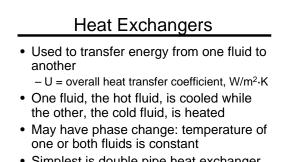
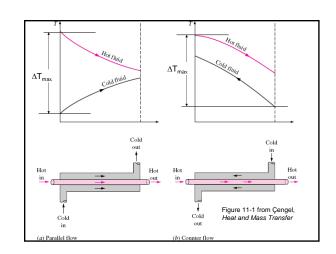
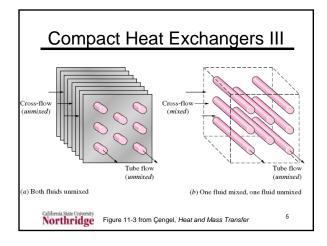
2

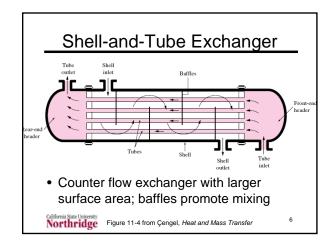
The f-Chart Method for Solar Collectors

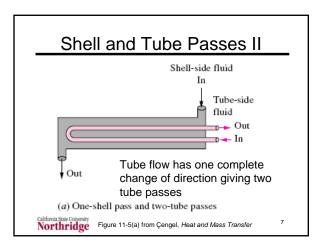

Larry Caretto Mechanical Engineering 496ALT *Alternative Energy*

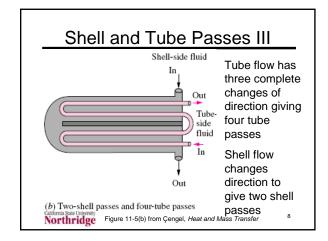
April 12, 2010

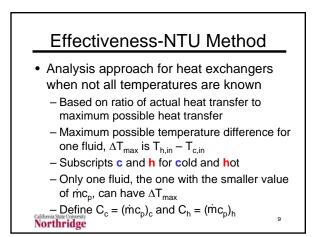

California State University Northridge

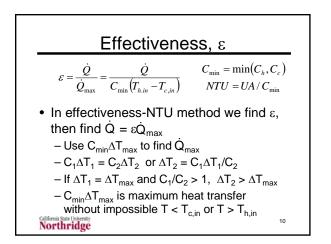

Outline

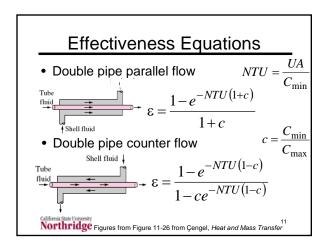

- Review heat exchangers
- Solar collector performance equations
- Derivation of f-chart method
- Demonstration of f-chart results
- Main reference: Duffie and Beckman, Solar Engineering of Thermal Processes, Wiley, 2006
- See http://www.fchart.com/ for f-chart software information Northridge

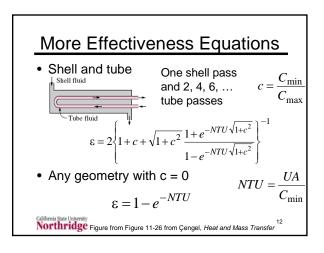


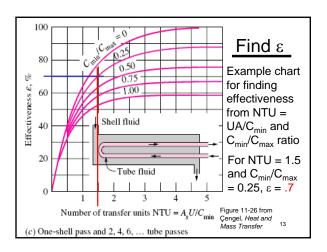

- Simplest is double pipe heat exchanger
 Parallel flow and counter flow
- More complex designs may be used
 Northridge

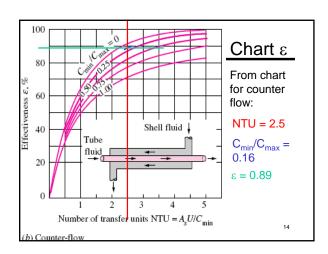


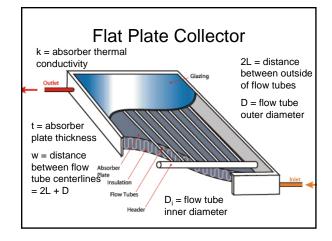








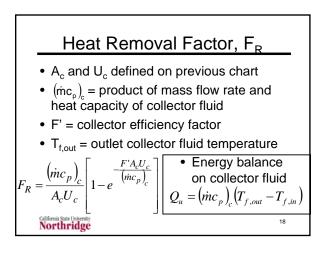


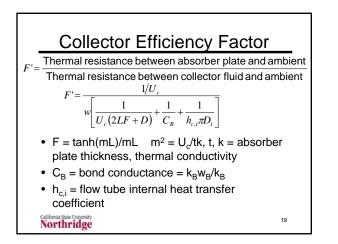

Basic Collector Performance

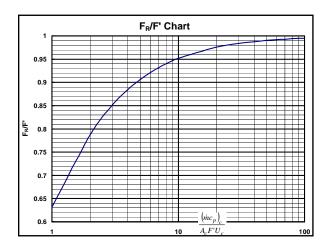
- · Energy balance on collector
- Useful energy gain = solar energy input adsorbed by collector – losses by heat transfer to ambient
- Look at variation throughout year to get overall performance
 - Detailed hour-by-hour computer analysis for large installations
 - Simplified f-chart method for residences

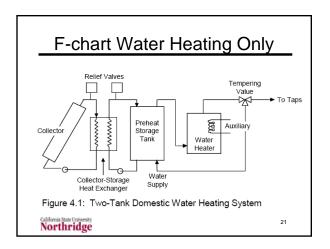
15

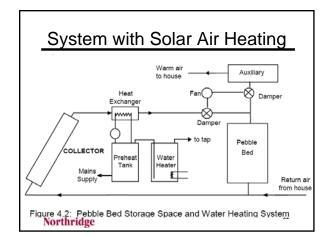
М

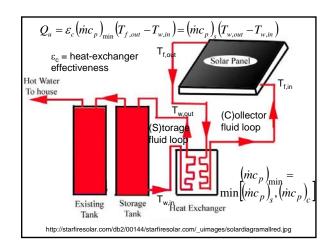

California State University Northridge

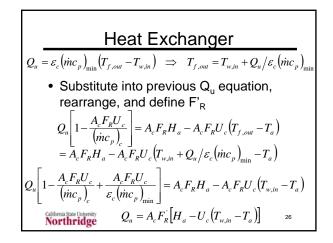


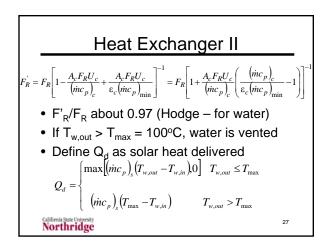

Useful Energy Gain

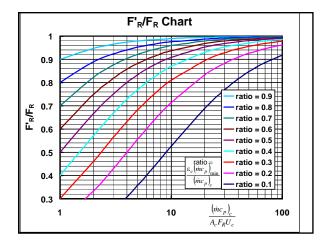

- Q_u = rate of useful heat into collector
- A_c = collector area
- H_a = solar energy absorbed = $H_i \tau \alpha$
- U_c = collector overall heat-loss coefficient
- T_{f,in} = inlet collector fluid temperature
- T_a = ambient temperature
- F_R = collector heat removal factor

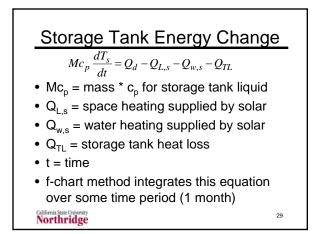

$$Q_u = A_c F_R [H_a - U_c (T_{f,in} - T_a)]$$

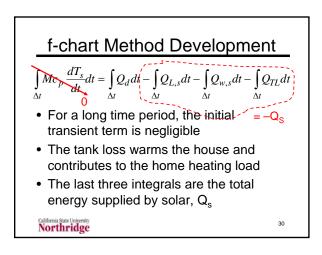


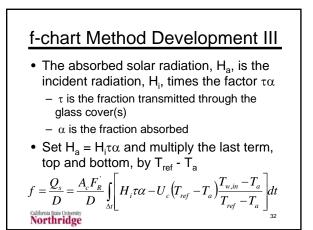


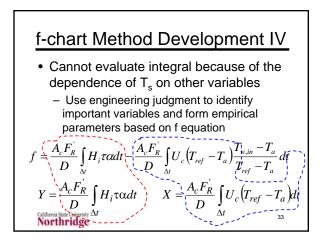


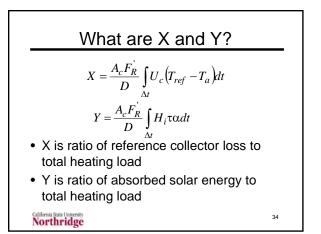


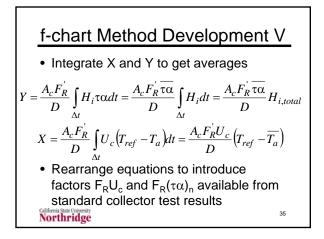


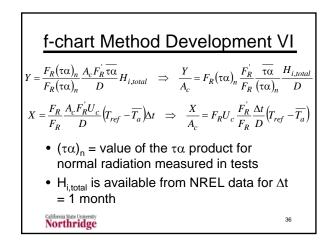

Combine Equations	
$\boxed{\begin{array}{c} Q_u = A_c F_R \left[H_a - U_c \left(T_{f,in} - T_a \right) \right]}{Q_u = \left(inc_n \right) \left(T_{f,out} - T_{f,in} \right) \implies T_{f,in} = T_{f,out} - \frac{Q_u}{T_{f,out}}} \end{array}}$	_
$Q_{u} = (\dot{m}c_{p})_{c}(T_{f,out} - T_{f,in}) \implies T_{f,in} = T_{f,out} - \frac{Q_{u}}{(\dot{m}c_{p})}$ • Eliminate $T_{f,in}$ in favor of $T_{f,out}$	с
$Q_u = A_c F_R H_a - A_c F_R U_c \left[T_{f,out} - \frac{Q_u}{(mc_p)_c} - T_a \right]$	
$\left \begin{array}{c} Q_u \\ Q_u \\ Q_u \\ 1 - \frac{A_c F_R U_c}{(inc_p)_c} \\ \end{array} \right = A_c F_R H_a - A_c F_R U_c \left(T_{f,out} - T_a \right)$,)
California State University 25	

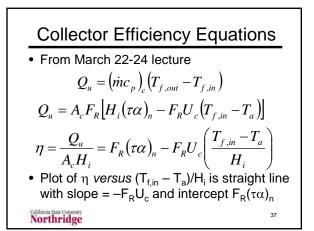


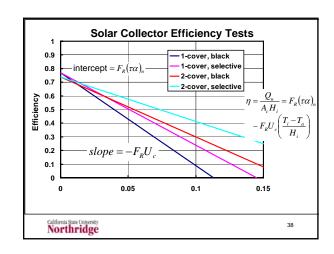

Northridge

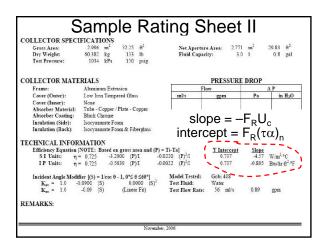

f-chart Method Development II

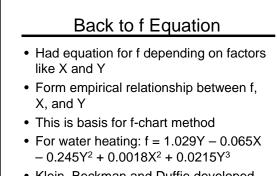

$$0 = \int_{\Delta t} Q_d dt - Q_s \implies Q_s = \int_{\Delta t} Q_d dt \implies f = \frac{Q_s}{D} = \frac{1}{D} \int_{\Delta t} Q_d dt$$
• D = total energy demand
• f = fraction of total supplied by solar
• Use the definition of Q_s, total energy
supplied by solar from previous slide

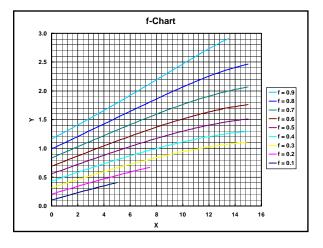

$$f = \frac{Q_s}{D} = \frac{1}{D} \int_{\Delta t} Q_d dt = \frac{1}{D} \int_{\Delta t} A_c F_R [H_a - U_c (T_{w,in} - T_a)] dt$$

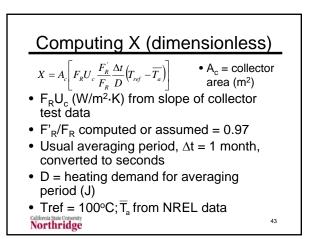


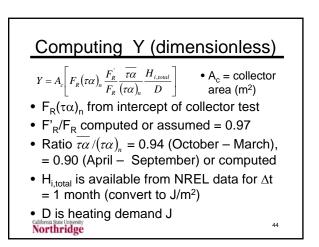


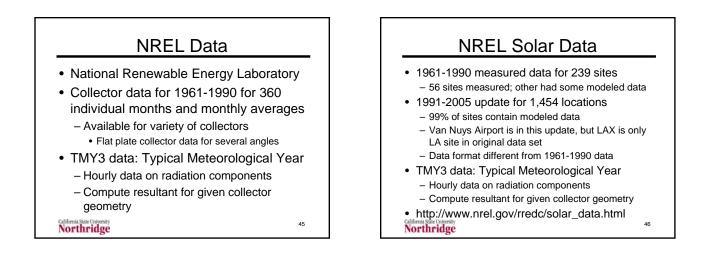


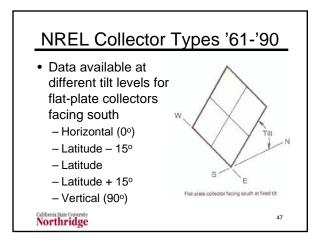


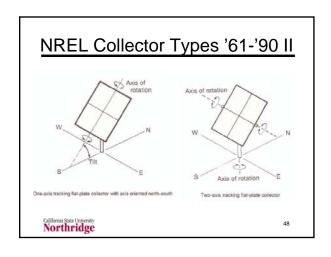


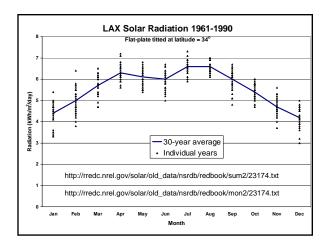

CERTIFICA			ERTIFIED	SOLAR COLLE	ECTOR		
	CC OG 100	1		TYPE: Glazer	enue	3	
				AL PERFORM			
CATEGORY	CLEAR	Panel Per Day MILDLY	CLOUDY	CATEGORY	CLEAR	Per Panel Per Da MILDLY	CLOUDY
(Ti-Ta)	DAY 23 MJ/m ² -d	CLOUDY 17 MJ/m ² -d	DAY 11 MJ/m ² ·d	(Ti-Ta)	DAY 2000 Btu/ft ² -d	CLOUDY 1500 Bra/#2-d	DAY 1000 Bts/ft ² -d
A (-5°C)	49	37	25	A (-9°F)	46	35	24
B (5°C)	45	33	21	B (9°F)	43	32	20
	39	27	15	C (36°F)	37	25	14
C (20°C)		14	4	D (90°F)	23	13	4
C (20°C) D (50°C)	24			E (144°F)	10	2	

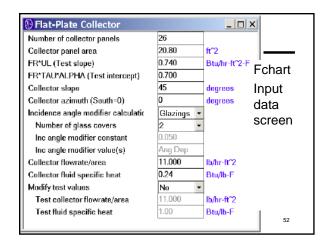


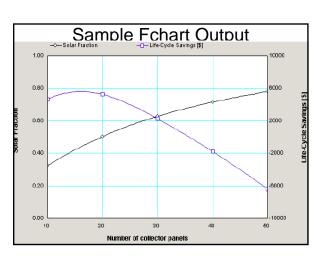


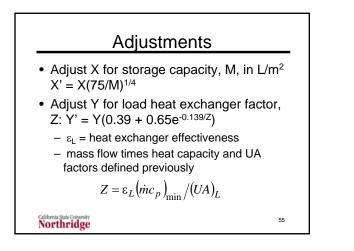

 Klein, Beckman and Duffie developed method and software Northridge
 ⁴¹

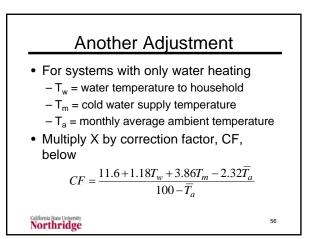









N	IREL	1	96	51	-1	9	90) L	_A	λ	Α	V	er	ag	je
		N FO)R F	TAT	-PI A		COL	LEC	TOR	S F/		IG S	ОЛТ	Ή Α	ГА
	TILT (kWh/														
Tilt(deg	1)	Jan	Feb	Mar	Apr	May	Jun	Jul A	Aug \$	Sep	Oct I	Nov	Dec	Year	
0	Average	2.8	3.6	4.8	6.1	6.4	6.6	7.1	6.5	5.3	4.2	3.2	2.6	4.9	
	Minimum	2.3	3.0	4.0	5.5	5.7	5.6	6.4	6.1	4.4	3.8	2.7	2.1	4.7	
	Maximum														
Lat - 15	5 Average														
	Minimum														
	Maximum														
Lat	Average														
	Minimum														
	Maximum														
Lat + 1	5 Average														
	Minimum														
	Maximum														
90	Average									3.6					
	Minimum	2.9	3.0	3.1	2.9	2.3	2.1	2.3	2.8	2.9	3.5	3.2	2.7	3.3	
Calif	Maximum		5.4	4.5	3.6	2.7	2.3	2.5	3.2	4.1	4.7	5.2	5.0	3.7	50



🖯 The	ermal Oı	Itput		_ 🗆 X		
	Solar 110 ⁶ Btul	Heat [10 ⁶ Btu]	Dhw [10 ⁶ Btul	Aux [10 ⁶ Bhu]	f	
Jan	17.98	18.69	2.384	13.64	0.353	
Feb	20.06	15.24	2.148	8.77	0.495	
Mar	23.99	12.36	2.368	4.95	0.664	
Apr	24.94	7.11	2.277	0.72	0.924	
Мау	27.89	3.27	2.341	0.00	1.000	
Jun	28.46	0.83	2.255	0.00	1.000	
Jul	29.52	0.37	2.326	0.00	1.000	
Aug	28.06	0.68	2.330	0.00	1.000	
Sep	24.07	2.43	2.263	0.00	1.000	
Oct	21.02	6.28	2.351	1.34	0.844	
Nov	14.38	10.95	2.287	7.82	0.409	
Dec	14.05	16.53	2.378	13.66	0.277	
Year	274.41	94.73	27.709	50.90	0.584	

