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Outline
• Review material on fins
• Lumped parameter model

– Basis for  and derivation of model
– Solving lumped-parameter problems

• Unsteady solutions using charts
– Differential equation as basis for charts
– Problem solving with charts 
– Semi-infinite solutions
– Product solutions
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Fin review
• Adds surface to enhance heat transfer
• Analysis for single fin linked to analysis of 

surface with multiple fins
• Equations for simple fins and charts for 

fin efficiency and effectiveness
• Rectangular fin equations: m = (hp/kAc)1/2
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Lumped Parameter Model
• Simplified model of unsteady heat 

transfer for a particular problem
– Solid object, with constant k and a uniform 

initial temperature, Ti

– Placed in fluid environment with constant 
temperature, T∞, at zero time (t = 0)

– Convection to the solid with constant heat 
transfer coefficient, h

– Under certain conditions the temperature in 
the solid is assumed uniform
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Parallel Resistance
• Look at solid object initially at an initial 

temperature, Ti, placed into a medium 
at another temperature T∞ with heat 
transfer coefficient h

• Convective resistance is 1/hA, 
conductive resistance is L/kA
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Figure 3-6) in 
Çengel, Heat 

and Mass 
Transfer
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Uniform Temperature Basis
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• T1 – T2 will be small compared to T∞1 – T1
when hL/k is small
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Application to Unsteady Case
• Unsteady case: temperatures change
• Special case: convection resistance is 

much larger than conduction in solid
• Result: temperature differences in the 

solid are almost negligible
• Idealization: Assume that solid is at 

uniform temperature, T
• Model: ρcpVdT/dt = hA(T∞ – T)

– V is volume
8

Lumped Parameter Model
• Basic model says that convection 

energy into solid hA(T∞ – T) goes to 
increase uniform solid temperature, T, 
giving energy change ρcpVdT/dt
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• Define characteristic length, Lc = V/A, 
and inverse time constant, b = hA/ρcpV
= hA/ρcpLc
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Lumped Parameter Solution
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• Solution is known to be exponential

• Have first-order differential equation 
with initial condition that T = Ti at t = 0
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differential equation and initial condition
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Lumped Parameter Analogy
• Combine solution with b definition
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• 1/hA is convection resistance and ρcpV
is capacity of solid to absorb heat
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• Result same as RC electrical circuit
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When can we use this?
• Saw that solid temperature becomes 

closer to uniform as hL/k (known as Biot
number, Bi) becomes smaller

• Criterion for application of lumped 
parameter solution is Bi = hLc/k < 0.1

• Problem: what is Lc for a cylinder with a 
diameter of 0.1 m and a length of 0.5 m?
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When can we use this? II
• So Lc = 0.02273 m; can we use lumped 

parameter model if h = 80 W/m2·K and k 
= 240 W/m2·K?

• Criterion for application of lumped 
parameter solution is Bi = hLc/k < 0.1
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• So  lumped parameter model is valid
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Application of the Model
• If the cylinder analyzed previously has 

cp = 900 J/kg·K, ρ = 2700 kg/m3, an 
initial temperature of 350OC and an 
environmental temperature of 30oC, 
how long will it take to reach 50oC?

• Given: Lc = 0.02273 m, h = 80 W/m2·K, 
cp = 900 J/kg·K, ρ = 2700 kg/m3, Ti = 
350OC, T∞ = 30oC, T = 50oC

• Find: time, t, to reach T = 50oC
14

Application of the Model II
• Given: h = 80 W/m2·K, cp = 900 J/kg·K, 

ρ = 2700 kg/m3, Ti = 350OC, T∞ = 30oC, 
T = 50oC;   Find: t
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Application of the Model III
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• Lumped parameter approach easy to 
use and does not require application of 
more complex calculations

• Applicable to general geometry
• Requires Bi = hLc/k < 0.1
• Next consider unsteady problems with 

spatial variation
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Review Conduction Equation

genp e
z
Tk

zy
Tk

yx
Tk

xt
Tc &+

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

ρ

genp e
z
Tk

zy
Tk

yx
Tk

xt
Tc &+

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

ρ

0 for no heat 
generation

0 for one dimensional 
heat transfer

For constant k, bring k 
outside the derivative

2

2

2

2

x
T

c
k

t
T

x
Tk

t
Tc

p
p

∂
∂

ρ
=

∂
∂

⇒
∂
∂

=
∂
∂

ρ

17

1D, constant k, 
• Define the thermal diffusivity, α = k/ρcp
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• Typical units are m2/s or ft2/s

• Dimensions:
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• Solution requires initial (t=0, all x) and 
boundary conditions 
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What is 1D?
• In theory, one dimensional 

heat transfer implies that 
the slab is infinite (or 
insulated) in the y and z 
directions

• Practically this means that 
the y and z dimensions are 
so large that end effects 
are not importantFigure 4-11(a) in 

Çengel, Heat and Mass 
Transfer
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Specific Problem
• Problem: at t = 0, a large 

slab initially at Ti is placed 
in a medium at temperature 
T∞ with a heat transfer 
coefficient, h

• Coordinates: Choose x = 
0 as center of slab (which 
runs from –L to L) for this 
symmetric problemFigure 4-11(a) in 

Çengel, Heat and Mass 
Transfer
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Specific Problem II
• Initial condition: at t = 0, T 

= Ti for all x
• Boundary conditions: At 

x = 0, ∂T/∂x = 0 for 
symmetry.  At x = L an 
energy balance gives          
–k∂T/∂x = h(T – T∞)

• Dimensionless form: 
shows important combi-
nations of variables

Figure 4-11(a) in 
Çengel, Heat and Mass 

Transfer
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Specific Problem Conditions
• Differential equation with boundary and 

initial condition for T(x,t)
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• Define dimensionless distance, ξ = x/L 
and dimensionless time, τ = αt/L2, 
called the Fourier number
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Dimensionless Equation Form
• Define dimensionless 

temperature ratio
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Dimensionless Result

• We started with the following variables 
to solve for T: Ti, T∞, x, L, t, α, h, k

• We now see that T = (Ti – T∞)Θ + T∞, 
where Θ depends on ξ, τ, and Bi
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Equation Solution
• Solution is infinite series with an infinite 

set of dimensionless parameters λn that 
depends on Bi
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∞
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• The values of λn are the roots of the 
equation λn/Bi = cot λn
– Next chart shows first seven λn values for 

Bi = 1
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Finding λ

λ7 = 18.9023
λ6 = 15.7713
λ5 = 12.6453
λ4 = 9.52933
λ3 = 6.43730
λ2 = 3.42561
λ1 = 0.86033
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Dimensionless Temperature Difference in a Slab with hL/k = 0.1
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Figure 6. Convection Boundary Condition, hL/k = 1
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Figure 7. Convection Boundary Condition, hL/k = 10

tau = 0.003

tau = 0.005

tau = 0.01

tau = 0.02tau = 0.05
tau = 0.2

tau = 0.75

tau = 1

tau = 1.5

tau = 0.1

tau = 0.5

tau = 0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

D
im

en
si

on
le

ss
 T

em
pe

ra
tu

re

∞

∞

−
−

TT
TT

i

29

Center-line Temperature, T0
• Rewrite general result to introduce An
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∞
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• Result for center-line (x = 0)
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• Heisler charts show Θ0 as a function of 
τ = αt/L2 with 1/Bi = k/Lh as a parameter
– An and λn depend on Bi
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Slab Center-line (x = 0) Temperature Chart 
Figure 4-15(a) in Çengel, Heat and Mass Transfer
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Problem
• Find time required to cool the centerline 

temperature of 0.3 m thick plate to 50oC 
if k = 50 W/m·K, α = 15x10-6 m2/s and 
initial temperature is 400oC.  The heat 
transfer coefficient is 80 W/m2·K and the 
environmental temperature = 20oC.

• Given: T0 = 50oC, Ti = 400oC, T∞ = 20oC, 
L = 0.3/2 = 0.15 m, k = 50 W/m·K, α = 
15x10-6 m2/s, h = 80 W/m2·K      Find: t
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Solution
• Chart relates (T0 – T∞)/(Ti – T∞), k/hL, 

and αt/L2.
• From given data we can find
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• Find τ = αt/L2 = 11.9 (see next chart)
( ) hsx
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mLt 96.41079.1
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Input Θ0
= 0.079
Input 
k/hL = 
4.167

Find τ = 11.9

Figure 4-15(a) 
in Çengel, Heat 

and Mass 
Transfer 34

Chart II
• Can find T at any 

x/L from this 
chart once T at x 
= 0 is found from 
previous chart

• See basis for this 
chart on the next 
page
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Figure 4-15(b) in Çengel, Heat 
and Mass Transfer
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Temperature Approximations

• For “large” τ (> 0.2)  series in  numerator 
and denominator converge in one term
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Temperature Approximations II

• Depends only on ξ = x/L and λ1 which 
depends on Bi = hL/k

• Must first determine Θ0 as in previous 
example to get Θ

• What is Θ at x = L in that example?

• For τ > 0.2
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Answer
• Example had T0 = 

50oC, T∞ = 20oC,
and k/hL = 4.167

• This chart gives (T 
– T∞)/(T0 – T∞) = 
0.91 for x/L = 1

• So T =  (0.91)·
(50oC – 20oC) + 
20oC = 47.3oC
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Figure 4-15(b) in Çengel, Heat 
and Mass Transfer
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Alternative Approximation
• Return to series for “large” τ (> 0.2) that 

converges in one term
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• Can use this approximation to find Θ and 
can also solve for τ and ξ when τ > 0.2
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Table Extract
• Use Table 4-2 in text 

to find λ1 and A1 for 
given Bi

• Find T at any ξ = x/L 
and τ = αt/L2 from
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Approximate Equations
• Repeat example with T0 = 50oC, Ti = 

400oC, L = 0.3/2 = 0.15 m, T∞ = 20oC, k 
= 50 W/m·K, α = 15x10-6 m2/s, h = 80 
W/m2·K to find t for T0 = 50oC and T at 
surface for this time

• Recall 1/Bi = 4.167 so Bi = 0.24
• Interpolate in table to find λ1 = 0.4684 

and A1 = 1.0367 for Bi = 0.24
– Last two slides have interpolation details

• First find time for T0 = 50oC

41

Approximate Equations II
• Data: T0 = 50oC, Ti = 400oC, L =0.15 m, T∞

= 20oC, k = 50 W/m·K, α = 15x10-6 m2/s, h 
= 80 W/m2·K, λ1 = 0.4476 and A1 = 1.0334
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Approximate Equations III
• Find surface temperature for τ = 11.74
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• Results similar to charts
– 4.83 h vs. 4.96 h to reach T0 = 50oC
– Surface temperature 46.8oC vs. 47.3oC

• For full solution T0 = 50oC in 4.83 h and 
surface temperature = 46.7oC at that time
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Cylinder and Sphere

Figure 4-11 in Çengel, 
Heat and Mass 

Transfer

Same problem has similar chart solutions
44

1D Cylinder, constant k, 
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Same Problem for Cylinder
• Constant initial temperature, Ti, and 

convection at outer radius r0
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• Define dimensionless distance, ξ = r/r0
and dimensionless time, τ = αt/r0

2, 
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Cylinder Center (r = 0) Temperature Chart 
Figure 4-16(a) in Çengel, Heat and Mass Transfer
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1D Sphere, constant k, 0egen =&
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Same Problem for Sphere
• Constant initial temperature, Ti, and 

convection at outer radius r0
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• Define dimensionless distance, ξ = r/r0
and dimensionless time, τ = αt/r0

2, 
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Sphere Center (r = 0) Temperature Chart 
Figure 4-17(a) in Çengel, Heat and Mass Transfer

50

(T – T∞)/(T0 – T∞) Charts

Figures 4-16(b) and 4-17(b)  
in Çengel, Heat and Mass 

Transfer

51

More Approximate Solutions
• Cylinder and sphere also have 

approximate solutions for τ > 0.2
– Values of A1 and λ1 still depend on Bi and 

are different for each geometry

⎟⎟
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∞

∞
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101

2
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⎝

⎛
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−
−

=Θ τλ−

∞

∞

0
1

1

0
1 sin

2
1

r
r

r
reA

TT
TT

i

• Cylinder

• Sphere

52

More Approximate Solutions II

Table 4-2  in Çengel, Heat and Mass Transfer

53

More Approximate Solutions III
• The function J0(x) is the zero order 

Bessel function
– Tables in text or get value from Excel 

function besselj(x,0) or Matlab function 
besselj(0,x)

• Excel function requires analysis tool pack add-
in to be installed

• Here Bi = hr0/k for cylinder and sphere 
is different from Bi = hV/(kA) for lumped 
parameter solution

54

Semi-Infinite Solids
• Plane that 

extends to 
infinity in all 
directions

• Practical 
applications: 
large area for 
short times
– Example: earth 

surface locallyFigure 4-24  in Çengel, 
Heat and Mass Transfer
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Two Semi-infinite Solid Results
• Initial temp Ti, 

surface temperature 
set to Ts at t = 0

⎟
⎠

⎞
⎜
⎝

⎛
α

=
−
−

t
xerf

TT
TT

si

s

4

• Initial temp Ti, convection starts at t = 0 
to T∞ with heat transfer coefficient, h

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α
+

α
−⎟

⎠

⎞
⎜
⎝

⎛
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=
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⎟
⎠

⎞
⎜
⎜
⎝

⎛ α
+

∞ k
th

t
xerfce

t
xerf

TT
TT k

th
k
hx

i

i

44

2

2

56

Error Functions
• Defined integrals erf(x) is called error 

function and erfc(x) = 1 – erf(x) is the 
complementary error function
– Excel/ Matlab functions erf(x) and erfc(x)

• Excel requires analysis took pack add-in

• See plots on next chart

∫
∞
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π
=−=

x

texerfxerfc
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π
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x
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0

22)(
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Error Function and Complement
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58Figure 4-29  in Çengel, Heat and Mass Transfer

Semi-Infinite Medium Results

59

Problem
• How deep should water pipes be buried 

in a soil that is initially at 20oC to avoid 
freezing if the surface is at –15oC for 60 
days? (Assume soil α = 1.4x10-7 m2/s)

• Given: Soil with α = 1.4x10-7 m2/s and 
Ti = 20oC must not freeze for t = 60 
days if Ts= -15oC.   Find: depth required

• Assumption: Required depth will set T 
= 0oC at t = 60 days

60

Solution
• Use equation for semi-infinite medium 

with fixed surface temperature
( )
( ) ⎟

⎠

⎞
⎜
⎝

⎛
α

==
−−

−−
=

−
−

t
xerf

CC
CC

TT
TT

oo

oo

si

s

4
42857.0

1520
150

• From tables or erfinv function of Matlab
find erf-1(.42857) = 0.40019 t4x α=

( )
d

sd
s

mxtx 8640060104.140019.040019.0
27−

=α=

x = 0.682 m
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Multidimensional Solutions
• Can get multidimensional solutions as 

product of one dimensional solutions
– All one-dimensional solutions have initial 

temperature, Ti, with convection coefficient, 
h, and environmental temperature, T∞, 
starting at t = 0

– General rule: ΘtwoD = ΘoneΘtwo where Θone
and Θtwo are solutions from charts for 
plane, cylinder or sphere

62

Multidimensional Example
•Solution for 
finite cylinder is 
product of 
solution for 
infinite cylinder 
and infinite slab

•Slab solutions 
have thickness 
2L so we use L 
= a/2 in this 
case

Figure 4-35  in 
Çengel, Heat 

and Mass 
Transfer

63

Multidimensional Example II

( )

( )

( )

slab
infinitei

cylinder
infinitei

cylinder
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TT
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TT
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TT
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⎜⎜
⎝

⎛
−

−

=⎟⎟
⎠

⎞
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⎝

⎛
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−

∞

∞

∞

∞

∞

∞

,

,

,,

x = a/2

x = -a/2
Figure 4-35  in 
Çengel, Heat 

and Mass 
Transfer
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Multidimensional Problem
• A cylinder is 0.3 m high, with a radius of 

0.1 m, k = 50 W/m·K, α = 15x10-6 m2/s, 
and initial temperature of 400oC.  The 
heat transfer coefficient is 80 W/m2·K 
and the environmental temperature is 
20oC. Find temperature in the centre of 
the cylinder and at its corner after one 
hour.

65

Multidimensional Solution
• We can apply the following equation:
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• First get the temperatures at the center 
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• We find infinite quantities from charts 
66

Multidimensional Solution II
• We have separate Biot and Fourier 

numbers for the two infinite geometries
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τ = 5.4

Θ0 = 

0.22
Enter 
cylinder 
chart 
with 
values of
τ = 5.4 
and  
k/hr0 = 
6.25 to 
find Θ0 = 
0.22

Figure 4-16(a)  in Çengel, Heat and Mass Transfer
68

τ = 2.4

Slab 
chart 
uses τ
= 2.4 
and  
k/hL = 
4.167 
to find 
Θ0 = 
0.62

Figure 4-15(a)  in Çengel, Heat and Mass Transfer
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Multidimensional Solution III
• Use Θ0 values just found
( ) ( ) ( )
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Multidimensional Solution IV
• Edge temperature (x = L = 0.15 m and r 

= r0 = 0.1 m) found as follows
( ) ( ) ( )
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• Each term on right is product of center 
solution times ratio of point to center
– Must find this for each one dimensional 

solution separately 
• Use auxiliary charts for this ratio

71

Slab
• For k/hL = 4.167 

and x/L = 1, Θ/Θ0
= 0.875

• Previously found 
that Θ0 = 0.62

• So slab 
component of 
product solution 
is (0.62)(0.875) = 
0.543

∞

∞

−
−

=
Θ
Θ

TT
TT

00

Figure 4-15(b) in Çengel, 
Heat and Mass Transfer

k/hL = 4.167

72

Cylinder
• For k/hr0 = 6.25 

and r/r0 = 1, Θ/Θ0
= 0.93

• Previously found 
that Θ0 = 0.22

• So cylinder 
component of 
product solution 
is (0.22)(0.93) = 
0.205

∞

∞

−
−

=
Θ
Θ

TT
TT

00

Figure 4-15(b) in Çengel, 
Heat and Mass Transfer

k/hr0 = 6.25
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Multidimensional Solution V
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Repeat Using One-term Values
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Repeat Using One-term Values II
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For infinite slab, τ = 2.40 and Bi = 0.24; 
interpolation in Table 4-2 for Bi = 0.24 gives λ1
= 0.4684 and A1 = 1.0367
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Repeat Using One-term Values III
For infinite cylinder, τ = 5.40 and Bi = 0.16; 
interpolation in Table 4-2 for Bi = 0.24 gives λ1
= 0.5469 and A1 = 1.0388
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Repeat Using One-term Values IV
Now have individual terms in product solution
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Interpolation
• Given table with two data pairs (x1,y1) 

and (x2,y2) we want to find y for some 
value of x between x1 and x2

( ) ( )12
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• Here known x is Bi and we are trying to 
find y = λ1 so interpolation formula is
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Interpolation II
• Find λ1 for Bi = 0.24

– Bi = 0.24 is between      
Bi1 = 0.2 (λ1,1 = .4328) and 
Bi2 = 0.3 (λ1,2 = .5218)
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