

- Dish-engine systems: like satellite antenna concentrate solar power on external combustion engine at focus
- Power tower receives solar energy from a series of mirrors to heat molten salts

q

Northridge

Concentrating Solar Power II

- Typically use "hybrid" systems that combine solar and fossil fuel heat sources
- Heated materials (oil or molten salts) can be stored for heat generation later in day

10

 Most applications for electric power production

California State University Northridge

	Parabolic Trough	Power Tower	Dish/Engine				
Size	30-320 MW*	10-200 MW*	5-25 kW*				
Operating Temperature (°C/°F)	390/734	565/1,049	750/1,382				
Annual Capacity Factor	23-50%*	20-77%*	25%				
Peak Efficiency	20%(d)	23%(p)	29.4%(d)				
Net Annual Efficiency	11(d')-16%*	7(d')-20%*	12-25%*(p)				
Commercial Status	Commercially	Scale-up	Prototype				
	Available	Demonstration	Demonstration				
Technology Development Risk	Low	Medium	High				
Storage Available	Limited	Yes	Battery				
Hybrid Designs	Yes	Yes	Yes				
Cost							
\$/m ²	630-275*	475-200*	3,100-320*				
\$/W	4.0-2.7*	4.4-2.5*	12.6-1.3*				
\$/Wp [†]	4.0-1.3*	2.4-0.9*	12.6-1.1*				
Values indicate changes over the	1997-2030 time frame.						
\$/W _p removes the effect of them	nal storage (or hybridization	for dish/engine). See disc	ission of thermal storage :				
the power tower TC and footnot	es in Table 4.						
p) = predicted; (d) = demonstrated; (d') = has been demonstrated, out years are predicted values							

Resource Zone	Zonal Cost Multiplier	Capital Cost (\$/kW)	Fixed O&M (\$/kW-yr)	Fuel Cost (\$/MMBTU)	Capacity Factor Range	Busbar LCOE Range (\$/MWH)	Net Resou Potential (I	
Base Value	1.00	\$3,389	\$53		40%		447	
AB	1.00	n/a	n/a	\$0.00	n/a	n/a		
AZ-S. NV	1.00	\$3,389	\$53	\$0.00	37% - 38%	\$130 - \$133	141	
BC	1.00	n/a	n/a	\$0.00	n/a	n/a		
CA	1.20	\$4,067	\$64	\$0.00	37% - 40%	\$149 - \$161	89	
CFE	1.00	n/a	n/a	\$0.00	n/a	n/a		
CO	0.97	n/a	n/a	\$0.00	n/a	n/a		
MT	1.02	n/a	n/a	\$0.00	n/a	n/a		
NM	0.96	\$3,254	\$51	\$0.00	39%	\$123	66	
N. NV	1.09	\$3,694	\$58	\$0.00	37% - 40%	\$137 - \$146	150	
NW	1.11	n/a	n/a	\$0.00	n/a	n/a		
UT-S. ID	1.00	n/a	n/a	\$0.00	n/a	n/a		
WY	0.92	n/a	n/a	\$0.00	n/a	n/a		

21

heat input during summer

Northridge

NREL Building Energy Study

- · Home with no increase in peak energy
 - http://www.nrel.gov/docs/fy06osti/39821.pdf
 - Increase cost of new 2,592 ft² house in Sacramento, CA by about \$10,000
 - Reduces sum of mortgage payments and energy costs
 - Reduces heating load by 70%, cooling load by 60%, primary energy use by 60%
 - Passive solar plus solar water heating

- Photovoltaic electricity not cost effective Northridge

NIST Photovoltaics

- · National Institute of Standards and Technology, Building and Fire Research Laboratory (BFRL) Presentation
- NIST BRFL Role: development of
 - measurement methods
 - standards
 - prediction tools
 - measurement facilities

Northridge

24

DOE's Solar America Initiative Program Goals							
Market Sector	Current Market Price	PV Generated 2005	PV Generated 2010	PV Generated 2015			
Residential	5.8 -16.7	23-32	13-18	8-10			
Commercial	5.4 – 15.0	16-22	9-12	6-8			
Prices are cents per kWh Current prices based on electric generation with conventional sources Market goals based on grid-tied sources							

Solar Conclusions

- Promise of large amounts of pollutionfree energy with significant limitations
 - Low energy flux requires large area
 - Costs for current solar materials are not justified by cost savings
 - Solar peak matches electricity demand and thermal storage extends generation time
 - Science of solar energy well understood, but problems with pervious commercial

45

- Still need significant cost reductions to

Northridge