Homework Assignment 1

Due Tue. Feb. 2, 2010, in class.

1. Verify that the initial-value problems

$$u' = 1 - u^2$$
, $u(0) = 0$, and $u' = 1 + u^2$, $u(0) = 0$

have solutions $u(t) = \frac{e^{2t}-1}{e^{2t}+1}$ and $u(t) = \tan t$, respectively. What are the maximal intervals on which each of these solutions are defined and continuously differentiable?

- 2. Show that $u(t) = \ln(t+C)$ is a one-parameter family of solutions of the DE $u' = e^{-u}$ where C is an arbitrary constant. Plot several members of this family. Find and plot a particular solution that satisfies the initial condition u(0) = 0.
- 3. Find a solution u = u(t) of $u' + 2u = t^2 + 4t + 7$ in the form of a quadratic function of t.
- 4. Plot the one-parameter family of curves $u(t) = (t^2 + C)e^t$, and find a differential equation whose solution is this family. [Hint: the solution curves look different for C > 1, C = 1 and C < 1. Show all three types of solutions on your graph.]
- 5. Classify the first-order equations as linear or nonlinear, autonomous or nonautonomous.
 - (a) $u' = 2t^3u 6.$
 - (b) $(\cos t)u' 2u\sin u = 0.$
 - (c) $u' = 1 u^2$.
 - (d) 7u' 3u = 0.
- 6. Consider the linear differential equation u' = p(t)u + q(t). Is it true that the sum of two solutions is again a solution? Is a constant times a solution again a solution? Answer these same questions if q(t) = 0. Show that if u_1 is a solution to u' = p(t)u and u_2 is a solution to u' = p(t)u + q(t), then $u_1 + u_2$ is a solution to u' = p(t)u + q(t).
- 7. By hand, sketch the direction field for the DE u' = u(2-u) in the window $-2 \le t \le 2$, $0 \le u \le 3$ at half-integer points $((0,0), (0, \pm \frac{1}{2}), (\pm \frac{1}{2}, 0)$, etc.). What is the value of the slope along the lines u = 0 and u = 2? Show that u(t) = 0 and u(t) = 2 are constant solutions to the DE. On your slope field plot, draw in several solution curves.
- 8. For the DE in the previous problem show that all solutions u(t) are convex (u'' > 0)if u > 2 or 0 < u < 1, and they are concave (u'' < 0) if 1 < u < 2. Check your graph from the previous problem to make sure the solution curves satisfy these conditions. Hint: differentiate the DE to find the equation statisfied by the second derivative.

- 9. For the DE u' = u + t sketch the lines in the (t, u)-plane where the slope of the solution has a constant value (try values -3, -2, -1, 0, 1, 2...). Using the obtained information draw several approximate solution curves. (Lines and curves in the (t, u)-plane where the slope of the solution is constant are called **isoclines**.)
- 10. Using antiderivatives, find the general solution to the pure time equation $u = t \cos(t^2)$, and then find the particular solution satisfying the initial condition u(0) = 1. Graph the particular solution on the interval [5, 5].
- 11. Solve the initial value problem $u' = \frac{t+1}{\sqrt{t}}$, u(1) = 4.
- 12. Consider a damped spring-mass system whose position x(t) is governed by the equation mx'' = -cx' kx (c and k are positive constants. Show that this equation can have a "decaying-oscillation" solution of the form $x(t) = e^{-\lambda t} \cos \omega t$. (Hint: By substituting into the differential equations, show that the decay constant λ and frequency ω can be determined in terms of the given parameters m, c, and k.)