Solving Simultaneous Nonlinear Algebraic Equations

Larry Caretto
Mechanical Engineering 309
Numerical Analysis of Engineering Systems

March 5, 2014

Northridge

Generalize Simple Example

- Two nonlinear equations in two variables
$2 x-y-e^{-x}=0$
$-x+2 y-e^{-y}=0$
- How do we generalize this
- Have N equations in N unknowns
- Unknowns are labeled $x_{1}, x_{2}, \ldots, x_{N}$
- Each equation is written in the form $f_{k}=0$
- In general, $f_{k}=f_{k}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=0$
- Many equations will not depend on all variables, but in general any equation could do so Cationnasax Invesily
Northridge

Outline

- Problem Definition of solving simultaneous nonlinear algebraic equations (SNAE)
- Using the MATLAB fsolve function
- Using Excel Solver
- Excel Solver exercise
- Newton's Method (Newton-Raphson procedure) for solving SNAE
aliformia State Cnubasity
2
Northridge

Problem Definition

- We consider a system of N equations in the N variables $x_{1}, x_{2}, \ldots, x_{N}$
- The vector variable, \mathbf{x}, represents the set of unknowns $\left[x_{1}, x_{2}, \ldots, x_{N}\right]$
- The N equations have the form $f_{1}(\mathbf{x})=0$,
$\mathrm{f}_{2}(\mathbf{x})=0, \ldots, \mathrm{f}_{\mathrm{N}}(\mathbf{x})=0$
- We can use the vector representation
$\mathbf{f}(\mathbf{x})=\mathbf{0}$, for the system of equations
- Vector is $\mathbf{f}=\left[\mathrm{f}_{1}(\mathbf{x}), \mathrm{f}_{2}(\mathbf{x}), \ldots, \mathrm{f}_{\mathrm{N}}(\mathbf{x})\right]$
- We want to find the solution, $\mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right.$, $\left.\ldots, x_{n}\right]$ to this set of equations Northridge

MATLAB Function fsolve

- This MATLAB function to solve $\mathbf{f}(\mathbf{x})=\mathbf{0}$ is the multidimensional analog of fzero
- It has a similar function call
- <Results> = fsolve(<function>, <initial guess>, <options>)
- <function> returns the vector $f(\mathbf{x})$
- <initial guess> is the vector guess \mathbf{x}_{0}
- Look at example
- $f_{1}=2 x_{1}-x_{2}-e^{-x_{1}}=0$
- $f_{2}=-x_{1}+2 x_{2}-e^{-x_{2}}=0$

Northridge

Using fsolve

- Write the vector function to compute the values of the two equations f_{1} and f_{2} function $F=$ testFct(x)

$$
F=\ldots
$$

$[2 * x(1)-x(2)-\exp (-x(1)) ; .$.
$-x(1)+2 * x(2)-\exp (-x(2))]$; end $\%$ not required

- Save this function file as testFct.m somewhere on your MATLAB path Northridge

More on fsolve

- Third parameter, <options> used to set calculation options
- Can set parameters such as convergence tolerance, iteration display, algorithm used
- Typically use a routine, optimset, to set options
- opt=optimset('Display','iter'); \%Sets option to display result of each iteration
- fsolve has multiple outputs including, solution, function values, codes, etc.
$-[x$ f flag out $]=$ fsolve(@myFunc, guess, opt)

Using Excel Solver II

- Solver is a tool that varies selected cells to set a single cell to a fixed value a maximum value or a minimum value
- Main use is for constrained optimum (maximum or minimum problems)
- Can also be used for system of equations $\mathrm{f}_{\mathrm{k}}(\mathbf{x})=0$ as follows
- Write each equation in a separate cell
- Write one cell formula to compute $\sum_{k} f_{k}^{2}$ - Set cell with this formula equal to zero Northridge

Using fsolve II

- Define a for matrix for the initial guesses of x_{1} and x_{2} : guess $=\left[\begin{array}{ll}-5 & -5\end{array}\right]$
- Call the fsolve function

```
        >> fsolve(@testFct, guess)
```

- MATLAB uses the default variable, ans ans $=-0.5671 \quad-0.5671$
- Test result by substituting into function >> fval = testFct(ans)
fval $=-0.4059 \mathrm{e}-6-0.4059 \mathrm{e}-6$ Northridge ${ }^{8}$

Using Excel Solver

- Solver is a tool that varies selected cells to set a single cell to a fixed value a maximum value or a minimum value
- Main use is for constrained optimum (maximum or minimum problems)
- Can also be used for system of equations $\mathrm{f}_{\mathrm{k}}(\mathbf{x})=0$ as shown on following slides
- To do this create cells for all x_{k} and all f_{k} then a single cell to compute $\sum_{k} f_{k}^{2}$ Northridge
」

Solver Details for $\mathbf{f}(\mathbf{x})=\mathbf{0}$

- Enter each x_{k} value in a cell (usually in a single column)
- Can use range names like x1_ or x_1
- Write a formula for each equation, $\mathrm{f}_{\mathrm{k}}(\mathbf{x})$ $=0$ in a cell (typically a single column)
- Create objection function cell with formula to obtain $\sum_{k} f_{k}^{2}$
- Use solver to set objective function cell to zero by changing all x_{k} cells
Northridge

Solver on fsolve Example

- Use previous example from fsolve:
- $f_{1}=2 x_{1}-x_{2}-e^{-x_{1}}=0$
- $f_{2}=-x_{1}+2 x_{2}-e^{-x_{2}}=0$
- With same initial guess $x_{1}=x_{2}=-5$
- Worksheet with initial conditions shown below in equation view

Cell names
shown in
Column A
Nalenamanture

	A	B		
1	x_1	-5	Cells to be	Objective cell
2	x_2	-5	changed	
3	f_1	$=2 * x _1-x _2-E X P\left(-x _1\right)$		
4	f_2	$=-\mathrm{x} 1+2 * x$ 2-EXP $\left(-x^{2}\right)$		
5	Sums		$1^{\wedge} 2+f{ }^{2}{ }^{\text {2 }}$	14

Solver Result

- Results dialog on worksheet
- Solution shown in column B

- Click OK to accept solution or Cancel to return to original values
- If no result obtained retry with new initial x_{k} Northridge

Solver Accuracy

- Options dialog appears after Options button (previous slide) is clicked

- Set small number in Convergence box to give good accuracy in solution
- Click OK at bottom of Options dialog to exit that dialog

Northridge

18

Your Solver Exercise

- Use Solver to find the intersection of a straight line and a circle in the $x-y$ plane
-Line: $y=m x+i$
- Circle: $(x-a)^{2}+(y-b)^{2}=r^{2}$
- Use $m=1, i=-1, a=b=1, r=2$
- Write as $f_{k}(x, y)=0, k=1,2$
$-f_{1}=y-m x-i=0$
$-f_{2}=(x-a)^{2}+(y-b)^{2}-r^{2}=0$
- Solver may not be able to find both solutions, but try different guesses Northridge

How is this $\mathbf{A y}=\mathbf{b}$

- $-f_{k}^{(m)}=\sum_{j} \frac{\partial f_{k}}{\partial x_{j}}\left[x_{j}^{(m+1)}-x_{j}^{(m)}\right]+\begin{aligned} & \text { Ignore } \\ & \text { higher }\end{aligned}$
- $a_{k j}=\frac{\partial f_{k}}{\partial x_{j}} \quad b_{k}=-f_{k}^{(m)} \quad$ and $y_{j} \stackrel{\text { order }}{=}$ $x_{j}^{(m+1)}-x_{j}^{(m)}$
- Partial derivative evaluated with values from iteration m
- After y_{j} are found we have new set of x iterations as $x_{j}^{(m+1)}=y_{j}+x_{j}^{(m)}$
Northridge

Newton- Raphson Iteration Results	Iteration	$\times 1$	$f 1$	df1/dx1	df1/dx2	y1
		x2	f2	df2/dx 1	di2/dx2	y2
	1	-5	-153.413	150.4132	-1	1.026771
		-5	-153.413	-1	150.4132	1.026771
	2	-3.97323	-57.1291	55.15587	-1	1.054901
		-3.97323	-57.1291	-1	55.15587	1.054901
	3	-2.91833	-21.4286	20.5103	-1	1.098324
Each set of two		-2.91833	-21.4286	-1	20.5103	1.098324
	4	-1.82	-7.99188	8.17188	-1	1.114336
		-1.82	-7.99188	-1	8.17188	1.114336
rows has pattern shown in header	5	-0.70567	-2.73087	4.025198	-1	0.902706
		-0.70567	-2.73087	-1	4.025198	0.902706
	6	0.197039	-0.62412	2.821159	-1	0.342705
		0.197039	-0.62412	-1	2.821159	0.342705
	7	0.539744	-0.04315	2.582898	-1	0.027263
		0.539744	-0.04315	-1	2.582898	0.027263
See NR workbook online	8	0.567006	-0.00021	2.567221	-1	0.000137
		0.567006	-0.00021	-1	2.567221	0.000137
	9	0.567143	-5.3E-09	2.567143	-1	3.4E-09
		0.567143	-5.3E-09	-1	2.567143	3.4E-09
	10	0.567143	0	2.567143	-1	0
		0.567143	0	-1	2.567143	0

Newton's Method for $\mathbf{f}(\mathbf{x})=\mathbf{0}$

- Use notation $x_{k}^{(m)}$ and $f_{k}^{(m)}$ for values of x_{k} and f_{k} at iteration m
- Write Taylor series for $f_{k}^{(m+1)}$ in terms of values at previous iteration: $x_{k}^{(m)}, f_{k}^{(m)}$
- Use only first-order terms
- $f_{k}^{(m+1)}=f_{k}^{(m)}+\sum_{j} \frac{\partial f_{k}}{\partial x_{j}}\left[x_{j}^{(m+1)}-x_{j}^{(m)}\right]+\cdots$
-Set $f_{k}^{(m+1)}=0$ for all f_{k} to get simultaneous linear algebraic equations: $\mathbf{A y}=\mathbf{b}$
Northridge
20

Return to fsolve Example

- Use previous example from fsolve:

$$
\begin{gathered}
f_{1}=2 x_{1}-x_{2}-e^{-x_{1}}=0 \\
f_{2}=-x_{1}+2 x_{2}-e^{-x_{2}}=0 \\
\frac{\partial f_{1}}{\partial x_{1}}=2+e^{-x_{1}} \\
\frac{\partial f_{1}}{\partial x_{2}}=-1 \\
\frac{\partial f_{2}}{\partial x_{1}}=-1
\end{gathered} \quad \frac{\partial f_{2}}{\partial x_{2}}=2+e^{-x_{2}} .
$$

- For each iteration we have to compute the A matrix of partial derivatives and the \mathbf{b} vector of $-\mathrm{f}_{\mathrm{j}}$, and solve $\mathbf{A} \mathbf{y}=\mathbf{b}$ for the y_{j} and get $x_{j}^{(m+1)}=y_{j}+x_{j}^{(m)}$
Northridge
\square

Solution Hint

- Using Gaussian elimination on an exam or quiz is likely to have errors
- You are more likely to get a better grade if you gave some simple indication of the operations you are doing $w-3 x+5 y+2 z=7$
- Here is an example
$\begin{array}{lllll}1 & -3 & 5 & 2 & 7 \text { Row } 1\end{array}$
$2 w+5 x-3 y+4 z=3$

0	1	6	-1	-2

011-13 0-11 Row 3-(2/1)(Row 1)
0 19-34-13-32 Row 4-(7/1)(Row 1)
Northridge

Quiz Five Solution II

- After row 2 as pivot row
1-3 527 Row 1
$0 \begin{array}{llll}1 & 6 & -1 & -2 \\ \text { Row } 2\end{array}$
$0 \begin{array}{llll}0 & -79 & 11 & 11 \text { Row 3-(11/1)(Row 2) }\end{array}$
0 0-148 66 Row 4-(19/1)(Row 2)
Using row 3 as pivot subtract -148/(-79) times row 3 from row to give
0 0 0-14.6076-14.6076 Row 4

Califomia Slate Dninastity
Northridge
28

Backsubstitution		
$w+-3 x+5 y+$	$2 \mathrm{z}=$	7
$x+6 y+$	$-1 \mathrm{z}=$	-2
-79y +	$11 \mathrm{z}=$	11
$-14.6076 z=-14.6076$		
$z=-14.6076 /(-14.6076)=1$		
$y=(11-11 z) /(-79)=[11-11(1)] /(-79)=0$		
$x=[-2+z-6 y] / 1=[-2+1-6(0)] / 1=-1$		
$\begin{aligned} & w=[7-2 z-5 y+3 x] / 1=[7-2(1)-5(0)+ \\ & 3(-1)] / 1=2 \end{aligned}$		

