- 1. Solve $y'' 4y = 5e^{2x}$.
- 2. Solve the system $y'_1 = -2y_1 2y_2$ $y'_2 = -2y_1 + y_2$
- 3. Consider the initial value problem $y' = xy^2 + 1$, y(0) = 0 on the rectangle

$$R = \{(x,y) \colon -3 \le x \le 3, \, -4 \le y \le 4\}.$$

- (a) Give the equivalent integral equation.
- (b) Compute the successive approximations ϕ_0, ϕ_1, ϕ_2 .
- (c) Show $f(x,y) = xy^2 + 1$ satisfies a Lipschitz condition on R.
- (d) Using R, find an interval I on which the sequence $\phi_0, \phi_1, \phi_2, \ldots$ must converge to a solution ϕ of the initial value problem.
- 4. Use Euler's method with h=1 to find an approximate solution on the interval [0,3] of the initial value problem

$$y' = xy^2 + 1, y(0) = 0.$$

Also, draw the graph of your approximate solution.

- 5. Solve the initial value problem $y' = \sqrt{x} \frac{y}{x}$, y(1) = 4.
- 6. Find the value of the constant k that makes $(x^2 \sin y 1)y' = -3x^2 + kx \cos y$ an exact equation, and then solve the equation.
- 7. Solve $x^2y'' + 4xy' 10y = 7x^{-5}, x > 0$.
- 8. Find one non-trivial solution of $x^2y'' + x^2y' 6y = 0$, x > 0. (If your solution involves a series, you can write the series in the form: first 3 non-zero terms $+\cdots$.)
- 9. For each of the following, prove or give a counterexample:
 - (a) If the functions f, g are linearly dependent on [0, 1] and are linearly dependent on [1, 2], then f, g are linearly dependent on [0, 2].
 - (b) If ϕ_1, ϕ_2 are solutions of $y'' + a_1(x)y' + a_2(x)y = 0$ on [0, 2], and if ϕ_1, ϕ_2 are linearly dependent on [0, 1] and are linearly dependent on [1, 2], then ϕ_1, ϕ_2 are linearly dependent on [0, 2].