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5 Invariant Measures

The Game of Life has been studied for 26 + years. Nevertheless, most stable states of
the infinite system remain a mystery. In a similar vein, the ergodic classifications of many of
the LtL rules continue to be an enigma. However, the exploration of invariant configurations
and invariant measures enables us to say something rigorous about the infinite systems of even
the most nonlinear rules. In this chapter we present some of the results of our explorations
along these lines.

5.1 Bounds and applications

Percolating through the Internet as electronic folklore were e-mail correspondences
among John Conway, Dean Hickerson, and Hartmut Holzwart. The messages discussed a
couple of bounds for the Game of Life. The first two theorems of this section are in the spirit
of the electronic folklore, but formulated mathematically in terms of measures and generalized
to the LtL family of rules.

Let &y be product measure with density p. Running the deterministic CA rule &; on
this random initial state yields a stochastic process, with updates determined by
(p, B1, B, 61,02). & may be thought of as a Markov process since the sites update
independently from all preceding times except the current one. The Markov process is
degenerate since the transitions are deterministic. Nevertheless, it has a compact state space,
{0, 1}Z2, so there exists a measure 4 that is invariant under the rule. (See [Lig], Theorem

1.8f) Since the dynamics are translation invariant, & can be chosen so.

Theorem 5.1.1. Let u be a translation invariant measure for the LtL rule, &, which is
determined by (p, 51, (s, 01, 02). Let P, be the probability measure induced by p. Let

p=u(e(®) = 1) = P(&(z) = 1) and g = p(&(z) = 0) = 1 — p. Then

4p(p+1
p < m, where M = max{/, 6, — 1}.

Proof. Since &, is translation invariant and A is symmetric,

Y Bulbla) =04y =1)= ) Pulblz)=0,&(y) =1).

yex+N zey+N
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We compute an upper bound for the left-hand side of the above:

Y Puléo(@) =0,4(y) =1) < 4plp+ 1) Py(é(x) = 0) = 4p(p+ 1)(1 — p).

yex+N

The following will be used to obtain a lower bound for the right-hand side:

(1) Py(éo(x) =0,&1(y) = 1) = Py (&(z) = 0] &1(y) = VP (&i(y) = 1)
P,(&(y) =11 = B, (%(x) =1[&(y) =1)]
P,(&i(y)=1) = P,(%(x) =1, &(y) =1).

=

(2) P,(bol(x) = 1,&(y) =1) = P,(&(z) = 1,41 (y) = 1,4%(y) = 0)
+ P, (&(z) = 1,4(y) = L&) =1).

(3) Fora =0,1,
P, (%o(z) =1,&(y) = L&) = a) = E(Lga)=1 - Loy=1 - Ley)=a)-

Y Ellgm-1 - Lag=t - Lo B(Y Lot lag-1- Loy

zey+N rey+ N
S E(M - 1g0)=1 - Low)=a)-

(The inequality in (4) holds because if @ = 0, then since y is a 0 at time 0 and a 1 at time 1, it
sees at most 5 1's at time 0. If @ = 1, then since yremains a 1 at time 1, it sees at most

69 —1 1's at time 0.)

(5) E( e =1 Lo=0) + E( Lgy=1 - Llgp=1) = E( lgy=1) = Pu(&(y) = 1).

Using the above in the order they appear yields:
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Y Pu&(@) =0,4(y) =1) =) [Pul&(y) =1) = Pu(blx) =1, &(y) = 1)]

zey+N zey+N

=4p(p+1)p— Y [Pubo(z) =1,&(y) = 1,&(y) = 0) + Pu(bo(2) = 1,&1(y) = 1,&(y) = 1)]
zey+N

>4p(p+1)p — MIE( g y=1 - Ley=0) + E( L=t - Lgy=1)]

=4p(p+1)p— Mp.

Combining this bound with the upper bound attained above yields:

4p(p+1)p— Mp < 4p(p+1)(1 —p)

and hence the desired inequality. [

What does Theorem 5.1.1 say about the invariant measures of specific rules? Let us
mention two examples. It says that the density p of any translation invariant measure for the
Game of Life satisfies, p < 8/13. For the range 2 LtL rule (2,4,4,5,5) it says that
p<6/11.

Theorem 5.1.1 obtains an upper bound on the density of an invariant measure, L.
What about measures for which the time average densities of any trajectory of the rule are
constant? In other words, can we find an upper bound on the density of a fixed, or still life
measure? The answer is yes, and we prove it in Theorem 5.1.2; first let us define a s/l life

measure.

Definition 5.1.1. A still life measure is a tfixed measure p. That is, starting from p, the

dynamics remain fixed for all time: &' = & for all ¢.

Theorem 5.1.2. Let 4 be a still life measure. Let p = pu(é(x) =1) = P,(&(z) =1) and
g = plE(x) = 0) =1 p. Then

< g
P> 4l )-(&-1)+o
where 0 = the maximum number of live neighbors = can have at time ¢ = 0 when &,(x) = 0.
o depends on 6y since it is determined by computing the maximum number of live sites that

can co-exist in  + A without overcrowding one another.

Proof. Let z,y € A. Then,
>~ Pulélw) =1) = 4p(p+ p.

yex+N
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Also

2

2> Pulboy) =1)

yex+N

=2 [Puély) =1L&(z) =1)+ P,(%(y) = 1,&(z) = 0)]

yex+N

= [E(lgu=1 - La@=1) + E(lga=1 - Le@)=o)]
yex+N

=E( Y. lgp=1la@=1) + E( X Lgu=1 - lg@w=o)
yex+N yex+N

< E((02 — Vg a)=1) + E(0 - Lgm)=0) = (6 — )p+o(1 — p).

Combining this bound with the equality on the first line yields:

4p(p+1)p < (6, — 1)p+o(1 - p)
and hence the desired inequality. [J

Theorem 5.2.1 says that the density, p of any still life measure for the Game of Life
satisfies p < 16—1 (since 0o = 4 implies that o = 6, see Appendix I). For the range 2 LtL rule
(2,4,4,5,5) it says that p < % (since 6 = 5 implies that o = 12, again see Appendix I).

Note: For all p in Theorem 5.1.2

4p(p+1)
P 5ot —(6-1)°

and this is the case that occurs when o = 4p(p + 1). Observe that for

M = maX{/BQ762 - 1}:

4p(p+1) 4p(p+1)
8p(p+1)—(62—1) = 8p(p+1)—M "

The latter quantity is the bound attained in Theorem 5.1.1.

Now let us show that the bound we obtain in Theorem 5.1.2 is attained by an entire

set of LtL rules. To do this we need the following proposition.

Proposition 5.1.1. Let A be a configuration consisting of infinite strips of 1’s, each with

width p, and separated by infinite strips of 0’s, each with width 1. That is,
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—p— 1 —p— 1 —p— 1 —p— 1 —p—

A
Then A is a still life under any range p LtL rule such that 4p° — 1 € [61, ] and
2p(20 +1) ¢ [B1, Bo].

Proof. Suppose §g = A and &y(x) = 1. Then

(z+N)N&| = (20+1)2 —2(2p + 1) = 4p> — 1 (we get equality because all of the
occupied sites see exactly two strips of 0’s). Thus, by hypothesis, &;(x) = 1. If&y(z) =0,
then |(x + V) N&| = (2p+1)* — (20 + 1) = 2p(2p + 1). Thus, by hypothesis,
&(z)y=0 0O

The density of A is p’j and it goes to 1 as p — oo. We point out that A will actually

be fixed under any two-state CA rule, not restricted to the LtL family, provided a 1 survives
when it sees 4p> — 1 1’s and a 0 does not become a 1 when it sees 2p(2p + 1) 1's.

One can construct many infinite still lifes similar to A, fixed under different LtL
rules. This is done by varying the widths of the infinite strips of 0’s and 1’s. We are
interested in the one from Proposition 5.1.1 because it provides an example whose density is
close to the bound obtained in Theorem 5.1.2. Let us show how its density compares to our
bound. The bound is best if o, and hence - is small, so let us do the case when
6y = 4p®> — 1. Inthat case, if p > 2 then o = 4p(p + 1) — 4 (see Appendix I). Thus, by

Theorem 5.1.2,
4p°+4p—4
P> 4p48p—2-
The density of A is p"ﬁ, so if p = 2, then
4p*+4p—4  p 9

4p24+8p—2 — p+1 T 3"

In range 2 the bound is attained by all rules with 6 = 15 and 20 ¢ [y, (] since the A
from Proposition 5.1.1 is an infinite still life for all such rules. Thus, if 4 is the still life
measure determined by A, then it has the largest possible density of any such measure.

We point out, however, that starting a rule from a random initial state may often yield

a density that is a lot smaller. For example, if we run the rule (2,10, 13, 6, 15) starting from
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product measure with density 0.5 for 100 time steps, the result is aperiodic dynamics with a
density that is approximately 0.42. If we take that configuration and place a portion of A
(depicted in the following pictures by black and white stripes) over part of it and then run the
rule, the aperiodic dynamics beat up on the still life portion. The following figures show that,

by time 50, the still life portion has been almost completely destroyed by the aperiodic
dynamics.
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We see that, by time 75, all of A has been completely destroyed and the configuration looks as
it did before A was inserted. Now let us vary the parameters, to the rule (2,5, 16,2, 20), and
place a portion of A on the aperiodic configuration generated by that rule after being run for
100 time steps on a random initial configuration with density 0.33. In this case, the portion of
A grows, though very slowly, and eventually locks into periodicity where the two propagating
edges meet (we used wrap-around boundary conditions). In the infinite system, it would fill
in the lattice to yield an exact copy of A.
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time 50

time 700

The third and final example we give is the rule (2, 8,18,11,22). Again we run the
rule on an initial product measure, with density % in this case. Then we insert a portion of A
and use that as time 0. In this case, however, neither A, nor the other configuration "wins."
Rather, the eventual state is locally periodic, with much of it fixed in a tile-like pattern that
appears to be an approximation of A. If we had let this run indefinitely, from the random
initial state, it also would have yielded a locally periodic limiting state (though probably not

such a large chunk tiled by perfect stripes).
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time O time 25

time 250

We illustrated the cases above to show that first, although the experimental density of
a rule may be low, there may exist invariant sets with high densities that do not arise out of
random initial states. Second, these examples show that, when started from random initial
configurations, the limiting states for rules which admit invariant measures consisting of
vertical stripes, vary dramatically. The last example we gave would seem to be the only
"likely" candidate for such an invariant measure.

Let us describe three more infinite still lifes, one with a density that can be as close to

1 as we like, one with density %, and the third with a density as close to 0 as we like.

Proposition 5.1.2. Let A be a configuration consisting of infinite strips of 1’s, each with

width n, n > 2p, and separated by infinite strips of 0’s, each with width 1. That is,
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—n— 1 &<n— 1 <n— 1 —n— 1 «n—

A
Then A is a still life under any range p LtL rule such that both 2p(2p + 1) and
(2p+1)* € [61,62] and 20(2p + 1) ¢ [, Bo].

Proof. Suppose & = A and &y(z) = 1. Then |(z + N)N&| = (20 + 1)? or 2p(2p + 1)
(we get equality because all of the occupied sites see either zero or one strips of 0's,
respectively). Thus, by hypothesis, & (z) = 1. If§y(x) = 0, then

[z +N)N&| = (2p+1)> — (2p+1) = 2p(2p + 1). Thus, by hypothesis, &;(z) =0. O

_n_
n+1°

goes to co. (Note that n > 2p implies that n automatically goes to oo as the range does.)
Since 6y = (2p +1)%, o = (2p + 1)* (see Appendix I), and Theorem 5.1.2 yields the bound,

p < 1 (so our example agrees with the theorem).

The density of the infinite still life from Proposition 5.1.2 is which goes to 1 as n

Proposition 5.1.3. Let A be a configuration consisting of infinite strips of 1’s, each with

width 1, and separated by infinite strips of 0's, each with width 1. That is,

111111111

A
Then A is a still life under any range p LtL rule such that if p is odd, then p(2p 4+ 1) € [61, b9]
and (p +1)(2p+ 1) & [01, B2], or, if p is even, then (p +1)(2p + 1) € [61, 62] and
p(2p +1) & [61, fo].
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Proof. Suppose &y = A and &y(x) = 1. If pis odd then |(z + N) N&| = p(2p0 + 1) (we get
equality because all of the occupied sites see exactly p strips of 1’s). Thus, by hypothesis,
&1(x) =1. If&y(z) =0, then |(x + M) N&| = (p+1)(2p + 1) (we get equality because all
of the 0's see exactly p + 1 strips of 1’s). Thus, by hypothesis, &;(x) = 0. If p is even, the
1’s see exactly p + 1 strips of 1’s and the 0's, exactly p strips of 1's. O

For any range 1 rule with 6o = 3 and 6 ¢ [, (] the A from Proposition 5.1.3 is an
infinite still life. The density of A is % Since 69 = 3 Appendix I gives 0 = 6. By Theorem
5.1.2 the density, p, of any still life measure for any range 1 rule with 6o = 3 and 6 ¢ [5;, 5]
satisfies p < % Thus, again we have a set of examples that attain the bound given in Theorem
5.1.2.

Proposition 5.1.4. Let A be a configuration consisting of infinite strips of 0’s, each with

width n, n > 2p and separated by infinite strips of 1’s, each with width 1. That is,

—n — 1 —n — 1 —n — 1 —n — 1 —n —

A
Then A is a still life under any range p LtL rule such that 2p + 1 € [y, 62] and
2p+1¢ [6, 6] (and 5 # 0).

Proof. Suppose &g = A and &y(z) = 1. Then |(x + N) N&y| = 2p + 1 (we get equality
because all of the occupied sites see exactly one strip of 1’s). Thus, by hypothesis, & (z) = 1.
If &y(z) = 0, then |(x + N)N&| = 2p + 1 or 0. Thus, by hypothesis, £;(x) =0. O

_1
n+1°

goes to co. (Note that n > 2p implies that n automatically goes to oo as the range does.)

The density of the infinite still life from proposition 3 is which goes to 0 as n

Rules that admit finite still lifes also admit a large number of still life measures. This is
part of the reason we call them still life measures -- using finite still lifes, we are able to
construct a huge number of still life measures. To illustrate this point, let us do one such

construction.



55

Let A C Z? be a \; x Ay rectangle with periodic boundary conditions. Assume that

A is painted in such a way that everything is fixed under &;. That is,
¢ = A ¢, for all times ¢.
Tile Z* with A, beginning by placing one of the vertices of A at the origin and forcing the rest
of its elements to have coordinates that are greater than or equal to zero. That is,
A={z=(r1,29) €Z*:0<2; < \;,i=1,2,...,d}.

The remaining tiles are identically oriented, so that the sites in each tile see the equivalent of
the assumed periodic boundary conditions (see the following figure). Then the tiling, which
we denote by K, is fixed under &;. There are A1\, distinct shifts of the tiling. Form the

average of all the shifts,
1 -
p=— S 0(k),
A1A2 TR

where v = aje; +ases, (0 < a; < \;, i =1,2)isavectorin A, and 8" is the shift operator
which translates the entire tiling to the right aqunits, and up as units. Then, by construction,

p s translation invariant and is fixed under &; in the sense that P, (§; = &) = 1.

AlAA
AlAA
AlAA

Tiling of Z* by A.

Theorems 5.1.1 and 5.1.2 give upper bounds for various non-trivial invariant
measures. All meaningful rules admit the trivial still life measure since any finite set consisting
of all 0's is fixed for all such rules. The question thus arises: Can we obtain lower bounds for
the non-trivial invariant measures? For starters, Proposition 5.1.4 shows that for any rule
with 2p + 1 € [61,09] and 2p + 1 ¢ [0y, B2] (and By # 0), there exists a still life measure with
density that can be as small as we like, by taking the number of infinite strips of 0's in A to be
as large as we like. We can also show that there are more rules for which we can construct
still life measures with densities that are as small as we like. To illustrate this, let us show
how one can construct a still life measure, with density as small as we like, from a finite still
life.

Let T be a finite still life under &,. Then |T'| = n < oo, ¢} =T, and there exists a
rectangle, A C Z?, with dimensions A\; x Ao such that ' C A. Choose A so that T fits inside
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in such a way that there is a band of 0’s of width, w > p/2, surrounding the smallest

rectangle, B, that contains all of I'. Place I' inside A and fill in the remainder of A with 0's as

follows:
)\T A 0's Iw
9 S
e —o-

— A —
If A has periodic boundary conditions and is painted as described above, then everything in it
is fixed under &;,. Thus, we can use A to construct a still life measure p.

Observe that, for each fixed pair (&, "), where I is a finite still life under &, there is a
family of still life measures, each of which is determined by the size of the rectangle A, which
is described above, and the placement of I inside A. We can make the densities of these
measures as small as we like by increasing the width, w, of the band of 0’s surrounding I in
A. Hence, for a fixed I, a rectangle A, and the still life measure, p, that they determine,
simply increasing the dimensions of A yields another still life measure £ that has smaller
density. Thus, there is no positive lower bound on the densities of still life measures.

The above discussion shows that invariant measures for rules which admit still lifes do
not have lower bounds. Suppose we look at a set of rules which do not admit still lifes. Do
their invariant measures have lower bounds? We claim that the answer is yes, if we add the
condition that the set of rules admit neither periodic objects, nor bugs. How does one come
up with even one such rule? It is necessary to check that for such a candidate rule, any seed
started on a background of 0's either shrinks and eventually dies, or grows forever, covering
7?2 with all 1's or some pattern, with density less than 1, of 1’s. We have discovered a couple
of rules which appear through empirical data to have these properties. However, we are not

yet convinced that the rules are indeed examples.

We conclude this chapter with the construction of a period two measure along with a

theorem that gives an upper bound on the density of the measure.

Construction of a period 2 measure.

Let A C Z? be a \; x Ay rectangle with periodic boundary conditions. Assume that
A is painted in such a way that everything in it is period 2 under &;. That is, every site
changes state every time step. As we did in the construction of a still life measure, tile Z>
with A, assuming that each tile is identically oriented, so that the sites in each tile see the

equivalent of the assumed periodic boundary conditions. Then every site in the tiling, which
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we denote by A, flip flops every time step under &,. There are A\, distinct shifts of the tiling.

Form the average of all the shifts,

_ 1 oK
#ZEUEZA@ (A),

where v = aje; +ases, (0 < a; < \;, i =1,2)isavectorin A, and 8" is the shift operator
which translates the entire tiling to the right aqunits, and up as units. Then, by construction,

p is translation invariant and it is period 2 under &; in the sense that P, (& = &) = 1.

Theorem 5.1.3. Let A C Z2 be a \; x Ay rectangle with periodic boundary conditions.

Assume that all sites in A are period 2 under &;. Let u be the period 2 measure determined by
A Let p=u(é(@) = 1) = P,(&() = 1) and g = p(¢(@) = 0) = 1 — p. Then

4p(p+1)—p
p< gl (8p(p+1) — B — By #0).
Proof. Let z,y € A. As in the proof of the previous theorem,

Z Pu (50(9) = 1) = E( Z 150(9):1 ’ 151(5”):1) +
yex+N yex+N

E( Y Lgp=1-lo@=0)] < fop+[4plp +1) — fi](1 - p).
yex+N

The first part of the inequality holds because £; () = 1 implies that &;(z) = 0. Thus,
pr<léon(z+N)| <.

The second part of the inequality holds because &;(z) = 0 implies that

fo(z) =&(x) =1
Thus

2

fr<lan(e+N)| < B

(in particular,  must see at least 5; 1’sat time 1). Since A is period 2, all sites flip every time
step (so all of the 1’s at time O become 0’s at time 1). Thus,

dplp+1) =B <|oN(@+N)[ <4p(p+1)— B

(Otherwise, |£; N (x + AN)| will be strictly less than ;.) We also have that



> Pu(b(y) =1)=4p(p+1)p.
yex+N

Combining these yields:

dp(p +1)p < Bop + [4p(p + 1) — Bi](1 — p)

and hence the desired inequality. [J
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