

20

Northridge

Northridge

26

25

Northridge

Bessel Function Summary

- Bessel's equation, x²d²y/dx² + xdy/dx + (x² - v²)y = 0, main applications are to problems in radial geometries.
- Physical problem gives value for $\boldsymbol{\nu}$
- The general solution to Bessel's equation is $y = C_1 J_v(x) + C_2 Y_v(x)$ where C_1 and C_2 are constants that are determined by the boundary conditions on the differential equation.

California State University Northridge

Bessel Function Zeros, α_{mn}			
	$J_0(\alpha_{m0})=0$	$J_1(\alpha_{m1}) = 0$	$J_2(\alpha_{m2}) = 0$
m = 1	2.40483	3.83171	5.13562
m = 2	5.52008	7.01559	8.41724
m = 3	8.65373	10.17347	11.61984
m = 4	11.79153	13.32369	14.79595
m = 5	14.93092	16.47063	17.95982
Ref:	Abramowitz a	and Stegun, N	BS AMS 55
Note i	ncrease by a	bout π betwee	n successive
		zeros	
California State Uni Northric	iversity lge		34

$$\frac{\text{Example: } \mathbf{u}_{0}(\mathbf{r}) = \mathbf{U}, \text{ a Constant}}{\mathbf{C}_{m} = \frac{\int_{0}^{R} rJ_{0}(\lambda_{m}r)(U-u_{R})dr}{\frac{R^{2}}{2}[J_{1}(\lambda_{m}R)]^{2}} = \frac{2(U-u_{R})}{R^{2}} \left[\frac{rJ_{1}(\lambda_{m}r)}{\lambda_{m}}\right]_{r=0}^{r=R}}{[J_{1}(\lambda_{m}R)]^{2}}$$
$$= \frac{2(U-u_{R})\frac{RJ_{1}(\lambda_{m}R)}{\lambda_{m}}}{R^{2}[J_{1}(\lambda_{m}R)]^{2}} = \frac{2(U-u_{R})}{\lambda_{m}RJ_{1}(\lambda_{m}R)} = \frac{2(U-u_{R})}{\alpha_{m0}J_{1}(\alpha_{m0})} \left[\frac{u-u_{R}}{U-u_{R}}\right]$$
$$u(r,t) = \sum_{m=1}^{\infty} \frac{2(U-u_{R})}{\alpha_{m0}J_{1}(\alpha_{m0})} e^{-\alpha_{m0}^{2}\frac{ct}{R^{2}}} J_{0}\left(\alpha_{m0}\frac{r}{R}\right) + u_{R}} \left[\frac{f\left(\frac{ct}{R^{2}}, \frac{r}{R}\right)}{f\left(\frac{ct}{R^{2}}, \frac{r}{R}\right)}\right]$$

