Spring 2005

Functions
User-defined Functions
Larry Caretto
Computer Science 106
Computing in Engineering and
Science
Spring 2005
Northridge

Outline

» Writing and calling a function

— Header and body

— Function prototype

— Passing information to a function

— Returning values in the function name
= void functions with no return value
» Use pass-by-reference to change

variables in the calling program

* Variable scope and global variables

Calbifornia State University
Northridge

Introduction to Functions

Why do we write functions?

* Library functions like pow, atan and
sqgrt used previously
 Statement to set x = yz:
-x =y * pow(z, 3);
— Note order of arguments important; the call
pow(3, z) gives 3
— Use #include <cmath> for this function
* You can write your own functions
— Why do we write functions?
— How do we write code for functions?

Cabtfornia State |‘:II|1Y-'.-
Northridge

* First use of functions was for code like
mathematical function calculations
— Specialized calculation done repeatedly
— Want to write code only one time
— Want to be able to pass values of
parameters to code and get value back
 As programs got more complex,
breaking code into functions provided a
way to organize complex code

Cabtfornia State |‘:II|1Y-'.-
Northridge

How do we write functions?

Operation of Functions

e C++ code is a collection of functions
 Each function, including main, has the
same level of importance
— Close code for each function before
starting a new function
int mainQ)
// body of main

“

int myFunction(..)}
// body of myFunction

-

Caldforrsi Sate University
Northridge

« Any function (the caller) can call another
function by using the name of the
function being called in an expression

» The statement calling the function
sends information from the caller

» Execution control is transferred to the
function being called

» The function being called returns control
and (usually) results to the caller

Caldforrsi Sate University
Northridge

Functions

Operation of Functions

Spring 2005

» The function being called uses the
information it receives to do a set of
calculations or procedures

* In the usual case, the function being
called returns a result to the caller in the
location of the function name

» Example: d = pow(b,2) — 4 *a * c;

— calls the pow function with values of b and 2

—and the result b2 is returned in function
name, pow, for further use in an expression
s 7

Cabifornia St niverss

Northridge

Writing and Using Functions

» Organize the program into individual
functions that are called by main
— Simple example: main calls three
functions: (1) input function, (2) calculation
function and (3) output funciton
» Write code for each function (and main)
— Write function header to specify
information received from calling function
— Write function body to calculate results and
return them to “calling” function

» Write function calls to exchange data
Calbifornia State University s

Northridge

Writing and Using Functions |l

« Library functions, such as pow(x, y) to
compute xY, transfer information based
on the order of the variables

 This is true for user-defined functions as
well

— Information transferred from a list of
variables in the calling function to a list of
variables in the function called

— Correspondence based on order of
variables in function header and statement
calling the function

Northridge

Function Basics

« Each function has a header and a body
— Header specifies
* Name of function
 Type of value returned by the function name

« List of variables in the function whose values
are determined by the calling program

— Body gives code executed by the function
» Function prototypes at start of code
provide information to compiler

— Same as header except a semicolon is
added at the end

In omit variable names

10

Function Basics Il

» Example of header and body
double myPow (double number,
double power) // header

{

// Body, in braces contains
// actual code for function

}

» Header defines information that will be
received from calling function

Cabfornia Stats Unversity
alirforni Sate Untversity 11

Northridge

Function Header

» Header has following syntax:

— <type> <name> (<argument list>)

— <type> specifies the type of value
returned by the function

—<name> is the name you choose for your
function,; this name is used to call the
function from another function

—<argument list> specifies type and
names of variables in function whose
values come from the calling program

— There is no semicolon in the function
header

Cabfornia Stats Unversity
alirforni Sate Untversity 12

Northridge

Functions

Function Header I

Spring 2005

» Example of function, myPow, a user-
defined function to replace pow

— Pass the number and the power to the
function as type double

— Return the result as type double

— General header syntax from previous chart
<typeXkname>\(<argument list>)

Calfornia State Lniversity 13
Northridge

Argument List

« Example on previous chart had two
parameters in argument list

—double myPow t‘,gpyp_le numbé?:;
double power>)” -7

S

« Function will use number and power as
type double variables

 Values for these variables set by other
function that calls (uses) myPow

1
\

Calfornia State Lniversity 14
Northridge

Passing arguments

» Based on order of arguments in function
header and in calling statement

» Recall the library pow function was
called as pow(number, power)
— pow(3,4) = 34 but pow(4,3) = 43
— What is result of following code
double number = 3, power = 4;
cout << pow(power, number)

Result is 43; only the order counts!

Cabtfornia State |‘:II|1Y-'.- 15
Northridge

The return Statement

* We have used this statement in main as
return EXIT_SUCCESS;

» The general syntax of this statement is
return <value>;

« <value> may be a constant, a
variable or an expression

 This is value returned to calling program
in function name

= return always transfers control

Cabtfornia State |‘:II|1Y-'.- 16
Northridge

Organization of Function Code

double myPow(double number,
double power)
{
double result = exp(power *
log(number));
return result;

}

« Place following prototype at top of code
double myPow(double number,
double power);

Caldforrsi Sate University 17
Northridge

Alternative Function Code

double myPow(double number,
double power)

{

return = exp(power *
log(number));
}
 Can use following prototype without
variable names at top of code
double myPow(double, double);

Caldforrsi Sate University 18
Northridge

Functions

Another function Example

e if (year % 400 == 0)
return true;
Argu- I gpse if (year % 100 == 0)

' return false;
List else Multiple E@

return true; returns

} PR

Caltforrsa State Lnfversity 19
Northridge

Spring 2005

Use of bool leap(int year)

bool leap (int year);// prototype
int main() // examples of use
{ cout << “Enter a year: *“
int y; cin >> y;
bool cond = leap(vy):
it (leap(y)) {.}
if (leap(y) && month == 2) {.}
return EXIT_SUCCESS

}

// leap and other functions go here

Caltforrsa State Lnfversity 20
Northridge

Exercise
» Write a function that takes two type int
arguments and returns their difference
 Use this function to compute 3 -5
» Write the prototype
int diff(int a, int b)
{ return a — b }
/luse: cout << diff(3, 5);
/I prototype: int diff(int a, int b);

Cabtfornia State I‘:uln-".- 21
Northridge

Exercise

» Write a function that takes two type
double arguments and returns their
guotient

» Use this function to compute 5/3

» Write the prototype

double div(double a, double b)
{ return a / b }

/luse: cout << div(5, 3);

/I prototype: double div(double a,
double b); .

Northridge

void functions with no return

» The type void used for functions that do
not return a value

» Example: error message function
void printError(int code)

if (code == 1)
cout << “Type one error\n”;
else if (code == 2)
cout << “Error two is ..
else if // additional code
} // no return needed here

ak .’:r;lﬁ:lll-l‘:unw'.- 23
Northridge

The return Statement

» The return statement returns control
and a value to the calling program
— Functions, other than void functions use
the syntax return <value>to return a
value to the calling function in the function
name
—Void functions may have a simple return
statement without a value to return control
to the calling program at some point before
the end of the function
 Functions may have more than one
return statement
—return transfers control immediately

Caldforrsi Sate University 24
Northridge

Functions

Spring 2005

Empty Argument List

« If a function does not need any values
from the calling program an empty set
of parentheses is required

» Example is function with several output
statements to describe purpose of code

void describeCode()

{
cout << “This code
cout << “Still more output
// No return needed for type void

}

Calbifornia State University 25

Northridge

Kinetic Energy Function

» Write a function that takes two type
double parameters, mass and velocity
and computes kinetic energy = mv4/2

double KE(double m, double V)

return m *V *V / 2;

* Possible calls to this function
totalE = KE(4, 3) + PE;
* What is result of this call

result = 50 + KE(5, 2);

Caltferst State Uniyersity 50+5*22/2 =60
Northridge z

Kinetic Energy Function |l

double KE(double m, double V)
{

}

* What is output from these calls?

double mass = 5, velocity = 2; qg

cout << KE(velocity, mass);

double e = PE + KE(2*pow(velocity,
2), velocity);

double total = KE(mass * velocity,

e = KE(2*22,2) = KE(8,2)=8*22/2 = 16 mass);

return m *V *V / 2;

ﬁ{"j"l;‘t'i'i"l'.'i;'i“g;;total = KE(5*2,5) = KE(10,5)=10*52/2 = 1257

Data Validation Function

e The function getvalidint(int xMin,
int xMax,string name) does the
following tasks
— Prompts the user for an input variable

(named in the string passed in the third
parameter) within a range defined by the
first and second parameters

— Gets the input from the user

— Tells the user if there is an error and gets
new input from the user in this case

— Returns valid input to the calling function

Roriheidge &

Data Validation Function Il

» The function getVal idInt described
on the previous chart is used in exercise
seven and project one

» Examples of its use

int month = getvValidint(1, 12,
“month’);

int mayDay = getvalidint(1, 31, “day
of the month”);

int year = getvValidint(1901, 2000,
“year in the 20th century”);

rabifoemsics State [nhersiy
California State Universit 29

Northridge

int getvalidlnt(int xMin, int xMax,
string name)

{
// Function used to input integer
// data within a stated range
// Example function call to input a
// value for a variable named
// hour with range between 0 and 23:
// int hour =
// getvalidint(0, 23, *“hour”);

int x; // Input data value
bool badData; // Bad data flag

/I continued on next chart

Functions Spring 2005

do // Loop until user data in range if (badData)
{ /7 print error message
cout << "Enter a value for " << name {
<< " between " << xMin << " and ** cout << "\n\nlncorrect data; you "
_ S<oxMax << Tnotg << "entered " << name
cin >> X; << M= <<y << \n"
badData = x < xMin |] x > xMax; - X n
if (badData) << name << 'must be between "
/I error message code on next chart << xMin <<"and" <<xMax
3} << " Reenter the data now.\n";
while (badData); 3}

} 7/ end of function

getValidInt Screen Results Program Structure Example
* Callto getvalidint » Next chart: example for getValidint
'”gfmgggar%’oﬁtﬁ,‘?t;’?"d'”t(1, 31, “day « Function prototype before program that

« Screen prompt showing parameters and uses function) _
user input * In this example main calls function
Enter a value for day of the month » Complete code for main is written start

between 1 and 31: O .
Incorrect data; you entered day of the of code for function

month = 0. day of the month must be » A call to the function transfers control to
ngween 1 and 31. Reenter the data function with values in the function

Enter a value for day of the month header variables from the caller
between 1 and 31: 1 Function returns value to main

33 34

Northridge Northridge

int getvalidIint(int, int, string); . . .
// prototype above Passing Information to Functions
int main()

» Parameters in function header: formal

int month = getvalidint(1, 12, parameters or dummy parameters (also
month™ }); called formal or dummy arguments)
.................. // other code . .
return EXIT_SUCCESS Values sent to function by calling
3 program: actual parameters or actual
int getvalidInt(int xMin, Int xMax, arguments
string name) . .

{ int x; « Pass by value is default process: when
.................................... // other code a function is called a copy of the value
cin >> Xx; of the argument is passed to the
.................................... // other code function
return Xx;

¥ Roriles .

Functions

More on Information to Functions

Spring 2005

* In pass-by-value, the values of the
actual arguments in the calling program
are not changed

» The alternative to pass by value is pass
by reference
— The memory address of the actual
parameter is passed to the function

— Changes to the dummy parameter in the
function change the actual parameter in
the calling program

Calfornia State [iniyersiy
abiforni Stale Unhversin 37

Northridge

Pass-by-Value Example

//calling program
double x = 10, y = 2;
cout << “fake = *“ << fake(X, Yy);
cout << “, x = “ << ¥,y = ¥ y;
// what is printed?

//function
double fake(double x, double y)
{

X +=10; y *= X; return 3 * y;

}

Calbifornia State University 38

Northridge

Pass-by-value Operation

» The code on the previous chart does
not change the x and y values in the
calling program

» Only values of x and y from the calling
program are passed to the function

 Functions cannot changed values of
variables that are passed by value

» How do we use pass by reference to
change the values of parameters
passed into a function?

Cabtfornia State I‘:uln-'.- 39
Northridge

Pass-by-reference

» To use pass by reference place an
ampersand (&) between the type and
the parameter name in the function
header: int f1(int& x, int& y)
— Not a preferred programming style
— Used only when we have to change more

than one parameter (e.g., input routine,
vector components, etc.)

— Exercise seven uses an input function
which must have pass by reference

Cabtfornia State I‘:uln-'.- 40
Northridge

Pass-by-reference I

» Default is pass-by-value where changes
to parameters do not affect variables in
the calling program

double fakel (int x, double y)

{ x++; y += x; return x *vy; }

» Ampersand (&) gives pass by reference
that changes program variables

double fake2 (int& x, double£ y)

{ x++; y +=X; vreturn x *y; }

Cabfornia Stats Unversity
abifornic State [nfersin 41

Northridge

Pass-by-Value Example

//calling program segment

double u = 5, v = 2;

cout << “fake = “ << fake(u, v);

cout << “\nu =" << U << “, Vv = << v;
// what is printed? fgke =090

//function u=5 v=2

double fake(double x, double y)

{

X +=10; y *= X; return 3 * y;
3 X=5+ y=2* fake(u,v) =

Cabfoni Sate nhersy _ - n
Nnrliﬁ'i(lge 10=15 15=30 3*30=90 @

Functions

Pass-by-Reference Example

//calling program segment
double u = 3, v = 4;
cout << “fake = “ fake(u, v);

cout << “\nu = << U << “, Vv = << v;
i i ?
//_What is printed- fake = 156
//function u=13, v=52

double fake(double& x, double& y)
{

X +=10; y *= X; vreturn 3 * y;
3 X=3+ y=13*

Californit State nhersity - —_
Nnrtﬁ'ri(lge 10=13 4=52

fake(u,v) =
3*52 =156 43

Spring 2005

Pass-by-Reference Example Il

double u = 3, v = 4;
cout << “fake = * fake(u, v);
cout << *“\nu =" << U << *, Vv = << v;

double fake(double& x, double& y)
{ x +=10; y *= x; return 3 * vy; }
// at start fake has x = 3, y = 4
// fake code sets x = x + 10 = 13
// andy =y * x=4*13 = 52

// fake returns 3 * 52 = 156 and

// changes u to 13 and v to 52

T r—
California Sate [niversit 44

Northridge

Example: Converting Vectors

» Convert different
representations of two-
dimensional vectors
— Polar: magnitude, [Fland ~ | ¢\

direction, 0 9 X

— Rectangular: components, F,, Fy
and F,, along the x and y axes
« Conversion equations
- |FI = (F2&+F2Y2 6 =tan’(F,/ F,)
- F=|F|cos 0, F, = |F|sin 6,

Cabtfornia State I‘:uln-".- 45
Northridge

Converting Vectors |l

» Write two functions to convert between

the two different representations

— Polar to rectangular function has
magnitude and direction as inputs and
returns x-component and y-component

— Rectangular to polar function has x-
component and y-component as inputs and
returns magnitude and direction

— Use atan2 function for 8 = tan''(F, / F,) to
get full 2z result (-n/2 < atan resuft < 7/2)

46

Converting Vectors |l

Each function has two input values and
computes two results

» Use pass by reference to get results
back to calling program

Inputs to function are pass by value
» Function type can be void since function
name need not return a value

— Functions using pass by reference to
return values sometimes return an error
code in the function name

rabifoemsics State [nhersiy
Cabifornsia State Universit 47

Northridge

Converting Vectors IV

void polarToRectangular (
double magnitude, double angle,
double& xComponent,
double& yComponent)

{
xComponent = magnitude
* cos(angle);
yComponent = magnitude
* sin(angle);
}

rabifoemsics State [nhersiy
Cabifornsia State Universit 48

Northridge

Functions

Converting Vectors V

void rectangularToPolar (
double xComponent,
double yComponent,
double& magnitude, double& angle)

{
magnitude = sqrt(
pow(xComponent, 2) +
pow(yComponent, 2));
angle = atan2 (yComponent,
xComponent);
}
Norhridge o

Spring 2005

Use of Conversion Functions

const double Pl
double x = 3, vy
double A, theta;
rectangularToPolar(x, y, A, theta);
cout << X << “ ‘o< y << e e
<< A << “ “ << theta << endl;
double size = 10, direction = Pl / 8;
double xComp, yComp;
polarToRectangular(size, direction,
xComp, yComp);
‘ << direction <<
<< xComp << *“ * << yComp;
50

4 * atan(1);
4;

cout << size << “

Calbifornia State University
Northridge

Pass-by-Reference Exercise

» Write an input function that prompts the
user to enter two type double variables, x
and y, and returns these values to the
calling program

void input(double& x, double& y)
{

cout << “Enter x and y: “;
cin >> x >> y;

}

Cabtfornia State |‘:II|1Y-'.- 51
Northridge

Pass-by-Reference Exercise

void input(double& x, doubleé& y)
{

cout << “Enter x and y: “;
cin >> x >> vy
}
» Write the prototype for this function and a
call to the function to get x and y

void input(double& x, dOUb|/e&.Y);
double X, y; \
inPUt (X, ¥); Optional

Cabtfornia State |‘:II|1Y-'.- 52
Northridge

Use of Pass by Reference

* Calling programs use same approach for
pass by reference and pass by value

» Variable or expression is placed as one
of the arguments to the function

» Do not use a constant in a function call
unless it is passed by value

» Data types (and ampersands for pass by
reference) are not used in function call

Caldforrsi Sate University 53
Northridge

Scope of a Variable

» Scope of a variable is the part of
program that can use the variable

» We see that we can have the same
variable name in different functions

* These names, although the same,
occupy two different memory locations
in the computer and are not related

» Even within a single function we can
limit the part of a function in which a
variable is in scope (exists)

Caldforrsi Sate University 54
Northridge

Functions

Background

Spring 2005

« All variables must be declared (given a
type) before they are used

» Variables can be declared given a value
when declared or later in the code

 Usually assign a value before first use

» Scope refers only to declaring a
variable, not to assigning it a value

— This is just a reminder that we have to
initialize variables as well as declare them

abifoemics State [hersity
California State Universit 55

Northridge

Basic Rule for Scope

« Avariable defined in a set of braces
only exists within those braces

« |t can be used anywhere in the program
below its initial declaration
— This includes sets of braces that are

opened below the initial declaration

 After close of brace where variable is
declared, the variables “goes out of
scope” it cannot be used

abifoemics State [hersity
California State Universit 56

Northridge

Example of Scope

double x;
if (c=4)
{

X = 12;

double y = 2; // limited scope
}
cout << X <<
// statement above will give syntax
// error; y is not defined here

<< y;

Roriheidge o

Another example of Scope

double y = 0, ¢ = 4;
if (c==14)
{
double y = 2; // different var-
// iable with limited scope
}
cout << *y = “ << y;
// statement above will print y = 0
// from initial declaration of y

58

Where to Declare Variables

» Current programming practice declares
variables as close to first time of use as
possible

» May have to be declared earlier in the
code to give appropriate scope
— First use of variable may be inside a loop

—We must declare it prior to the loop if we
want to use if following the loop

rabifoemsics State [nhersiy
California State Universit 59

Northridge

Another Example

» Code below will not work because yesNo
goes out of scope after closing brace
do
{ // program code
cout << “Another run(Y/N)? “;
char yesNo; // bad location
cin >> yesNo;

}

while(yesNo == “Y” || yesNo == “y”);

rabifoemsics State [nhersiy
California State Universit 60

Northridge

10

Functions

Another Example Corrected

» Code below works because yesNo is
declared before brace opening the loop
char yesNo; // correct location
do
{ // program code
cout << “Another run(Y/N)? “;
cin >> yesNo;
}
while(yesNo == “Y”]| yesNo == *‘y”);

formita State [niversity

Northridge o

Spring 2005

Global Variables

 Global variables have scope of more

than one function

— Declared outside function boundaries

— Have scope of all functions from
declaration to end of file

— Usually declared at top of program to be
present in all functions

— Considered bad programming practice

— Use only when variable must be accessed

by several functions or there are problems
in passing the variable

formita State [niversity

Northridge -

Trace Global Variables

* What is program output?
int status = 0; // global
int main(Q) {
cout << status << “ “3
f10; f20;

cout << “ “ << status // more

T
void f1() { status = 1; }

void f2() {cout << status << endl;}
» Program outputis011

Cabtfornia State |‘:II|1Y-'.- 63
Northridge

Project Two Global Variables

* In project two the main function calls a
function which calls a third function

* We want to get data from main to the
third function

» We do not want to rewrite the second
function, but it does not allow us to pass
the necessary information

» Use global variables to get the
information from main to third function

Cabtfornia State |‘:II|1Y-'.- 64
Northridge

Summary

» Use functions to organize code

» Elements of a function
— Header with type, name, and argument list
— Body with code that function executes

— Statement to return information through
function name in calling program must be
included in function body

— Prototype at start of program which is
header with a semicolon

 Function name calls function and
returns value

Califormia State University

Northridge

65

Summary Continued

» Pass information to function through
argument list in function header

— Correspondence by position of arguments
in header and position of arguments in
calling function

— Default of pass by value will not change
arguments in calling function

— Pass by reference (requires ampersand(&)
in function header and prototype) changes
arguments in calling function

Califormia State University

Northridge

66

11

Functions

Spring 2005

Summary Concluded

Review Function Introduction

» Scope of variables is part of program
where a variable can be used

 Variables can only be used within
braces where there are declared and
only following the declaration

* Global variables, declared outside any
function, can be used by any function
following the declaration

Calfornia State Lniversity 67
Northridge

« A C++ program is a collection of
functions
— Each function is written as a unit

— Complete code for one function before
starting to write a new one

— Execution starts in main function
» Upon calls to a function, information and
control is transferred to the function

» Value returned in function name

Calfornia State Lniversity 68
Northridge

Information Transfer

 Function header has argument list

* Variables in that list (called dummy
parameters or dummy arguments) are
determined by call to function

« Call to function has actual arguments or
actual parameters in same order that
dummy arguments appear

— Order is all that matters in transferring
information to a function

Cabtfornia State |‘:II|1Y-'.- 69
Northridge

12

