
Functions Spring 2005

1

UserUser--defined Functionsdefined Functions

Larry Caretto
Computer Science 106

Computing in Engineering and
Science

Spring 2005

2

Outline
• Writing and calling a function

– Header and body
– Function prototype
– Passing information to a function
– Returning values in the function name

• void functions with no return value
• Use pass-by-reference to change

variables in the calling program
• Variable scope and global variables

3

Introduction to Functions
• Library functions like pow, atan and
sqrt used previously

• Statement to set x = yz3:
– x = y * pow(z, 3);

– Note order of arguments important; the call
pow(3, z) gives 3z

– Use #include <cmath> for this function
• You can write your own functions

– Why do we write functions?
– How do we write code for functions?

4

Why do we write functions?
• First use of functions was for code like

mathematical function calculations
– Specialized calculation done repeatedly
– Want to write code only one time
– Want to be able to pass values of

parameters to code and get value back
• As programs got more complex,

breaking code into functions provided a
way to organize complex code

5

How do we write functions?
• C++ code is a collection of functions
• Each function, including main, has the

same level of importance
– Close code for each function before

starting a new function
int main()
{ // body of main
}
int myFunction(……)
{ // body of myFunction
}

6

Operation of Functions
• Any function (the caller) can call another

function by using the name of the
function being called in an expression

• The statement calling the function
sends information from the caller

• Execution control is transferred to the
function being called

• The function being called returns control
and (usually) results to the caller

Functions Spring 2005

2

7

Operation of Functions
• The function being called uses the

information it receives to do a set of
calculations or procedures

• In the usual case, the function being
called returns a result to the caller in the
location of the function name

• Example: d = pow(b,2) – 4 * a * c;
– calls the pow function with values of b and 2
– and the result b2 is returned in function

name, pow, for further use in an expression
8

Writing and Using Functions
• Organize the program into individual

functions that are called by main
– Simple example: main calls three

functions: (1) input function, (2) calculation
function and (3) output funciton

• Write code for each function (and main)
– Write function header to specify

information received from calling function
– Write function body to calculate results and

return them to “calling” function
• Write function calls to exchange data

9

Writing and Using Functions II
• Library functions, such as pow(x, y) to

compute xy, transfer information based
on the order of the variables

• This is true for user-defined functions as
well
– Information transferred from a list of

variables in the calling function to a list of
variables in the function called

– Correspondence based on order of
variables in function header and statement
calling the function

10

Function Basics
• Each function has a header and a body

– Header specifies
• Name of function
• Type of value returned by the function name
• List of variables in the function whose values

are determined by the calling program
– Body gives code executed by the function

• Function prototypes at start of code
provide information to compiler
– Same as header except a semicolon is

added at the end
– Can omit variable names

11

Function Basics II
• Example of header and body
double myPow (double number,
double power) // header

{

// Body,in braces contains

// actual code for function

}

• Header defines information that will be
received from calling function

12

Function Header
• Header has following syntax:

– <type> <name> (<argument list>)
– <type> specifies the type of value

returned by the function
– <name> is the name you choose for your

function; this name is used to call the
function from another function

– <argument list> specifies type and
names of variables in function whose
values come from the calling program

– There is no semicolon in the function
header

Functions Spring 2005

3

13

Function Header II
• Example of function, myPow, a user-

defined function to replace pow
– Pass the number and the power to the

function as type double
– Return the result as type double
– General header syntax from previous chart

<type> <name> (<argument list>)
– double myPow (double number,
double power)

14

Argument List
• Example on previous chart had two

parameters in argument list
– <type> <name> (<argument list>)
– double myPow (double number,
double power)

• Function will use number and power as
type double variables

• Values for these variables set by other
function that calls (uses) myPow

15

Passing arguments
• Based on order of arguments in function

header and in calling statement
• Recall the library pow function was

called as pow(number, power)
– pow(3,4) = 34 but pow(4,3) = 43

– What is result of following code
double number = 3, power = 4;

cout << pow(power, number)

Result is 43; only the order counts!
16

The return Statement
• We have used this statement in main as
return EXIT_SUCCESS;

• The general syntax of this statement is
return <value>;

• <value> may be a constant, a
variable or an expression

• This is value returned to calling program
in function name

• return always transfers control

17

Organization of Function Code
double myPow(double number,

double power)

{

double result = exp(power *

log(number));

return result;

}

• Place following prototype at top of code
double myPow(double number,

double power);
18

Alternative Function Code
double myPow(double number,

double power)

{

return = exp(power *

log(number));

}

• Can use following prototype without
variable names at top of code

double myPow(double, double);

Functions Spring 2005

4

19

Another function Example

bool leap(int year)
{
if (year % 4 != 0)

return false;
else if (year % 400 == 0)

return true;
else if (year % 100 == 0)

return false;
else

return true;
}

Header

Body

Name

Type

Argu-
ment
List Multiple

returns

20

Use of bool leap(int year)
bool leap (int year);// prototype

int main() // examples of use

{ cout << “Enter a year: “;

int y; cin >> y;

bool cond = leap(y);

if (leap(y)) {…}

if (leap(y) && month == 2) {…}

return EXIT_SUCCESS

}

// leap and other functions go here

21

Exercise
• Write a function that takes two type int

arguments and returns their difference
• Use this function to compute 3 – 5
• Write the prototype
int diff(int a, int b)

{ return a – b }

//use: cout << diff(3, 5);

// prototype: int diff(int a, int b);

22

Exercise
• Write a function that takes two type

double arguments and returns their
quotient

• Use this function to compute 5/3
• Write the prototype
double div(double a, double b)

{ return a / b }

//use: cout << div(5, 3);

// prototype: double div(double a,

double b);

23

void functions with no return
• The type void used for functions that do

not return a value
• Example: error message function
void printError(int code)
{

if (code == 1)
cout << “Type one error\n”;

else if (code == 2)
cout << “Error two is …

else if // additional code
} // no return needed here

24

The return Statement
• The return statement returns control

and a value to the calling program
– Functions, other than void functions use

the syntax return <value> to return a
value to the calling function in the function
name

– Void functions may have a simple return
statement without a value to return control
to the calling program at some point before
the end of the function

• Functions may have more than one
return statement
– return transfers control immediately

Functions Spring 2005

5

25

Empty Argument List
• If a function does not need any values

from the calling program an empty set
of parentheses is required

• Example is function with several output
statements to describe purpose of code

void describeCode()
{

cout << “This code …..
cout << “Still more output

// No return needed for type void
}

26

Kinetic Energy Function
• Write a function that takes two type

double parameters, mass and velocity
and computes kinetic energy = mV2/2

double KE(double m, double V)
{

return m * V * V / 2;
}

• Possible calls to this function
totalE = KE(4, 3) + PE;

• What is result of this call
result = 50 + KE(5, 2);

50 + 5 * 22 / 2 = 60

27

Kinetic Energy Function II
double KE(double m, double V)
{

return m * V * V / 2;
}

• What is output from these calls?
double mass = 5, velocity = 2;
cout << KE(velocity, mass);
double e = PE + KE(2*pow(velocity,

2), velocity);
double total = KE(mass * velocity,

mass);

10

e = KE(2*22,2) = KE(8,2)=8*22/2 = 16

total = KE(5*2,5) = KE(10,5)=10*52/2 = 125 28

Data Validation Function
• The function getValidInt(int xMin,
int xMax,string name) does the
following tasks
– Prompts the user for an input variable

(named in the string passed in the third
parameter) within a range defined by the
first and second parameters

– Gets the input from the user
– Tells the user if there is an error and gets

new input from the user in this case
– Returns valid input to the calling function

29

Data Validation Function II
• The function getValidInt described

on the previous chart is used in exercise
seven and project one

• Examples of its use
int month = getValidInt(1, 12,
“month”);

int mayDay = getValidInt(1, 31, “day
of the month”);

int year = getValidInt(1901, 2000,
“year in the 20th century”);

int getValidInt(int xMin, int xMax,
string name)

{
// Function used to input integer
// data within a stated range
// Example function call to input a
// value for a variable named
// hour with range between 0 and 23:
// int hour =
// getValidInt(0, 23, “hour”);

int x; // Input data value
bool badData; // Bad data flag

// continued on next chart

Functions Spring 2005

6

do // Loop until user data in range
{
cout << "Enter a value for " << name

<< " between " << xMin << " and "
<< xMax << ": ";

cin >> x;
badData = x < xMin || x > xMax;
if (badData)

// error message code on next chart
}
while (badData);

} // end of function

if (badData)
// print error message

{

cout << "\n\nIncorrect data; you "

<< "entered " << name

<< " = “ << x << "\n"

<< name << "must be between "
<< xMin << " and " << xMax
<< " Reenter the data now.\n";

}

33

getValidInt Screen Results
• Call to getValidInt
int mayDay = getValidInt(1, 31, “day
of the month”);

• Screen prompt showing parameters and
user input

Enter a value for day of the month
between 1 and 31: 0

Incorrect data; you entered day of the
month = 0. day of the month must be
between 1 and 31. Reenter the data
now.

Enter a value for day of the month
between 1 and 31: 1

34

Program Structure Example
• Next chart: example for getValidInt
• Function prototype before program that

uses function
• In this example main calls function
• Complete code for main is written start

of code for function
• A call to the function transfers control to

function with values in the function
header variables from the caller

• Function returns value to main

int getValidInt(int, int, string);
// prototype above

int main()
{

int month = getValidInt(1, 12,
“month”);

……………… // other code
return EXIT_SUCCESS

}
int getValidInt(int xMin, int xMax,

string name)
{ int x;

……………………………… // other code
cin >> x;
……………………………… // other code
return x;

} 36

Passing Information to Functions
• Parameters in function header: formal

parameters or dummy parameters (also
called formal or dummy arguments)

• Values sent to function by calling
program: actual parameters or actual
arguments

• Pass by value is default process: when
a function is called a copy of the value
of the argument is passed to the
function

Functions Spring 2005

7

37

More on Information to Functions
• In pass-by-value, the values of the

actual arguments in the calling program
are not changed

• The alternative to pass by value is pass
by reference
– The memory address of the actual

parameter is passed to the function
– Changes to the dummy parameter in the

function change the actual parameter in
the calling program

38

Pass-by-Value Example
//calling program

double x = 10, y = 2;

cout << “fake = “ << fake(x, y);

cout << “, x = “ << “, y = “ << y;

// what is printed?

//function

double fake(double x, double y)

{

x +=10; y *= x; return 3 * y;

}

39

Pass-by-value Operation
• The code on the previous chart does

not change the x and y values in the
calling program

• Only values of x and y from the calling
program are passed to the function

• Functions cannot changed values of
variables that are passed by value

• How do we use pass by reference to
change the values of parameters
passed into a function?

40

Pass-by-reference
• To use pass by reference place an

ampersand (&) between the type and
the parameter name in the function
header: int f1(int& x, int& y)

– Not a preferred programming style
– Used only when we have to change more

than one parameter (e.g., input routine,
vector components, etc.)

– Exercise seven uses an input function
which must have pass by reference

41

Pass-by-reference II
• Default is pass-by-value where changes

to parameters do not affect variables in
the calling program

double fake1 (int x, double y)

{ x++; y += x; return x * y; }

• Ampersand (&) gives pass by reference
that changes program variables

double fake2 (int& x, double& y)

{ x++; y += x; return x * y; }

42

Pass-by-Value Example
//calling program segment

double u = 5, v = 2;

cout << “fake = “ << fake(u, v);

cout << “\nu =“ << u << “, v =“ << v;

// what is printed?

//function

double fake(double x, double y)

{

x +=10; y *= x; return 3 * y;

} x = 5 +
10 = 15

y = 2 *
15 = 30

fake(u, v) =
3 * 30 = 90

fake = 90
u = 5, v = 2

Functions Spring 2005

8

43

Pass-by-Reference Example
//calling program segment

double u = 3, v = 4;

cout << “fake = “ fake(u, v);

cout << “\nu =“ << u << “, v =“ << v;

// what is printed?

//function

double fake(double& x, double& y)

{

x +=10; y *= x; return 3 * y;

} x = 3 +
10 = 13

y = 13 *
4 = 52

fake(u, v) =
3 * 52 = 156

fake = 156
u = 13, v = 52

44

Pass-by-Reference Example II
double u = 3, v = 4;

cout << “fake = “ fake(u, v);

cout << “\nu =“ << u << “, v =“ << v;

double fake(double& x, double& y)

{ x +=10; y *= x; return 3 * y; }

// at start fake has x = 3, y = 4

// fake code sets x = x + 10 = 13

// and y = y * x = 4 * 13 = 52

// fake returns 3 * 52 = 156 and

// changes u to 13 and v to 52

45

Example: Converting Vectors
• Convert different

representations of two-
dimensional vectors
– Polar: magnitude, |F| and

direction, θ

y

|F|
Fy

Fx

xθ

• Conversion equations
– |F| = (Fx

2 + Fy
2)1/2, θ = tan-1(Fy / Fx)

– Fx = |F|cos θ, Fy = |F|sin θ,

– Rectangular: components, Fx,
and Fy, along the x and y axes

46

Converting Vectors II
• Write two functions to convert between

the two different representations
– Polar to rectangular function has

magnitude and direction as inputs and
returns x-component and y-component

– Rectangular to polar function has x-
component and y-component as inputs and
returns magnitude and direction

– Use atan2 function for θ = tan-1(Fy / Fx) to
get full 2π result (-π/2 < atan result < π/2)

47

Converting Vectors III
• Each function has two input values and

computes two results
• Use pass by reference to get results

back to calling program
• Inputs to function are pass by value
• Function type can be void since function

name need not return a value
– Functions using pass by reference to

return values sometimes return an error
code in the function name

48

Converting Vectors IV
void polarToRectangular (

double magnitude, double angle,
double& xComponent,
double& yComponent)

{
xComponent = magnitude

* cos(angle);
yComponent = magnitude

* sin(angle);
}

Functions Spring 2005

9

49

Converting Vectors V
void rectangularToPolar (

double xComponent,
double yComponent,
double& magnitude, double& angle)

{
magnitude = sqrt(

pow(xComponent, 2) +
pow(yComponent, 2));

angle = atan2 (yComponent,
xComponent);

}

50

Use of Conversion Functions
const double PI = 4 * atan(1);
double x = 3, y = 4;
double A, theta;
rectangularToPolar(x, y, A, theta);
cout << x << “ “ << y << “ “

<< A << “ “ << theta << endl;
double size = 10, direction = PI / 8;
double xComp, yComp;
polarToRectangular(size, direction,

xComp, yComp);
cout << size << “ “ << direction <<

“ “ << xComp << “ “ << yComp;

51

Pass-by-Reference Exercise
• Write an input function that prompts the

user to enter two type double variables, x
and y, and returns these values to the
calling program

void input(double& x, double& y)

{

cout << “Enter x and y: “;

cin >> x >> y;

}
52

Pass-by-Reference Exercise
void input(double& x, double& y)
{

cout << “Enter x and y: “;
cin >> x >> y

}

• Write the prototype for this function and a
call to the function to get x and y

void input(double& , double&);

double x, y;
input (x, y); Optional

x y

53

Use of Pass by Reference
• Calling programs use same approach for

pass by reference and pass by value
• Variable or expression is placed as one

of the arguments to the function
• Do not use a constant in a function call

unless it is passed by value
• Data types (and ampersands for pass by

reference) are not used in function call

54

Scope of a Variable
• Scope of a variable is the part of

program that can use the variable
• We see that we can have the same

variable name in different functions
• These names, although the same,

occupy two different memory locations
in the computer and are not related

• Even within a single function we can
limit the part of a function in which a
variable is in scope (exists)

Functions Spring 2005

10

55

Background
• All variables must be declared (given a

type) before they are used
• Variables can be declared given a value

when declared or later in the code
• Usually assign a value before first use
• Scope refers only to declaring a

variable, not to assigning it a value
– This is just a reminder that we have to

initialize variables as well as declare them

56

Basic Rule for Scope
• A variable defined in a set of braces

only exists within those braces
• It can be used anywhere in the program

below its initial declaration
– This includes sets of braces that are

opened below the initial declaration
• After close of brace where variable is

declared, the variables “goes out of
scope” it cannot be used

57

Example of Scope
double x;

if (c == 4)

{

x = 12;

double y = 2; // limited scope

}

cout << x << “ “ << y;

// statement above will give syntax

// error; y is not defined here

58

Another example of Scope
double y = 0, c = 4;

if (c == 4)

{

double y = 2; // different var-

// iable with limited scope

}

cout << “y = “ << y;

// statement above will print y = 0

// from initial declaration of y

59

Where to Declare Variables
• Current programming practice declares

variables as close to first time of use as
possible

• May have to be declared earlier in the
code to give appropriate scope
– First use of variable may be inside a loop
– We must declare it prior to the loop if we

want to use if following the loop

60

Another Example
• Code below will not work because yesNo

goes out of scope after closing brace
do

{ // program code

cout << “Another run(Y/N)? “;

char yesNo; // bad location

cin >> yesNo;

}

while(yesNo == ‘Y’ || yesNo == ‘y’);

Functions Spring 2005

11

61

Another Example Corrected
• Code below works because yesNo is

declared before brace opening the loop
char yesNo; // correct location

do

{ // program code

cout << “Another run(Y/N)? “;

cin >> yesNo;

}

while(yesNo == ‘Y’ || yesNo == ‘y’);

62

Global Variables
• Global variables have scope of more

than one function
– Declared outside function boundaries
– Have scope of all functions from

declaration to end of file
– Usually declared at top of program to be

present in all functions
– Considered bad programming practice
– Use only when variable must be accessed

by several functions or there are problems
in passing the variable

63

Trace Global Variables
• What is program output?
int status = 0; // global

int main() {

cout << status << “ “;

f1(); f2();

cout << “ “ << status // more

}

void f1() { status = 1; }

void f2() {cout << status << endl;}

• Program output is 0 1 1
64

Project Two Global Variables
• In project two the main function calls a

function which calls a third function
• We want to get data from main to the

third function
• We do not want to rewrite the second

function, but it does not allow us to pass
the necessary information

• Use global variables to get the
information from main to third function

65

Summary
• Use functions to organize code
• Elements of a function

– Header with type, name, and argument list
– Body with code that function executes
– Statement to return information through

function name in calling program must be
included in function body

– Prototype at start of program which is
header with a semicolon

• Function name calls function and
returns value

66

Summary Continued
• Pass information to function through

argument list in function header
– Correspondence by position of arguments

in header and position of arguments in
calling function

– Default of pass by value will not change
arguments in calling function

– Pass by reference (requires ampersand(&)
in function header and prototype) changes
arguments in calling function

Functions Spring 2005

12

67

Summary Concluded
• Scope of variables is part of program

where a variable can be used
• Variables can only be used within

braces where there are declared and
only following the declaration

• Global variables, declared outside any
function, can be used by any function
following the declaration

68

Review Function Introduction
• A C++ program is a collection of

functions
– Each function is written as a unit
– Complete code for one function before

starting to write a new one
– Execution starts in main function

• Upon calls to a function, information and
control is transferred to the function

• Value returned in function name

69

Information Transfer
• Function header has argument list
• Variables in that list (called dummy

parameters or dummy arguments) are
determined by call to function

• Call to function has actual arguments or
actual parameters in same order that
dummy arguments appear
– Order is all that matters in transferring

information to a function

