

Application to Unsteady Case

- Unsteady case: temperatures change
- Special case: convection resistance is much larger than conduction in solid
- Result: temperature differences in the solid are almost negligible
- Idealization: Assume that solid is at uniform temperature, T
- Model: ρc_p/vdT/dt = hA(T_∞ T)
 V is volume california start (ungently

Northridge

Application of the Model

- If the cylinder analyzed previously has c_p = 900 J/kg·K, ρ = 2700 kg/m³, an initial temperature of 350°C and an environmental temperature of 30°C, how long will it take to reach 50°C?
- **Given:** $L_c = 0.02273 \text{ m}$, $h = 80 \text{ W/m}^2 \cdot \text{K}$, $c_p = 900 \text{ J/kg} \cdot \text{K}$, $\rho = 2700 \text{ kg/m}^3$, $T_i = 350^{\circ}\text{C}$, $T_{\infty} = 30^{\circ}\text{C}$, $T = 50^{\circ}\text{C}$

13

• Find: time, t, to reach T = 50°C

 $\frac{\text{Review Conduction Equation}}{\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{e}_{gen}}{\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{e}_{gen}}{\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{e}_{gen}}{\rho c_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}} \Rightarrow \frac{\partial T}{\partial t} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial x^2}}{\rho c_p \frac{\partial T}{\partial x}}$

Northridge

Problem
• Find time required to cool the centerline temperature of 0.3 m thick plate to 50°C if k = 50 W/m·K, α = 15x10 ⁻⁶ m ² /s and initial temperature is 400°C. The heat transfer coefficient is 80 W/m ² ·K and the environmental temperature = 20°C.
• Given: $T_0 = 50^{\circ}$ C, $T_i = 400^{\circ}$ C, $T_{\infty} = 20^{\circ}$ C, L = 0.3/2 = 0.15 m, k = 50 W/m·K, α = 15x10 ⁻⁶ m ² /s, h = 80 W/m ² ·K Find: t

31

Bi	λ_1	A_1	
0.01 0.02	0.0998 0.1410	1.0017 1.0033	Table Extract
0.04 0.06	0.1987 0.2425	1.0066 1.0098	Use Table 4-2 in text
0.08	0.2791	1.0130	to find λ_1 and A_1 for
0.2	0.4328	1.0311	given Βi • Find T at anv ἕ = x/L
0.4	0.5932	1.0580	and $\tau = \alpha t/L^2$ from
0.6	0.7051	1.0814	$\Theta = \frac{T - T_{\infty}}{T - T} \approx A_1 e^{-\lambda_1^2 \tau} \cos \lambda_1 \xi$
0.8	0.7910	1.1016	$I_i - I_{\infty}$
1.0	0.8603	1.1191	$T \approx (T_i - T_\infty) \left(A_1 e^{-\lambda_1 t} \cos \lambda_1 \xi \right) + T_\infty$
Nor	thridge		39

More Approximate Solutions II

Coefficients used in the one-term approximate solution of transient onedimensional heat conduction in plane walls, cylinders, and spheres (Bi = hL/k for a plane wall of thickness 2*L*, and Bi = hr_o/k for a cylinder or sphere of radius r_o)

	Plane Wall		Cylinder		Sphere	
Bi	λ_1	A ₁	λ_1	A ₁	λ_1	A_1
0.01	0.0998	1.0017	0.1412	1.0025	0.1730	1.0030
0.02	0.1410	1.0033	0.1995	1.0050	0.2445	1.0060
0.04	0.1987	1.0066	0.2814	1.0099	0.3450	1.0120
0.06	0.2425	1.0098	0.3438	1.0148	0.4217	1.0179
0.08	0.2791	1.0130	0.3960	1.0197	0.4860	1.0239
0.1	0.3111	1.0161	0.4417	1.0246	0.5423	1.0298
0.2	0.4328	1.0311	0.6170	1.0483	0.7593	1.0592
∩ 3 Californi	0.5218	1 0450	0 7465	1 0712	0 9208	1 0880
Nor	thridge	Table	4-2 in Çengel,	Heat and Mas	s Transfer	52

Semi-Infinite Solids Plane that extends to infinity in all directions Plane surface Practical T_{∞} applications: õ large area for short times - Example: earth Figure 4-24 in Çengel, surface locally, Heat and Mass Transfer Northridge

Northridge

Multidimensional Solution V
$\left(\frac{T(L,r_{0},t)-T_{\infty}}{T_{i}-T_{\infty}}\right)_{finite} = \left(\frac{T(r_{0},t)-T_{\infty}}{T_{i}-T_{\infty}}\right)_{infinite} \left(\frac{T(L,t)-T_{\infty}}{T_{i}-T_{\infty}}\right)_{infinite}_{slab}$
$\left(\frac{T(L,r_0,t) - T_{\infty}}{T_i - T_{\infty}}\right)_{finite} = (0.205)(0.543) = 0.111$ cylinder
$T_{edge} = T(L, r_0, 3600 \ s) = T_{\infty} + (T_i - T_{\infty})(0.111) = 20^{\circ} C + (400^{\circ} C - 20^{\circ} C)(0.111) = 62^{\circ} C$
California State University 73

D;	,	
DI	^A 1	
0.01	0.0998	Interpolation II
0.02	0.1410	
0.04	0.1987	 Find λ₁ for Bi = 0.24
0.06	0.2425	$P_i = 0.24$ is between
0.08	0.2791	-Bi = 0.24 is between Bi = 0.2 () = 4328) and
0.1	0.3111	$B_1 = 0.2 (\lambda_{1,1} = .4326)$ and $B_1 = 0.3 (\lambda_{1,1} = .5218)$
0.2	0.4328	$BI_2 = 0.3 (\lambda_{1,2} = .3210)$
0.3	0.5218	$\lambda_{1,2} = \lambda_{1,1}$
0.4	0.5932	$\lambda_1 = \lambda_{1,1} + \frac{\alpha_{1,2}}{D_1} + \frac{\alpha_{1,1}}{D_1} (Bi - Bi_1)$
0.5	0.6533	$B\iota_2 - B\iota_1$
0.6	0.7051	5218 /328
0.7	0.7506	$=.4328 + \frac{.52164328}{$
0.8	0.7910	.32
California: Nort	State University hridge	=.4684 79