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collected during a class experiment (Fig. 1). Would seeing it 
next to a peer’s graph stimulate reflection on the quality of the 
measurements and/or calculations? The graph shows a rocket 
that drops down and rises up unrealistically—it was taken 
from actual results in one of our courses before the students 
identified and corrected errors in their calculations. Half the 
survey respondents saw the error-filled graph by itself (“bad 
alone”), and the other half saw it plotted beside another team’s 
smooth curve with no major errors (“bad beside good”). 

Respondents came from two different science courses for 
future elementary teachers at California State University, 
Northridge, a regionally focused public university. These 
students typically have limited backgrounds in science and 
substantial fear of math.6 Students in Physical Science 170 
(“CSCS class”) used CSCS techniques throughout the semes-
ter while students in Geology 406 (“Non-CSCS class”) all 
completed Physical Science 170 in prior semesters before the 
implementation of the rocket project and CSCS (and there-
fore serve as a control group).7     

After reading an introduction to the graph and answer-
ing a few preliminary questions that primed them to think 
about possible errors in the data, students were asked to do 
the following: “Briefly describe a few possible explanations 
for the shape of the blue curve on the height-versus-time 
graph. Which explanation do you think is most likely? Why?” 
Experts responding to this prompt mention that the overall 
upward trend reflects the rocket’s initial acceleration, but the 
oscillations in height are not easily explained by any physical 
mechanism except a bizarre wind pattern and likely indicate 
errors during data collection or processing. Answers by nov-
ice science students, however, fell into five main categories 
(with those closest to the expert response listed first):8
1)	 Mentions data collection/processing errors as a possible 

explanation of height oscillations, similar to the expert 
response. May also mention other possible explanations.

2)	 Explains height oscillations using only physical mecha-
nisms (such as air resistance, an unstable rocket, changes 
in momentum, loss of fuel, etc.). 

3)	 Mentions height oscillations but does not cite any pos-
sible cause.

4)	 Describes rocket’s flight path upward without any men-
tion of height oscillations. 

5)	 Unscorable. Reveals fundamental misunderstanding of 
the question, an inability to correctly read the graph, or is 
otherwise uncategorizable. 

Computer Supported Collaborative 
Rocketry: Teaching students to distinguish 
good and bad data like expert physicists 
Matthew d’Alessio and Loraine Lundquist, California State University, Northridge, Northridge, CA

Each year our physical science class for pre-service el-
ementary teachers launches water-powered rockets 
based on the activity from NASA.1  We analyze the 

rocket flight using data from frame-by-frame video analysis 
of the launches. Before developing the methods presented in 
this paper, we noticed our students were mired in calculation 
details while losing sight of physical concepts. Sloppy mea-
surements and calculations (even when using spreadsheets 
with formulas provided) sometimes led to such poor results 
that physical concepts could not be reliably taught from the 
data, but students were unmotivated to either notice or cor-
rect their errors. We adopted a collaborative, computer sup-
ported approach using simple and easily available functions 
in Google Spreadsheets to pool observations, provide instant 
feedback, and publicly display results from all teams side-by-
side in real time. These instant comparisons promote student 
accountability and engagement, inspiring them to think more 
carefully about why answers may be different and notice 
sloppy data or unlikely outcomes—in short, to facilitate and 
motivate expert thinking about data.  

Theoretical basis for Computer Supported 
Collaborative Science

Bonham2 introduced the use of Google Docs to pool data 
in laboratory activities, which is an example of what we call 
Computer Supported Collaborative Science (CSCS3). Here, 
we document why CSCS is so effective at improving student 
understanding of data analysis and interpretation. Research 
about the differences between novices and experts in a given 
field indicates that experts constantly monitor and evalu-
ate their progress.4 In physics, this often means looking at a 
graph and asking, “Is this reasonable?” However, many novice 
students have no experience at distinguishing high-quality, 
precise data from garbage. Colleagues in geoscience educa-
tion have shown that training novices to recognize complex 
patterns in visual data works best when students are simulta-
neously shown an example of the pattern and a related coun-
terexample that does not match the pattern.5 The comparison 
calibrates the novice into all the nuances of the pattern. CSCS 
accomplishes this goal by showing students their own data in 
the context of everybody else’s in the class. Outliers with er-
rors in data or calculation are much easier to spot when seen 
in comparison with high-quality data. 

To test this theoretical basis, we assessed students’ ability 
to recognize “bad data” in graphs by asking them to explain 
the shape of a height-versus-time curve of a model rocket 
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Within the control class (“Non-CSCS class” from Fig. 2), 
we find that 23% of those who saw bad data alone made no 
mention of height oscillations, while only 5% of those shown 
a comparison failed to notice them—a difference significant 
at the 99% confidence level.9 This “bad beside good” group 
was almost twice as likely to attribute these oscillations to 
errors (43% versus 23%, significant at 97% confidence). The 
simple experience of seeing a juxtaposition of good and bad 
data prompts students to think about why the data sets differ.

CSCS allows students to repeatedly see their own data be-
side that of their peers. Our claim is that this naturally invites 
comparison, which stimulates more thought about data than 
traditional labs. The rest of this paper illustrates this process 
through a single CSCS activity involving water-powered 
rockets. 

Height of rocket at di�erent times

Time (s)

H
ei

gh
t (

m
)

0
0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

4

6

8

10

12

14

16

18

20

Team A

Height of rocket at di�erent times

Time (s)

H
ei

gh
t (

m
)

0
0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

4

6

8

10

12

14

16

18

20

Team A

Team B

Fig. 1. Students were shown a height-vs-time graph of a model rocket with serious data glitches (“bad 
alone,” left) or beside a smoother curve (“bad beside good,” right).

Fig. 2. Different categories of student explanations of the rocket 
data in Fig. 1.

Collecting whole class data 

Each team of students builds a rocket from a 2-L bottle, hop-
ing to win our class competition for reaching the highest height. 
We record launches in video clips using a standard digital cam-
era at 30 frames per second. High-quality measurements can be 
obtained using video analysis software,10 but making measure-
ments by hand and calculating distance and velocity helps stu-
dents practice proportions and rate calculations—mathematical 
concepts these students will be expected to teach. Students place 
a clear plastic ruler over the computer screen to measure the 
height of the rocket above the launch pad in each frame as well 
as a meterstick “scale bar.” 

As homework, they enter measurements into a single Google 
Spreadsheet used by all teams in the class. Each team analyzes its 
rocket in a separate tabbed worksheet. Each student on the team 
enters his or her measurements into a separate column on the 
team worksheet. Because Google Spreadsheets are stored “in the 
cloud,” every student can edit the file from anywhere and multi-
ple students can enter data simultaneously. The spreadsheet has 
clear labels indicating where to enter measurements, and graphs 
plot students’ data in real time.

Data comparison allows error identification
Throughout the process, students see their team’s results 

in comparison to others. For example, the class calculates the 
height of each rocket in the last frame before it flies out of view. 
The camera remains fixed during all team launches, so the 
height should be roughly identical for all teams. In Fig. 3, Team 
2’s curve looks reasonable by itself but is well above the others 
because the students incorrectly measured the height of the 
scale bar. The team did not notice the error when working in 
isolation, but quickly corrected the mistake after seeing its data 
in comparison with the rest of the class.

Identifying calculation errors
Each team calculates the average vertical speed of its rocket 

between each pair of successive frames in the video and enters 
its calculations into the team’s worksheet. In a separate hidden 
worksheet, the instructor programmed formulas that auto-
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teams, and 2) the ability to see improvement 
instantly when errors are corrected. Profes-
sors can track this kind of self-correction (in 
addition to inappropriate “correction” such as 
cheating or unethical changes to data) because 
Google Spreadsheets record every change by 
every student in a time-stamped revision his-
tory.

In one example, we have a minute-by-min-
ute narrative12 illustrating how a team thought 
it completed its calculations but reconsidered 
its results once other teams’ results were posted 
[Fig. 4(a)]. Since the team’s result was created 

using an average of each teammate’s individual measurements 
[a process also facilitated via CSCS techniques, see Fig. 4(b)], 
they began examining each individual’s work and testing 
what happened when one individual’s “outlying” data were 
excluded. This prompted the individual to redo his or her 
measurements and discover the mistake—voluntarily [Figs. 
4(c)-(d)].

The clear data ownership and public accountability to 
peers makes students want to seek out errors and correct 
them. This is a major improvement over the first time we 
used the rocket activity with calculations by hand when stu-
dents simply said, “I guess I did things wrong. It won’t hurt 
my score much, will it?” 

Using high-quality data to discover physi-
cal processes

Eventually, all teams refine their data and calculations 
enough to allow meaningful comparisons between teams 

—and thereby discover 
interesting physical pro-
cesses. For example, all the 
rockets experience roughly 
the same upward force 
(since they are pumped to 
the same pressure at launch 
using a bicycle pump with 
a pressure gauge), but they 
have different masses due 
to differences in design and 
initial fuel volume. We plot 
initial acceleration versus 
mass to find that lighter 
rockets accelerate faster—a 
trend only apparent when 
multiple teams compare 
high-quality data. But stu-
dents also discover a trade-
off with stability—rockets 
with extra mass in the nose 
cone typically travel higher. 
(The stability benefits of 
moving the rocket’s center 

matically calculate the velocity for each team from their raw 
data. Using the “Conditional Formatting” option of Google 
Spreadsheets, each cell turns green when the team’s calcula-
tion matches the hidden calculations or yellow if the team 
makes one of a series of common minor mistakes. While 
students perform their calculations, we display a summary 
worksheet of all teams’ progress on the computer projector. 
The instructor can glance at the screen to quickly determine 
which teams need assistance or which teams are finished and 
can be given more advanced challenges. This instant feedback 
encourages teams to locate errors themselves, which they of-
ten do before the instructor reaches their table.11

Creating a forum where mistakes can be 
identified and corrected

While automated color-coding helps students fix errors, 
we ideally want students to identify their own mistakes. CSCS 
enables this process by allowing: 1) comparison between 

Fig. 3. Rocket height vs time reveals that Team 2 is an outlier.

Fig. 4. (a) Speed-vs-time graph for all six teams that inspired Team 4 to look at their raw data in (b); (c) 
Revised speed-vs-time graph reflecting the corrected input data in (d).
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and analyze whole class data,” Proceedings of the 9th Annual 
Hawaii International Conference on Education (Jan. 2011), pp. 
2498–2503.

4. 	 “How Experts Differ from Novices,” in How People Learn: 
Brain, Mind, Experience, and School: Expanded Edition, edited 
by J. D. Bransford, A. L. Brown, and R. R. Cocking (National 
Academies Press, Washington, D.C., 2000), pp. 29-50. 

5. 	 C. J. Ormand, D. Gentner, B. Jee, T. F. Shipley, B. Tikoff, D. Ut-
tal, and C. Manduca, “Finding fault: Laboratory experiments 
and classroom studies on identifying faults in images,” Geol. 
Soc. Am. Abstr. Programs 41, 196 (Oct. 2009). 

6. 	 In a typical introductory physics class in the nation, 85% of the 
students have taken some form of high school physics (P. M. 
Sadler and R. H. Tai, “Success in introductory college physics: 
The role of high school preparation,” J. Res. Sci. Teach. 42, 111–
136). In PHSC 170, only 35% have, and most of those took a 
physical science course targeted towards non-science students. 
In terms of math, 20% report that math “terrifies” them. 

7. 	 For further information on the experimental design, see Ap-
pendix A at TPT Online at http://dx.doi.org/10.1119/1.4820858.

8. 	 See Appendix A for details about inter-rater reliability.
9.	 See Appendix A for technique to calculate statistical signifi-

cance.
10. 	 Douglas Brown and Anne Cox, “Innovative uses of video anal-

ysis,” Phys. Teach. 47, 145–150 (March 2009).
10. 	 See Appendix B at TPT Online at http://dx.doi.org/ 

10.1119/1.4820858 for further discussion of the appropriate use of 
conditional formatting. 

11. 	 See Appendix C at TPT Online at http://dx.doi.org/ 
10.1119/1.4820858.
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of mass in front of its center of pressure are emphasized in 
the design phase, using language appropriate for the students’ 
backgrounds, but are not fully appreciated until this analysis.) 
This engineering-style optimization helps support new Next 
Generation Science Standards, which embed engineering 
practices within the science curriculum.  

Conclusion
To assess the data interpretation skills of students that 

completed the CSCS rocket project, we presented them with 
the graphs in Fig. 1 and coded student descriptions of the 
data as we did for the non-CSCS class (Fig. 2). CSCS-class 
students provided expert-like responses two-thirds of the 
time, nearly twice as often as the control non-CSCS case. Un-
like the control case, the “bad alone” and “bad beside good” 
groups in the CSCS class performed about the same (70% ver-
sus 65%, difference not statistically significant), implying that 
these students no longer needed the comparison because they 
had developed an internal sense of what good and bad rocket 
data can look like, much like an expert in this domain might 
have. In future studies, we will investigate how well students 
are able to transfer this skill to assessing data in new domains. 
After completing a semester of instruction using frequent 
CSCS activities, even students with limited science back-
grounds can begin to see data like experts see it—subject to 
error. The rocket project we describe here is just one example 
of how cloud computing tools can transform hands-on activi-
ties into authentic, collaborative science experiences.

References
1.	 NASA, “Rockets Educator Guide,” EG-2011-11-223-KSC 

(NASA, Washington, D.C., 2011).
2. 	 Scott Bonham, “Whole class laboratories with Google Docs,” 

Phys. Teach. 49, 22–23 (Jan. 2011).
3. 	 N. Herr, M. Rivas, B. Foley, V. Vandergon, and G. Simila, “Us-

ing collaborative web-based documents to instantly collect 

Little Green Man Physics
J. Higbie, jackhigbie1@gmail.com

Here’s an interesting thought for you. Suppose you were in a lab with a large copper sphere 
that you charged up to 10,000 volts so that it had lots of static charge. And suppose also, for 
simplicity’s sake, that your lab was located on the equator. When you measure the electric 
field, you see that it radiates outward uniformly, and when you measure its magnetic field, 
you see that it doesn’t have any. No surprises here.

However, there is a little green man hovering out there in space, and he sees this charged 
body spinning around the Earth at 1000 miles per hour generating a magnetic field! 

So, who’s right, you or the little green man?

Editor’s Note: What do you think? Go to our Facebook page (https://www. 
facebook.com/AAPTHQ?ref=ts) to read what other physics teachers are saying 
about this question.
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