ideal in A. Then $I \subset P$. By (4), we can find N such that $I \subset P^N$, and $I \nsubseteq P^{N+1}$. By (5), there is $a \in A$ such that $P = (a)$. We see that $I \subset P^N = (a^N)$. Choose $b \in I - P^{N+1}$. Since $b \in P^N$, we can find $u \in A$ such that $b = ua^N$. It follows that u has to be a unit in A, otherwise we would have $u \in P$, and $b \in P^{N+1}$. Thus, $(a^N) = (ua^N) = (b) \subset I$, and we obtain $I = (a^N).$

Proof of (1).

The inclusion \supseteq is obvious. Since \overline{I} is a fractional ideal, it is isomorphic to some ideal in A. So, I is finitely generated A-module, since A is noetherian. This means that every $x \in I$ is integral over A. Since A is integrally closed, $x \in A$. Thus, we obtain that $\overline{I} = A$.

Proof of (2) .

For any ideal $J \subset A$, we have $A \subset J^{-1}$. Let $\mathcal F$ be a family of all ideals J such that $A \subsetneq J^{-1}$. Choose a nonzero $a \in P$, then we know that a is nonunit, and let $J = (a)$. Then $1/a \in J^{-1}$, but $1/a \notin A$. So, the family $\mathcal F$ is nonempty. Since A is noetherian, we can find a maximal element M in the family \mathcal{F} . We claim that M is a prime ideal. For, assume that $ab \in M$ but $a \notin M$. Choose $c \in M^{-1} - A$, then $cab \in A$, hence $bc(aA + M) \subset A$, giving that $bc \in (aA + M)^{-1}$. By maximality of M, we have $bc \in A$. Thus, $c(bA + M) \subset A$, which implies $c \in (bA + M)^{-1}$. Since $c \notin A$, and again by maximality of M, we have $bA + M = M$. Hence $b \in M$, and M is a prime ideal. By uniqueness, we must have $M = P$. Therefore, $A \subsetneq P^{-1}$. Proof of (3).

Clearly $P \subset PP^{-1} \subset A$. Since A is local, $PP^{-1} = P$ or A. But if $PP^{-1} = P$ then $A \subsetneq P^{-1} \subset \overline{P} = A$, by (1) and (2). This is a contradiction. Hence $PP^{-1} = A$. Proof of (4) .

This is a consequence of Artin-Rees Lemma, and Nakayama Lemma. (cf. Homework3 Problem1).

Proof of (5) .

Choose $a \in P - P^2$ (possible by (4)). Then aP^{-1} is a nonzero ideal in A such that $aP^{-1} \nsubseteq P$. Since every proper ideal of A is contained in P, we must have $aP^{-1} = A$. Hence, $(a) = aA = aP^{-1}P = AP = P$ by (3).

Problem3.

 $(char K = 0)$ We start with a fixed subfield F of the complex field K. Let μ be an irreducible character afforded by a simple KG-module M. Let $F(\mu)$ be the field obtained by adjoining all $\mu(g)$ for $g \in G$. Consider those fields S such that $F \subset S \subset K$ for which there exists a SG -module V such that

 $M \simeq K \otimes_S V$.

For such field S , any S -basis for V becomes a K -basis for M . In this case, we say that M affords a representation realizable in S. In particular, the matrix entries of this representation lie in S. Thus, we see that $\mu(g) \in S$ for all $g \in G$, since each $\mu(q)$ is trace of a matrix in S. Thus, we must have

$$
F(\mu) \subset S \subset K.
$$

The Schur index is defined by

$$
m_F(\mu) = \min(S : F(\mu))
$$

where the minimum is taken over all fields S such that M is realizable in S . Then $m_F(\mu) = m_{F(\mu)}(\mu)$. Further, $m_F(\mu) = 1$ if and only if M affords a representation realizable in $F(\mu)$.

Let M be an irreducible KG -module. Let S be any subfield of K . Then M is a direct summand of $V^K = K \otimes_S V$. Thus, every irreducible K-representation of G is realizable in S if and only if S is a splitting field of G . The following holds for Schur index;

Let M be an irreducible KG-module with character μ , and F be a subfield of K. Then for each FG -module W , the multiplicity with which M occurs as a factor of W^K is a multiple of $m_F(\mu)$.

Let $F = \mathbb{Q}(\sqrt[n]{1})$ where *n* is the exponent of *G*. Then $\mu(g) \in F$ for all $g \in G$, so $F(\mu) = F$. We claim that F is a splitting field of G. We need only to show that $m_F(\mu) = 1$ for each μ . By Brauer's theorem on induced characters, we may write

$$
\mu=\sum a_iw_i^G
$$

where $a_i \in \mathbb{Z}$, and w_i are one dimensional characters of elementary subgroups of G. (Elementary subgroup is a product of cyclic group and p -group) Now every one dimensional representation of a subgroup of G is realizable in F. Thus each w_i^G is a character some FG-module, and so the multiplicity of μ in each w_i^G is a multiple of $m_F(\mu)$. However, the multiplicity of μ in each w_i^G is 1. Therefore $m_F(\mu) = 1$. If K contains a primitive n-th root of unity, then by tensoring with K , we obtain that K is a splitting field of G .

Problem4.

The character table for G has to contain the following two more rows

4 KIM, SUNGJIN

$$
\begin{array}{c|cccccc} G & \{1\} & C_2 & C_3 & C_4 & C_5 & C_6 & C_7 \\ \hline \text{tr} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_1^2 & 1 & 1 & 1 & w & w^2 & w & w^2 \\ \end{array}
$$

Since the character table contains a 2-dimensional irreducible representation, it has to contain two more rows (by multiplying with 1-dimensional irreducible representations)

Thus, we have the following table so far, (0 on the last row comes from orthogonality with the first column.)

Let $a = |C_4|$, $b = |C_5|$, $c = |C_6|$, and $d = |C_7|$. Then by orthogonality relations of the first row and the second, third, we have

$$
wa + w2b + wc + w2d = w2a + wb + w2c + wd.
$$

This implies $a + c = b + d$. We use orthogonality relations of the first row and the fourth, fifth, we have

$$
-a - b + c + d = -w^2a - wb + w^2c + wd.
$$

This implies $(-a + c)(1 - w^2) = (-b + d)(w - 1)$. This forces $a = c, b = d$, and together with the above equation, we have $a = b = c = d$.

The orthogonality relation of the first column and the third column, we obtain $e|3$. Thus $e = 1$ or $e = 3$. But, $e = 1$ gives $|G| = 16$. Since the character table contains w, G must contain some element having order k with $3|k$. Therefore, we must have $e = 3$. Then by orthogonality of the first column and the second column, we have $f = 3, g = -1.$ Now, we have that $|G| = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2 = 24.$

The orthogonality relation of the first and fourth rows, we obtain $|C_2| = 1$. The orthogonality of the first and last rows give $|C_3| = 6$. Since we have $a = b = c = d$, comparing with the order of G gives $a = b = c = d = 4$. Hence, the character table is

The information on G is so far, (a) $|G| = 24$.

Ĭ.

 \overline{a}

(b) G has 7 conjugacy classes.

(c) The sizes of conjugacy classes are 1,1,6,4,4,4,4.

To determine the group G , we use the list of all groups of order 24.

 (1) $\mathbb{Z}/24\mathbb{Z}$ (2) $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (3) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $(4) S_4$ (5) $SL_2(\mathbb{Z}/3\mathbb{Z})$ (6) D_{24} (7) $\mathbb{Z}/2\mathbb{Z} \times A_4$ (8) $\mathbb{Z}/2\mathbb{Z} \times D_{12}$ (9) $\mathbb{Z}/2\mathbb{Z} \times T$ (*T* is tetrahedron symmetry.) (10) $\mathbb{Z}/3\mathbb{Z} \times D_8$ $(11) \mathbb{Z}/3\mathbb{Z} \times Q_8$ $(12) \mathbb{Z}/4\mathbb{Z} \times S_3$ (13) $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/8\mathbb{Z}$ (14) $\mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} D_8$ where $\text{Ker}(\phi) = V$. (15) $\mathbb{Z}/3\mathbb{Z} \rtimes Q_8$

From (a),(b) above, we know that G is not abelian. So, we exclude $(1),(2),(3)$. Since S_4 has 5 conjugacy classes, we exclude (4). Since D_{24} has a conjugacy class having size 2, we exclude (6). The number of conjugacy classes is 7 which is a prime number. Thus, we must exclude all groups which are direct product of cyclic group and another group. So, $(7), \dots$, (12) are excluded. Using the multiplicative structure of semidirect product, we obtain that $(13),(14),(15)$ have a conjugacy class of size 2. The only thing remains is (5), $SL_2(\mathbb{Z}/3\mathbb{Z})$.

We have a general result about the conjugacy classes of $SL_2(\mathbb{F}_q)$, where q is odd.

From this, we can verify that $SL_2(\mathbb{Z}/3\mathbb{Z})$ has 7 conjugacy classes having sizes 1,1,6,4,4,4,4. Further, there is only one way to express 24 as the sum of 1 and 6 other squares, namely $1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2$. The Artin-Wedderburn decomposition for $\mathbb{C}SL_2(\mathbb{Z}/3\mathbb{Z})$ is

$$
\mathbb{C}SL_2(\mathbb{Z}/3\mathbb{Z})=\mathbb{C}\times\mathbb{C}\times\mathbb{C}\times M_2(\mathbb{C})\times M_2(\mathbb{C})\times M_2(\mathbb{C})\times M_3(\mathbb{C}).
$$

6 KIM, SUNGJIN

Hence the group $SL_2(\mathbb{Z}/3\mathbb{Z})$ must have the same 7 by 7 character table as above.

Problem5.

• Solution of Cubic Equations by Radicals:

Consider a cubic polynomial $f(x) = x^3 + ax^2 + bx + c$. By substitution $x = y - a/3$, we have $f(x) = g(y) = y^3 + py + q$, where

$$
p=\frac{1}{3}(3b-a^2), \ \ q=\frac{1}{27}(2a^3-9ab+27c).
$$

Let α, β, γ be all roots of $g(y) = 0$. We want to express roots of $g(y) = 0$ in the form $A + B$ where $-3AB = p$. Using $A^3 + B^3 = (A + B)^3 - 3AB(A + B)$, we obtain

$$
A^3 + B^3 = -q.
$$

Also, we have $A^3B^3 = -\frac{p^3}{27}$. Thus, A^3 , and B^3 are roots of the quadratic

$$
t^2 + qt - \frac{p^3}{27} = 0.
$$

From the formula for solution of quadratic equations,

$$
A^{3} = \frac{-q + \sqrt{q^{2} + \frac{4}{27}p^{3}}}{2}
$$

$$
B^{3} = \frac{-q - \sqrt{q^{2} + \frac{4}{27}p^{3}}}{2}.
$$

Choosing appropriate cubic roots of RHS which has to satisfy $-3AB = p$, we obtain that

$$
\alpha = A + B, \quad \beta = wA + w^2B, \quad \gamma = w^2A + wB.
$$

where $w = \exp(2\pi i/3)$.

• Solution of Quartic Equations by Radicals:

Consider a quartic polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$. By substitution $x = y - a/4$, we have $f(x) = g(y) = y^4 + py^2 + qy + r$, where

$$
p = \frac{1}{8}(-3a^2 + 8b)
$$

$$
q = \frac{1}{8}(a^3 - 4ab + 8c)
$$

$$
r = \frac{1}{256}(-3a^4 + 16a^2b - 64ac + 256d).
$$

Let $\alpha, \beta, \gamma, \delta$ be all roots of $g(y) = 0$. Add $(ly + m)^2$ to the equation $g(y) = 0$, then we obtain

$$
y^{4} + py^{2} + qy + r + (ly + m)^{2} = (ly + m)^{2}.
$$

We use $(y^2 + \lambda)^2 = y^4 + 2\lambda y^2 + \lambda^2$, to complete the square of LHS above, which is $y^4 + (p + l^2)y^2 + (q + 2lm)y + r + m^2 = (ly + m)^2.$

Comparing the coefficient,

$$
2\lambda = p + l^2, \ \ q + 2lm = 0, \ \ r + m^2 = \lambda^2.
$$

Then, it follows that

$$
(2\lambda - p)(\lambda^2 - r) = \frac{q^2}{4}.
$$

Since this is a cubic equation for λ , let λ be a real root for this cubic equation, which can be solved by radicals. Then we have

$$
(y^2 + \lambda)^2 = (ly + m)^2
$$

where $l = \sqrt{2\lambda - p}$, and $m =$ $\sqrt{\lambda^2-r}$. Now, we reduced the quartic to two quadratics, $y^2 + \lambda = ly + m$, and $y^2 + \lambda = -ly - m$. Hence, the general solution for $g(y) = 0$ is

$$
\alpha = \frac{l + \sqrt{l^2 - 4(\lambda - m)}}{2}, \quad \beta = \frac{l - \sqrt{l^2 - 4(\lambda - m)}}{2},
$$

$$
\gamma = \frac{-l + \sqrt{l^2 - 4(\lambda + m)}}{2}, \quad \delta = \frac{-l - \sqrt{l^2 - 4(\lambda + m)}}{2}.
$$