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4.2 Monotone LtL Rules

Another simplifying feature for a two state CA rule, 7, to have is monotonicity or
attractiveness. T is said to be monotone or attractive if it maps larger sets of 1’s to larger
sets of 1’s. That is, if A and B are sets of 1’s and A C Bthen 7 (A) C 7 (B). In order for
this to occur with a range p LtL rule, the upper thresholds for birth and survival must be their
maximums. In other words, such LtL rules will have parameters

61, B =|N|—1, 6, and 6, = |N].
Thus, the TVA is a monotone CA rule. Another well known monotone LtL rule is the
discrete threshold growth model (TGM). Let us discuss known results for the TGM that are

relevant to our current discussion of LtL rules.
4.2 — A. Discrete threshold growth model
A CA from the discrete threshold growth model (TGM) has range p LtL parameters:
Gr=6,06=|N|—-1,6=1,and 6 = |N]|, (6 > 1).

Gravner and Griffeath have determined that each of the TGM rules generates one of
three types of dynamics — subcritical, critical, or supercritical. They have also determined
exactly which TGM rules generate each type of dynamics. Let us present their definitions and
results from [GGT1].

Let Ay = T (Ag) = U, A;.
e Say that the dynamics are supercritical if there exists a finite Ay such that A; eventually
occupies every site in Z2, i.e. Ao, = Z°.
e Say that the dynamics are critical if A, # Z* for every finite Ay but, for any Ay with
finite complement, A, = 7.
e Say that the dynamics are subcritical if there exists a non-empty finite set, H (a hole), so

that the dynamics cannot fill H, even when started from the initial set Ag = H®.
For the following, we need: ¢«(N') = max{| NV N{| : [ aline through the origin}.

Proposition 4.2.1. Threshold growth dynamics with — A/ = N are:
e supercritical iff § < L(|JA| — t(N)),
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e subcritical iff § > 1(|A| — 1).
Moreover, in the critical case, for every p > 0, the dynamics started from product

measure with density p fill the lattice a.s.; i.e. A, = Z° a.s.

In the case of range p box neighborhoods, — N = A and ¢«(N') = 2p + 1 so for LtL
rules with parameters
Br=0,06=|N-1,06 =1,and 6 = |N], (6 > 1),
the above says that the dynamics are:
e supercritical if § < 2p* + p,
e critical if 6 € [2p” + p + 1,20 + 2p]

e subcritical if 6 > 2p° + 2p.

In particular, this says that if & < 20> + p, then the limiting state is 1. In addition, if
6 € [2p° + p + 1,20 + 2p), then started from product measure with any p > 0, the limiting

state1s 1 a.s.
4.2 — B. LtL rules near TGM -- global survival and global death

This section contains theorems which prove that certain LtL rules near the set of
monotone rules (and, in some cases, in the set of monotone rules) result in global death and
global survival, starting from any random initial configuration. It is not a coincidence that
these results apply to sets of rules that lie close to the boundaries of the parameter space
(meaning that at least some of the parameters are at, or near, their extremes). It is near those

extremes that we find the least nonlinear, and hence, most tractable rules.

The two theorems of this section specify LtL parameters that ensure global survival
and global death, respectively. In order to prove them, we adapt to the LtL rules some of the
formalism used in [GG1] to prove the results listed above for the TGM.

Recall that, if ¢ C Z* is a set of 1’s (on a background of 0s), we define

T ={ee <@+ N)N{<iU{zel:6 <|lz+N)NE < b}
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Let € C R? be any subset of 1’s (on a background of 0's). Define

TE) ={zel B <|@+NNE<BIU{zet:6 <|a+N)NE <&},

where N is still the range p box neighborhood of the origin, and | - | continues to be
cardinality.
Then 7 and 7 are conjugate. That is, if B C R? is any set of 1’s (on a background of
0's), then
T(B)NZ* =T(BNZ?).

Now we define the speeds of half-spaces, filled either with 1’s or 0's, assuming (in
both cases) that their complements consist of any possible configurations of 1’s. Suppose u is
a two-dimensional unit vector in the sphere S! C R?. Denote the half-space
H; ={z € R*: (z,u) <0} ({-, - )is the Euclidean dot product).

Definition 4.2.1. Let £, C R? be the set of 1's at time 0.
(i) Define the speed, w'(u), of H, by
w'(u) =max{\ € R : H, + u C T(£,) } for every £, such that H, C &,.
The maximum may not exist, since all sites in H, may become 0's next time, or all sites in the

system may become 1’s. If all sites in H,, become 0's next time, define w!(u) = — co. Ifall

sites in the system become 1’s, define w!(u) = oo.

(i1) Define the speed, w®(u), of H, by

w®(u) = max{\ € R : (H, + \u)® D T (£,)} for every &, such that (H, )° D &,.
Again the maximum may not exist, since all sites in H, may become 1’s next time, or all sites
in the system may become 0's. If all sites in H, become 1’s next time, define w®(u) = — oo.

If all sites in the system become 0's, define w°(u) = oco.

Lemma 4.2.1. For any u, the following hold, provided p > 1.
(i) 1< |INN{z:(z,u)=0} <2p+1.
(1) p(2p+1) < [N {z: (z,u) <O} <2p(p+1).

(i3i) 202 +2p + 1 < [N N {z : {z,u) <0} <2p° +3p+ 1.
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Proof. Let E = {|N N1 : lis aline through the origin}. For any u, since N is the range p
box neighborhood, 1 < E < 2p 4 1. This proves (7). Combining the symmetry of A" with
(i) gives
H(2p+17 — (204 1)) S IV N {a: (2,u) < 0} < H(2p+ 1) — 1),
which is (7). Again combining the symmetry of A and (), we get
14+3((20+1)% - 1) <|NN{z: (z,u) <0} and
N N{z:(z,u) <0} <2p+1+3((2p+1)? —(2p+1)),
which is (747). O

Proposition 4.2.2. Assume p > 1.
(i) If6; < 2p° +2p+ 1, and & = (2p + 1) then w'(u) > 0 for every .
(i3) If By > 2p(p + 1) then w®(u) > 0 for every u.

Proof. (i) If every site in H, remains a 1 at the next time step, then w'(u) > 0 for every u.
(This holds since we are assuming that H, C €,.) Let y € R? be in a small neighborhood of
the origin. Then for any u,

(y+N)N{z: (z,u) <0} =|NN{z: (z,u) <0} >2p"+2p+1.
The inequality holds by Lemma 4.2.1, part (ii7). Thus, if 6; < 2p* +2p + 1, and

6 = (2p + 1), then every site in H, will remain a 1 next time.

(i3) If every site in H, remains a 0 at the next time step, then w”(u) > 0 for every u. (This
holds since we are assuming that (H, ) D &,.) Let y € R? be in a small neighborhood of the
origin. Then for any w,

Ity + N) N {z: (z,u) >0} = [N N{z: (z,u) >0} < 2p(p+1).
The inequality holds by combining the symmetry of A with Lemma 4.2.1, part (ii). Thus, if
B1 > 2p(p + 1) then every site in H, will remain a 0 next time. O

We say that LtL. dynamics are space-filling if there exists a finite Ay such that A;
eventually occupies every site in Z>, i.e. A, = Z*. In particular, this implies that A__ exists.
We say that the dynamics are space-emptying if there exists a co-finite set Cy, such that C;
eventually occupies no site in Z*,i.e. C., = 0. The first definition represents the case where
sets of 1’s do supercritical growth, and the second, where sets of 0's do supercritical growth
(see [GG] and [GG1]). These are relevant to the LtL family because a large proportion of the

rules result in global survival or global death.
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Proposition 4.2.3.
(1) LtL dynamics are space-filling iff w'(u) > 0 for every u.
(4i) LtL dynamics are space-emptying iff w® (u) > 0 for every u.

Proof. (i) w'(u) > 0 implies that there exists a bounded subset A C R? so that 7 (A) T R
(see Lemma 1 on p. 853 of [GG]). The converse is obvious since an edge speed of 0

constrains the spread of 1’s to a corresponding half-space.

(i) w®(u) > 0 implies that there exists a co-finite subset B C R” so that 7' (B) | 0 (see
Lemma 1 on p. 853 of [GG]). The converse is obvious since an edge speed of O constrains

the spread of 0's to a corresponding half-space. [J

The above shows that if one wants to prove that a large ball of 1's (or 0’s) does

supercritical growth, it suffices to show that any half-space grows (or shrinks) linearly.

Theorem 4.2.1. Ifp > 1, 6 < p(2p+ 1), fo =4p(p+1), 6y < p(2p+1)+ 1 and
65 = (2p + 1)?, then starting from any random initial state, the limiting state is 1.

Proof. By Proposition 4.2.3, it suffices to show that w'(u) > 0 for every u. Since
61 <p(p+1)+1<2p>+2p+1,and 6 = (2p + 1)2, Proposition 4.2.2 gives w' (u) > 0
for every u. Thus, we need only show that w'(u) # 0 for every u. Since we are working
with w' (u), we assume H, C §,. Lety € R? be in a small neighborhood of the origin.
Then, for any w,

(y+N)N{z: (z,u) <0} =|NN{z:(z,u) <0} >p2p+1).
Le. there are at least p(2p + 1) occupied sites in s neighborhood. Thus, if y € (H, )¢ was a
0, it willbecome a 1if 6y < p(2p+1). Ify € (H, )® was a 1, it will remain a 1 if
5 <p2p+1)+1. O

Theorem 4.2.2. If p > 1,20 +3p+1< B < 3 < 4p(p+1), and
2p° +3p+1 < 6 < 6 < (2p+1)?, then starting from any random initial state, the limiting
state 1 0.

Proof. By Proposition 4.2.3, it suffices to show that w®(u) > 0 for every u. Since
Bi > p(2p + 1), Proposition 4.2.2 gives w®(u) > 0 for every u. Thus, we need only show
that w’ (u) # 0 for every u. Since we are working with w’ (u), we assume (H, )¢ D &,. Let

y € R? be in a small neighborhood of the origin. Then, for any u,
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(y+N)N{z: (z,u) >0} =|NN{z:(z,u) >0} <2 +3p+1.
Le. there are at most 20> + 3p + 1 occupied sites in s neighborhood. Thus, ify € (H,)
was a 1, it will become a 0 if §; > 2p* +3p + 1. Ify € (H, ) was a 0, it will remain a 0 if
Br > 2p* + 3p + 1 (knowing y is a 0, allows us to subtract one site from the count). [

Corollary 4.2.1. Ifp > 1,20 +3p+1< 5 < B < 4p(p+1),and & = & = 0, then

starting from any random initial state, the limiting state is O .

Proof. This follows from Theorem 4.2.2 since in this case 1 — 0 automatically so survival is

even more difficult. O

Conjecture 4.2.1. If p > 1, B € [20° + p+1,20°> +2p], Bo = 4p(p + 1),

61 € [2,2p* +2p + 1], and 63 = (2p + 1)2, then for p € (p(6;), 1] starting from product
measure with density p, the limiting state is 1 a.s. (p(61) > 0 depends on 6; -- if, as in
threshold growth 6; = 1, then p(6;) = 0).

Conjecture 4.2.1 is like Proposition 4.2.1 (taken from [GG1]), but in our case,
survival is not guaranteed. (Proposition 4.2.1 is the 6; = 1, p(61) = 0 case.) Thus, we
cannot use the bootstrap methods (see [AL]) that are crucial to the proof of Proposition 4.2.1.
The bootstrap methods are used to show that a large set of 1’s can grow, provided it gets
some "help" from the 1’s in the initial product measure surrounding it. The argument thus
relies on the survival of sparse sets of 1’s from the random initial state. However, by
choosing the p(6y) of our conjecture carefully, we may still be able to adapt some of those
ideas.

The following conjecture is similar to the previous one. However, it is about sets of
0's (rather than 1’s) bootstrapping their way to global death (rather than global survival).

Conjecture 4.2.2. If p > 1,29 +2p+1 < B < £ < 4p(p+1), and
2p° +2p+2 <6 < b < (2p+1)2, then for p € [0, p(5;)) starting from product measure
with density p, the limiting state is Q a.s. (p(5;) < 1 depends on ;).

What proportion of all LtL rules have we shown result in global survival? What about
global death? Recall that, for a fixed range p, there are (2k? + 3k + 1) (k = 2p(p + 1))

possible LtL rules. We have shown that for all rules such that 5; < p(2p + 1),
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Bo=4p(p+1),6 <p(2p+1)+1,and 6 = (2p + 1), the limiting state is 1. There are

(p2p+1)+1)”

(p(2p+1)+1)(p(2p0 + 1) +2) suchrules. Thus, such rules represent OF13h 1)

(k = 3(2p + 1)) of the total.

lim 22t D+1)° —0
(2k24+3k+1)> —

pP—C0
In the case of global death, we have made more progress. We have shown that for all
rules such that 20> +3p +1 < 5 < B < 4p(p+1), and

202 +3p+1< 6 <6 < (2p+ 1)% the limiting state is 0. There are (2> + 31 + 1)? such
2 2

rules, where [ = p* + % p— % Thus, such rules represent % (I=p*+ % — %,

k =2p(p+ 1)) of the total. In this case,

i (2P+3141)> 1
S 2R3k T 16

We also showed that an additional 2p> + p rules have limiting state 0. However, since this is
quadratic in p, it does not change the above proportion which is our interest.

The limiting state 1 will be attained only if 6 = (2p + 1)?. Thus, the set of LtL rules
with this limiting state is contained in a three-dimensional cross section of LtL parameter
space. Hence, it makes sense that the proportion of such rules goes to 0 as the range gets
large. On the other hand, 0 does not have such a requirement, and we have shown that the
set of rules with this limiting state live in a four-dimensional subspace. The moral? The rules
are Larger than Life, but global survival is difficult. Perhaps a corollary to the above is:
Death is Larger than Life.

How have the results obtained in this and Section 4.1 helped us better understand the
geometry of LtL space in terms of the ergodic classifications of the rules? To answer this
question let us depict the LtL cross section of monotone rules in terms of the ergodic
classification at each point. The following diagram indicates the TV A set of rules with a
diagonal line that cuts through the picture. The TGM rules are also indicated with a line at
the bottom of the picture.

We indicate with a "*" the regions for which we have proved global death and global
survival. There is also a "*" in the upper left corner of the diagram because we are going to
prove in the next section (see Theorem 4.3.1) that the rule with parameters G; = 1,

Gy = |N|—1, and 6; = 69 = | N is uniformly locally periodic. We indicate also the regions

we believe to have locally periodic or fixed limiting states.
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For the regions closer to the middle of the diagram, the ergodic classification is more
complicated. In those cases, we use the warning icon to indicate the uncertainties. We
believe a large portion of the rules in region one result in global survival. Gravner and
Griffeath have shown that the limiting state for the rules in the intersection of region two and
the TGM line result in global survival when started from product measure of any positive
density. In Conjecture 4.2.1 we state that this is also the case for the remaining rules in region
two, but only if the initial density is large enough. If the density is not large enough, we
believe the limiting state is fixation. It may turn out that, in any case, the limiting state is
fixation (see the discussion after Conjecture 4.2.1). In Conjecture 4.2.2 we state that the
rules in region three result in global death provided the initial product measure has a small
enough density. Otherwise we believe those rules fixate or are locally periodic. We believe
that some of the rules in region four result in global death while others are locally periodic.

The dashed lines indicate the regions for which the boundaries are especially murky.
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Ergodic classification of monotone LtL rules (* indicates that the limiting behavior has been proved).



