SPECIAL VALUES OF *j*-FUNCTION WHICH ARE ALGEBRAIC

KIM, SUNGJIN

1. INTRODUCTION

Let $E_k(z) = \frac{1}{2} \sum_{(c,d)=1} (cz+d)^{-k}$ be the Eisenstein series of weight k > 2. The *j*-function on the upper half plane is defined by $j(z) = \frac{E_4^3}{\Delta}$ where $\Delta(z) = \frac{1}{1728}(E_4^3 - E_6^2)$. For a primitive positive definite quadratic form $Q(x,y) = ax^2 + bxy + cy^2$, and $z_Q = \frac{-b+\sqrt{D}}{2a}$ with $D = b^2 - 4ac < 0$, it is known that $j(z_Q)$ is an algebraic integer of degree h(D) by Kronecker and Weber. Here, we show a weaker result that $j(z_Q)$ is an algebraic number of degree at most the class number h(D) using the *j*-invariant of a complex lattice, orders in an imaginary quadratic field, and complex multiplication.

Theorem 1.1. For a primitive positive definite quadratic form $Q(x, y) = ax^2 + bxy + cy^2$, and $z_Q = \frac{-b + \sqrt{D}}{2a}$ with $D = b^2 - 4ac < 0$, $j(z_Q)$ is an algebraic number of degree at most the class number h(D).

2. *j*-invariant of a complex lattice

Definition 2.1. A subgroup L of \mathbb{C} is called a *complex lattice* if $L = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ with $\omega_1, \omega_2 \in \mathbb{C}$ being linearly independent over \mathbb{R} . We simply write $L = [\omega_1, \omega_2]$. We say that two lattices L and L' are *homothetic* if there is a nonzero complex number λ such that $L' = \lambda L$. Note that homothety is an equivalence relation.

Definition 2.2. Weierstrass \wp -function associated to a complex lattice $L = [\omega_1, \omega_2]$ is defined by:

(2.1)
$$\wp(z;L) = \frac{1}{z^2} + \sum_{w \in L - \{0\}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right).$$

We simply write $\wp(z) = \wp(z; L)$. Note that $\wp(z + w) = \wp(z)$ for all $w \in L$.

Lemma 2.1. Let $G_k(L) = \sum_{w \in L-\{0\}} w^{-k}$ for k > 2. Then, Weierstrass \wp -function for a lattice L has Laurent expansion

(2.2)
$$\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (2n+1)G_{2n+2}(L)z^{2n}.$$

Proof. We have the series expansion

$$\frac{1}{1-x)^2} = 1 + \sum_{n=1}^{\infty} (n+1)x^n$$

for |x| < 1. Thus, if |z| < |w|, we have

$$\frac{1}{(z-w)^2} - \frac{1}{w^2} = \sum_{n=1}^{\infty} \frac{n+1}{w^{n+2}} z^n.$$

Summing over w, we obtain

$$\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (n+1)G_{n+2}(L)z^n.$$

Since \wp is an even function, the odd coefficients must vanish and (2) follows. \Box

Lemma 2.2. \wp -function for a lattice L satisfies the differential equation

(2.3)
$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

where $g_2 = 60G_4$, and $g_3 = 140G_6$.

Proof. Let $F(z) = \wp'(z)^2 - 4\wp(z)^3 + g_2\wp(z) + g_3$, then F has possible poles at $z = w \in L$, is holomorphic on $\mathbb{C} - L$, and F(z + w) = F(z) for all $w \in L$. But, Laurent series expansions (followed from Lemma2.1)

$$\wp(z)^3 = \frac{1}{z^6} + \frac{9G_4}{z^2} + 15G_6 + O(z)$$

, and

$$\wp'(z)^2 = \frac{4}{z^6} - \frac{24G_4}{z^2} - 80G_6 + O(z)$$

imply that F is holomorphic at 0, and F(0) = 0. By Liouville's theorem, we have F(z) = 0 for all $z \in \mathbb{C}$.

Corollary 2.1. $\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3)$ where $e_1 = \wp(\omega_1/2)$, $e_2 = \wp(\omega_2/2)$, and $e_3 = \wp((\omega_1 + \omega_2)/2)$. Furthermore,

$$\Delta(L) = 16(e_1 - e_2)^2(e_2 - e_3)^2(e_3 - e_1)^2 = g_2^3 - 27g_3^2 \neq 0.$$

Definition 2.3. The *j*-invariant j(L) of a lattice L is defined to be the complex number

(2.4)
$$j(L) = 1728 \frac{g_2(L)^3}{g_2(L)^3 - 27g_3(L)^2} = 1728 \frac{g_2(L)^3}{\Delta(L)}$$

The remarkable fact is that the *j*-invariant j(L) characterizes the lattice L up to homothety:

Proposition 2.1. If L and L' are lattices in \mathbb{C} , then j(L) = j(L') if and only if L and L' are homothetic.

Proof. It is easy to see that homothetic lattices have the same *j*-invariant. Namely, if $\lambda \in \mathbb{C}^*$, then the definition of g_2 and g_3 implies that

(2.5)
$$g_2(\lambda L) = \lambda^{-4} g_2(L)$$
$$g_3(\lambda L) = \lambda^{-6} g_3(L),$$

and $j(\lambda L) = j(L)$ follows easily.

For any lattice $L = [\omega_1, \omega_2]$, we can assume that $z = \frac{\omega_2}{\omega_1} \in H = \{z \in \mathbb{C} | \text{Im } z > 0\}$ without loss of generality. Then, L and [1, z] become homothetic lattices. Now, we have the connection from *j*-invariant a lattice L and *j*-function on the upper half plane:

$$j(L) = j([1, z]) = j(z) = \frac{E_4(z)^3}{\Delta(z)}$$

Suppose that L and L' have the same *j*-invariant. We first find $z, z' \in H$ such that L is homothetic to [1, z], and L' is homothetic to [1, z']. Then, we have j(z) =

j(z'). By the valence formula(See [2] p16, Theorem1.3), we obtain $z' \equiv z \pmod{\Gamma = SL(2,\mathbb{Z})}$, since j has a simple pole at $i\infty$. This implies that [1, z'] = [1, z]. Hence L and L' are homothetic.

Lemma 2.3. Let $\wp(z)$ be the \wp -function for the lattice L, and as in Lemma 2.1, let

(2.6)
$$\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (2n+1)G_{2n+2}(L)z^{2n}.$$

be its Laurent expansion. Then for $n \ge 1$, the coefficient $(2n+1)G_{2n+2}(L)$ of z^{2n} is a polynomial with rational coefficients, independent of L, in $g_2(L)$ and $g_3(L)$.

Proof. We differentiate $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$ to obtain

$$\wp''(z) = 6\wp(z)^2 - \frac{1}{2}g_2$$

Let $a_n = (2n+1)G_{2n+2}(L)$. By substituting in the Laurent expansion for $\wp(z)$ and comparing the coefficients of z^{2n-2} , one easily sees that for $n \ge 3$,

$$2n(2n-1)a_n = 6\left(2a_n + \sum_{i=1}^{n-2} a_i a_{n-1-i}\right),\,$$

and hence

$$(2n+3)(n-2)a_n = 3\sum_{i=1}^{n-2} a_i a_{n-1-i}.$$

Since $g_2(L) = 20a_1$ and $g_3(L) = 28a_2$, induction shows that a_n is a polynomial with rational coefficients in $g_2(L)$ and $g_3(L)$.

3. Orders in quadratic fields

Definition 3.1. An order \mathcal{O} in a quadratic field K is a subset $\mathcal{O} \subset K$ such that (i) \mathcal{O} is a subring of K containing 1.

(ii) \mathcal{O} is a finitely generated \mathbb{Z} -module.

(iii) \mathcal{O} contains a \mathbb{Q} -basis of K.

The ring \mathcal{O}_K of integers in K is always an order in K. More importantly, (i) and (ii) imply that for any order \mathcal{O} of K, we have $\mathcal{O} \subset \mathcal{O}_K$, so that \mathcal{O}_K is the maximal order of K. Note that the maximal order \mathcal{O}_K can be written as:

(3.1)
$$\mathcal{O}_K = [1, w_K], \ w_K = \frac{d_K + \sqrt{d_K}}{2},$$

where d_K is the discriminant of K. We can now describe all orders in quadratic fields:

Lemma 3.1. Let \mathcal{O} be an order in a quadratic field K of discriminant d_K . Then \mathcal{O} has finite index in \mathcal{O}_K , and we set $f = [\mathcal{O}_K : \mathcal{O}]$, then

(3.2)
$$\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K = [1, fw_K].$$

Proof. Since \mathcal{O} and \mathcal{O}_K are free \mathbb{Z} -modules of rank 2, it follows that $f = [\mathcal{O}_K : \mathcal{O}]$ is finite. Since $f\mathcal{O}_K \subset \mathcal{O}, \mathbb{Z} + f\mathcal{O}_K = [1, fw_K] \subset \mathcal{O}$ follows. Thus, $\mathcal{O} = [1, fw_K]$. \Box

Given an order \mathcal{O} in a quadratic field K, discriminant is defined as follows. Let $\alpha \mapsto \alpha'$ be the nontrivial automorphism of K, and suppose $\mathcal{O} = [\alpha, \beta]$. Then the discriminant of \mathcal{O} is the number

(3.3)
$$D = \operatorname{disc}[\alpha, \beta] = \left(\operatorname{det} \begin{pmatrix} \alpha & \beta \\ \alpha' & \beta' \end{pmatrix}\right)^2.$$

If $f = [\mathcal{O}_K : \mathcal{O}]$, then it follows that $D = f^2 d_K$ by Lemma 3.1.

Now consider ideals of an order \mathcal{O} . Since \mathcal{O} may not be a Dedekind domain, we cannot assume that ideals have unique factorization. We introduce the concept of a *proper ideal* of an order.

Definition 3.2. A *fractional ideal* of \mathcal{O} is a subset of K which is a nonzero finitely generated \mathcal{O} -module. Then, a fractional \mathcal{O} -ideal \mathfrak{b} is *proper* provided that

$$(3.4) \qquad \qquad \mathcal{O} = \{\beta \in K : \beta \mathfrak{b} \subset \mathfrak{b}\}$$

Proposition 3.1. Let \mathcal{O} be an order in a quadratic field K, and let \mathfrak{a} be a fractional \mathcal{O} -ideal. Then \mathfrak{a} is proper if and only if \mathfrak{a} is invertible.

Proof. If \mathfrak{a} is invertible, then $\mathfrak{ab} = \mathcal{O}$ for some fractional \mathcal{O} -ideal \mathfrak{b} . If $\beta \in K$ and $\beta \mathfrak{a} \subset \mathfrak{a}$, then we have

$$\beta \mathcal{O} = \beta(\mathfrak{ab}) = (\beta \mathfrak{a})\mathfrak{b} \subset \mathfrak{ab} = \mathcal{O},$$

and $\beta \in \mathcal{O}$ follows, proving that \mathfrak{a} is proper.

To prove the converse, we need the following lemma:

Lemma 3.2. Let $K = \mathbb{Q}(\tau)$ be a quadratic field, and let $ax^2 + bx + c$ be the minimal polynomial of τ , where a, b and c are relatively prime integers. Then $[1, \tau]$ is a proper fractional ideal for the order $[1, a\tau]$ of K.

Proof. First, $[1, a\tau]$ is an order since $a\tau$ is an algebraic integer. Then, given $\beta \in K$, note that $\beta[1, \tau] \subset [1, \tau]$ is equivalent to $\beta = m + n\tau$, $m, n \in \mathbb{Z}$, and $\beta\tau = m\tau + n\tau^2 = \frac{-cn}{a} + \left(\frac{-bn}{a} + m\right)\tau \in [1, \tau]$. But, this is also equivalent to a|n, since (a, b, c) = 1. Thus, $[1, \tau]$ is a proper fractional ideal for the order $[1, a\tau]$.

Now, we can prove that proper fractional ideals are invertible. First note that \mathfrak{a} is a \mathbb{Z} -module of rank 2, so that $\mathfrak{a} = [\alpha, \beta]$ for some $\alpha, \beta \in K$. Then $\mathfrak{a} = \alpha[1, \tau]$, where $\tau = \beta/\alpha$. If $ax^2 + bx + c$, (a, b, c) = 1, is the minimal polynomial of τ , then Lemma 3.2 implies that $\mathcal{O} = [1, a\tau]$. Let $\beta \mapsto \beta'$ denote the nontrivial automorphism of K. Since τ' is the other root of $ax^2 + bx + c$, using Lemma 3.2 again shows $\mathfrak{a}' = \alpha'[1, \tau']$ is a fractional ideal for $[1, a\tau] = [1, a\tau'] = \mathcal{O}$. To see why \mathfrak{a} is invertible, note that

$$a\mathfrak{a}\mathfrak{a}' = a\alpha\alpha'[1,\tau][1,\tau'] = N(\alpha)[a,a\tau,a\tau',a\tau\tau'].$$

Since $\tau + \tau' = -b/a$ and $\tau \tau' = c/a$, this becomes

$$a\mathfrak{a}\mathfrak{a}' = N(\alpha)[a, a\tau, -b, c] = N(\alpha)[1, a\tau] = N(\alpha)\mathcal{O}$$

since (a, b, c) = 1. This proves that \mathfrak{a} is invertible.

Definition 3.3. Given an order \mathcal{O} , let $I(\mathcal{O})$ denote the set of proper fractional \mathcal{O} -ideals. By Proposition2, $I(\mathcal{O})$ forms a group. The principal \mathcal{O} -ideals give a subgroup $P(\mathcal{O}) \subset I(\mathcal{O})$, and thus we can form the quotient

$$C(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O}),$$

which is the *ideal class group* of the order \mathcal{O} .

Let C(D) be the set of proper-equivalence classes of primitive quadratic forms with discriminant D. Denote h(D) = |C(D)|.

Theorem 3.1. Let \mathcal{O} be the order of discriminant D in an imaginary quadratic field K.

(i) If $f(x,y) = ax^2 + bxy + cy^2$ is a primitive positive definite quadratic form of discriminant D, then $[a, (-b + \sqrt{D})/2]$ is a proper ideal of \mathcal{O} .

(ii) The map sending f(x, y) to $[a, (-b + \sqrt{D})/2]$ induces a bijection between C(D) and the ideal class group $C(\mathcal{O})$. Remark that $h(D) = |C(D)| = |C(\mathcal{O})|$.

Proof. (i) Let $\tau = (-b + \sqrt{D})/2a$. Then $[a, (-b + \sqrt{D})/2] = [a, a\tau] = a[1, \tau]$. Note that by Lemma 3.2, $a[1, \tau]$ is a proper ideal for the order $[1, a\tau]$. However, if $f = [\mathcal{O}_K : \mathcal{O}]$, then $D = f^2 d_K$, and thus

$$a\tau = -\frac{b+fd_K}{2} + fw_K \in [1, fw_K].$$

It follows that $[1, a\tau] = [1, fw_K] = \mathcal{O}$ by Lemma 3.1. This proves that $a[1, \tau]$ is a proper \mathcal{O} -ideal.

(ii) Let f(x, y) and g(x, y) be forms of discriminant D, and let τ and τ' be their respective roots. We will prove:

f(x, y), g(x, y) are properly equivalent

To see the first equivalence, assume that f(x,y) = g(px + qy, rx + sy), where $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2,\mathbb{Z})$. Then

$$0 = f(\tau, 1) = g(p\tau + q, r\tau + s) = (r\tau + t)^2 g\left(\frac{p\tau + q}{r\tau + s}, 1\right)$$

so that $g((p\tau + q)/(r\tau + s), 1) = 0$. However, if $\tau \in H$, then $(p\tau + q)/(r\tau + s) \in H$, thus $\tau' = (p\tau + q)/(r\tau + s)$. Conversely, if $\tau' = (p\tau + q)/(r\tau + s)$, then we have f(x, y) and g(px + qy, rx + sy) have the same root, hence they are equal.

Next, if $\tau' = (p\tau + q)/(r\tau + s)$, let $\lambda = r\tau + s \in K^*$. Then

$$\lambda[1,\tau'] = (r\tau + s) \left[1, \frac{p\tau + q}{r\tau + s}\right]$$
$$= [r\tau + s, p\tau + q] = [1,\tau]$$

since $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2,\mathbb{Z})$. Conversely, if $[1,\tau] = \lambda[1,\tau']$ for some $\lambda \in K^*$, then $[1,\tau] = [\lambda, \lambda\tau']$, which implies

$$\lambda \tau' = p\tau + q$$
$$\lambda = r\tau + s$$

for some $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in GL(2,\mathbb{Z})$. This gives us $\tau' = \frac{p\tau+q}{r\tau+s}$. Since τ, τ' are both in H, we have $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2,\mathbb{Z})$.

KIM, SUNGJIN

These equivalences show that the map sending f(x, y) to $a[1, \tau]$ induces an injection $C(D) \longrightarrow C(\mathcal{O})$.

To show that the map is surjective, let \mathfrak{a} be a proper fractional \mathcal{O} -ideal. We write $\mathfrak{a} = [\alpha, \beta]$ for some $\alpha, \beta \in K$ with $\tau = \beta/\alpha$ lies in H. Let $ax^2 + bx + c$ be the minimal polynomial of τ . We may assume that (a, b, c) = 1 and a > 0. Then $f(x, y) = ax^2 + bxy + cy^2$ is positive definite of discriminant D, and maps to $a[1, \tau]$ which is in the class of \mathfrak{a} .

We thus have a bijection of sets

4. Complex Multiplication

First, we observe that orders in imaginary quadratic fields give rise to a natural class of lattices. If \mathcal{O} is an order in a quadratic field K and $\mathfrak{a} = [\alpha, \beta]$ is a proper fractional \mathcal{O} -ideal, then α and β are linearly independent over \mathbb{R} . Thus $\mathfrak{a} \subset \mathbb{C}$ is a lattice. Conversely, let $L \subset \mathbb{C}$ be a lattice which is contained in K. Then L is a proper fractional \mathcal{O} -ideal for some order \mathcal{O} of K. As a consequence, we have that \mathfrak{a} and \mathfrak{b} determine the same class in the ideal class group $C(\mathcal{O})$ if and only if they are homothetic as lattices in \mathbb{C} . Moreover, this enables us to define $j(\mathfrak{a})$ for a proper fractional \mathcal{O} -ideal.

We defined \wp -function for a lattice $L \subset \mathbb{C}$. In fact, any elliptic function for L is a rational function of \wp and \wp' .

Lemma 4.1. Any even elliptic function for L is a rational function in $\wp(z)$.

Proof. (a) Let f(z) be an even elliptic function which is holomorphic on $\mathbb{C} - L$. Then there is a polynomial A(x) such that the Laurent expansion of $f(z) - A(\wp(z))$ is holomorphic on \mathbb{C} . By Liouville's theorem, $f(z) - A(\wp(z))$ is a constant. Thus, f(z) is a polynomial in $\wp(z)$.

(b) Let f(z) be an even elliptic function that has a pole of order m at $w \in \mathbb{C} - L$. If $2w \notin L$, then $(\wp(z) - \wp(w))^m f(z)$ is holomorphic at w, since $(\wp(z) - \wp(w))$ has a zero at z = w. If $2w \in L$, then m is even, since the Laurent expansion for f(z)and f(2w - z) at z = w must be equal. In this case, $(\wp(z) - \wp(w))^{m/2} f(z)$ is holomorphic at w, since $(\wp(z) - \wp(w))$ has double zero at z = w.

(c) Now we can show that for an even elliptic function f(z), there is a polynomial B(x) such that $B(\wp(z))f(z)$ is holomorphic on $\mathbb{C} - L$. Then the lemma follows by part (a).

For any elliptic function f(z) for L, we have

$$f(z) = \frac{f(z) + f(-z)}{2} + \left(\frac{f(z) - f(-z)}{2\wp'(z)}\right)\wp'(z).$$

Hence, any elliptic function for L is a rational function of \wp and \wp' . We turn into an important proposition about complex multiplication:

Proposition 4.1. Let *L* be a lattice, and let $\wp(z)$ be the \wp -function for *L*. Then, for a number $\alpha \in \mathbb{C} - \mathbb{Z}$, the following statements are equivalent:

(i) $\wp(\alpha z)$ is a rational function in $\wp(z)$.

(ii)
$$\alpha L \subset L$$
.

(iii) There is an order \mathcal{O} in an imaginary quadratic field K such that $\alpha \in \mathcal{O}$ and L

6

is homothetic to a proper fractional \mathcal{O} -ideal.

Furthermore, if these conditions are satisfied, then $\wp(\alpha z)$ can be written in the form

(4.1)
$$\wp(\alpha z) = \frac{A(\wp(z))}{B(\wp(z))}$$

where A(x) and B(x) are relatively prime polynomials such that

$$\deg(A(x)) = \deg(B(x)) + 1 = [L : \alpha L] = N(\alpha).$$

Proof. (i) \Rightarrow (ii). If $\wp(\alpha z)$ is a rational function in $\wp(z)$, then there are polynomials A(x) and B(x) such that

$$B(\wp(z))\wp(\alpha z) = A(\wp(z)).$$

Comparing the order or pole at z = 0, we have

$$\deg(A(x)) = \deg(B(x)) + 1.$$

Now, let $\omega \in L$. Then the above show that $\wp(\alpha z)$ has a pole at ω , which means that $\wp(z)$ has a pole at $\alpha \omega$. Since the poles of $\wp(z)$ are exactly at members in L, this implies $\alpha \omega \in L$, and $\alpha L \subset L$ follows.

(ii) \Rightarrow (i). If $\alpha L \subset L$, it follows that $\wp(\alpha z)$ is meromorphic and has L as a lattice of periods. Furthermore, $\wp(\alpha z)$ is an even function. By Lemma 4.1, we have $\wp(\alpha z)$ is a rational function in $\wp(z)$.

(ii) \Rightarrow (iii). Suppose that $\alpha L \subset L$. Replacing L by λL for suitable λ , we can assume that $L = [1, \tau]$ for some $\tau \in \mathbb{C} - \mathbb{R}$. Then $\alpha L \subset L$ means that $\alpha = a + b\tau$ and $\alpha \tau = c + d\tau$ for some integers a, b, c and d. Then we obtain,

$$\tau = \frac{c + d\tau}{a + b\tau},$$

which implies $b\tau^2 + (a - d)\tau - c = 0$. Since τ is not real, we have $b \neq 0$, and $K = \mathbb{Q}(\tau)$ is an imaginary quadratic field. Thus,

$$\mathcal{O} = \{\beta \in K | \beta L \subset L\} = \{\beta \in K | \beta [1, \tau] \subset [1, \tau]\} = [1, b\tau]$$

is an order of K for which L is a proper fractional \mathcal{O} -ideal(by Lemma 3.2), and since α is obviously in \mathcal{O} , we are done.

 $(iii) \Rightarrow (ii)$ is trivial.

Suppose $\alpha L \subset L = [1, \tau]$. From the definition of discriminant (3.3), we obtain

$$N(\alpha)^2 \operatorname{disc}[1,\tau] = \operatorname{disc}[\alpha,\alpha\tau] = [L:\alpha L]^2 \operatorname{disc}[1,\tau].$$

Thus, $[L : \alpha L] = N(\alpha)$. It remains to prove that degree of A(x) is the index $[L : \alpha L]$.

Fix $z \in \mathbb{C}$ such that $2z \notin (1/\alpha)L$, and consider the polynomial $A(x) - \wp(\alpha z)B(x)$. This polynomial has the same degree as A(x), and z can be chosen so that it has distinct roots(multiple root of $A(x) - \wp(\alpha z)B(x)$ is a root of A(x)B'(x) - A'(x)B(x).) Then consider the lattice $L \subset (1/\alpha)L$, and let $\{w_i\}$ be coset representatives of L in $(1/\alpha)L$. Our assumption on z implies that $\wp(z+w_i)$ are distinct. From (4.1), we see that $A(\wp(z+w_i)) = \wp(\alpha(z+w_i))B(\wp(z+w_i))$. But $\alpha w_i \in L$, hence $\wp(\alpha(z+w_i)) = \wp(\alpha z)$. This shows that $\wp(z+w_i)$ are distinct roots of $A(x) - \wp(\alpha z)B(x)$. Let u be another root. Then we see that $u = \wp(w)$ for some complex number w. Then, $\wp(\alpha z) = \wp(\alpha w)$, and $w \equiv z + w_i \mod L$ for some i. Hence $\wp(z+w_i)$ are all roots of $A(x) - \wp(\alpha z)B(x)$, giving that $\deg A(x) = [(1/\alpha)L : L] = [L : \alpha L]$.

KIM, SUNGJIN

Together with Laurent series of $\wp(z)$, this theorem allows us to compute some special values of *j*-function for example:

$$j(\sqrt{-2}) = 8000$$
 and $j\left(\frac{1+\sqrt{-7}}{2}\right) = -3375.$

To complete the proof of Theorem1.1, we need a lemma involving the invariants $g_2(L)$ and $g_3(L)$.

Lemma 4.2. Let g_2 and g_3 be given complex numbers satisfying $g_2^3 - 27g_3^2 \neq 0$. Then there is a unique lattice $L \subset \mathbb{C}$ such that $g_2(L) = g_2$ and $g_3(L) = g_3$.

Proof. We can find $z \in H$ such that $j(z) = E_4(z)^3 / \Delta(z) = 1728g_2^3 / (g_2^3 - 27g_3^2)$. By valence formula, this z is uniquely determined modulo Γ . If $g_2 \neq 0$, then we find $w_1 \in \mathbb{C}$ such that

(4.2)
$$g_2 = \frac{4\pi^4}{3w_1^4} E_4(z).$$

Using $-w_1$ if necessary, we obtain

(4.3)
$$g_3 = \frac{8\pi^6}{27w_1^6} E_6(z).$$

If $g_2 = 0$, then we have $g_3 \neq 0$ and we find $w_1 \in \mathbb{C}$ using (4.3). Let $w_2 = zw_1$, then $L = [w_1, w_2]$ is the desired lattice.

Suppose we have two lattices L and L' with $g_2(L) = g_2(L')$ and $g_3(L) = g_3(L')$. Then, j(L) = j(L') implies that there exists $\lambda \in \mathbb{C} - \{0\}$ such that $L' = \lambda L$ by Proposition 2.1. If $g_2(L) \neq 0$ and $g_3(L) \neq 0$, then (2.5) give $\lambda^2 = 1$. Thus, L = L'. If $g_2(L) = 0$, then $L = \lambda_1[1, w]$ and $L' = \lambda_2[1, w]$ for some $\lambda_1, \lambda_2 \in \mathbb{C} - \{0\}$ with $w = \exp(2\pi i/3)$. But, (2,5) gives $\lambda_1^6 = \lambda_2^6$. Thus, L = L'If $g_3(L) = 0$, then $L = \lambda_1[1, i]$ and $L' = \lambda_2[1, i]$ for some $\lambda_1, \lambda_2 \in \mathbb{C} - \{0\}$. In this

case, (2.5) gives $\lambda_1^4 = \lambda_2^4$. Hence, L = L'. \square

Now, we are ready to prove Theorem1.1. In fact, the following theorem will imply Theorem 1.1.

Theorem 4.1. Let \mathcal{O} be an order in an imaginary quadratic field, and let \mathfrak{a} be a proper fractional \mathcal{O} -ideal. Then $j(\mathfrak{a})$ is an algebraic number of degree at most $h(\mathcal{O}).$

Proof. By Lemma 2.3, we can write the Laurent expansion of $\wp(z)$ for the lattice **a** as

$$\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} a_n(g_2, g_3) z^{2n},$$

where a_n is a polynomial in g_2 and g_3 with rational coefficients. To emphasize the dependence on g_2 and g_3 , we write $\wp(z)$ as $\wp(z; g_2, g_3)$.

By assumption, for any $\alpha \in \mathcal{O}$, we have $\alpha \mathfrak{a} \subset \mathfrak{a}$. Thus, by Proposition 4.1, $\wp(\alpha z)$ is a rational function in $\wp(z)$.

$$\wp(\alpha z; g_2, g_3) = \frac{1}{\alpha^2 z^2} + \sum_{n=1}^{\infty} a_n(g_2, g_3) \alpha^{2n} z^{2n}$$
$$= \frac{A(\wp(z; g_2, g_3))}{B(\wp(z; g_2, g_3))}$$

8

for some polynomials A(x) and B(x). We can regard this as an identity in the field of meromorphic Laurent series $\mathbb{C}((z))$.

Now let σ be any automorphism of \mathbb{C} . Then σ induces an automorphism of $\mathbb{C}((z))$. Applying σ , we obtain

(4.4)
$$\wp(\sigma(\alpha)z;\sigma(g_2),\sigma(g_3)) = \frac{A^{\sigma}(\wp(z;\sigma(g_2),\sigma(g_3)))}{B^{\sigma}(\wp(z;\sigma(g_2),\sigma(g_3)))}$$

We observe that $g_2^3 - 27g_3^2 \neq 0$ implies $\sigma(g_2)^3 - 27\sigma(g_3)^2 \neq 0$. By Lemma4.2, there exists a lattice L such that

$$g_2(L) = \sigma(g_2)$$

$$g_3(L) = \sigma(g_3).$$

Since $\wp(z; \sigma(g_2), \sigma(g_3)) = \wp(z; L)$, (4.4) implies that $\wp(z; L)$ has complex multiplication by $\sigma(\alpha)$. Let \mathcal{O}' be the ring of all complex multiplications of L, then we have proved that

$$\mathcal{O} = \sigma(\mathcal{O}) \subset \mathcal{O}'.$$

Applying σ^{-1} and we interchange \mathfrak{a} and L, then above argument shows $\mathcal{O}' \subset \mathcal{O}$, which shows that \mathcal{O} is the ring of all complex multiplications of both \mathfrak{a} and L.

Now consider *j*-invariants. Above formulas for $g_2(L)$ and $g_3(L)$ imply that

$$j(L) = \sigma(j(\mathfrak{a}))$$

Since L has \mathcal{O} as its ring of complex multiplications, there are only $h(\mathcal{O})$ possibilities for j(L). It follows that $j(\mathfrak{a})$ must be an algebraic number, and the degree is at most $h(\mathcal{O})$.

Suppose that \mathcal{O} is an order of discriminant D in an imaginary quadratic field, and $ax^2 + bxy + cy^2$ is a primitive positive definite quadratic form with discriminant D. Then, for $z_Q = \frac{-b \pm \sqrt{D}}{2a}$, $\mathfrak{a} = [1, z_Q]$ is a proper fractional ideal in \mathcal{O} by Lemma3.2. Now, Theorem4.1 implies that $j(\mathfrak{a}) = j([1, z_Q]) = j(z_Q)$ is an algebraic number of degree at most $h(\mathcal{O}) = h(D)$ (by Theorem3.1). This completes the proof of Theorem1.1.

References

^{1.} D. Cox, Prines of the Form $x^2 + ny^2$, John Wiley & Sons. Inc.

^{2.} H. Iwaniec, Topics in Classical Automorphic Forms, AMS Providence, Rhode Island.