135
10 Experiments

10.1 Modeling Environments

A large part of our research of the LtL family consists of watching "movies" of the
rules started from a variety of initial states. To do these experiments we use two platforms --
WinCA, a windows-based CA modeling environment, and the latest Cellular Automaton

Moachine, known as CAM-8. Let us describe these two platforms.

WinCA

We did the majority of our computer simulations using WinCA, which is currently
being developed by Bob Fisch and David Griffeath. WinCA has provided a huge
improvement over the DOS days when just creating an initial state was an arduous task. Its
features that we find so appealing are its user-friendly interface, its ability to keep track of the
many variables involved in LtL research, and its ability to enable the user to design a wide-
range of initial states. Let us describe these features.

WinCA enables one to define and save a CA experiment. An experiment consists of
the parameters for the CA rule, the lattice or sysfem size, the boundary conditions, the initial
state, the step size, the final time, and, if desired, a final state. Additionally, one has the
option to attach nofes about the experiment. For simulations we work on subsets of Z?. That
is our system, or universe, is X = I' N Z> where ' C Z? is some finite subset. Easily varying
the system size is convenient because understanding the dynamics generated by rules near
phase boundaries or for large ranges often requires a large system size, while for other
endeavors, such as finding the period of a bug, a small system size suffices. It is convenient to
use the appropriate system size since large system sizes require huge amounts of computer
memory and hence cause the rules to update very slowly. The boundary conditions we use
most often are periodic, meaning that opposite edges of the finite lattice are identified. This
turns the universe into a torus and so, on the computer screen, the trajectories of live sites
may appear to reach the boundaries of the system but they never exit. For some rules, such as
those in the thin bug regime, using periodic boundary conditions is a decent way to simulate
the infinite system -- somewhere out there, another bug's trajectory will enter the finite
window at which we are looking. Another kind of boundary condition we use is to let all sites
on the boundary be in state 0. In this way, it is though the lattice is surrounded by an infinite

sea of dead sites. In some cases, such as a bug maker sending off an infinite stream of bugs, it



136

is a convenient way to simulate the infinite system. In other cases this is not appropriate since
live sites at the edges of the system will not necessarily always become dead.

Another crucial part of WinCA's design is that it makes constructing initial states very
easy. For example, it enables the user to create such initial states as product measure with any
density, circles with varying radii, rectangles with varying side lengths, half planes, or some
combination of those. It enables the user to save these states as bitmaps and also to save their
evolutions after being run under the CA rule. Additionally, it can import initial states from
various paint programs. Not only does this allow the user to design practically any desired
initial state, it allows one to import images from such places as the World Wide Web. For
example, whenever Paul Callahan posts new Life configurations on his Web site (see [Cal]),
we can use the "capture" mode on our favorite paint program, Paint Shop Pro, to import the
file to the paint program. Once in the paint program, we format it as desired, either save it to
the clipboard or as bitmap, and then use it as an initial state in WinCA.

For more information on WinCA, visit the Primordial Soup Kitchen (see [Gril]).

Most of the graphics exhibited there were generated using WinCA. Additionally, the software

is available in the Kitchen's Sink.

CAM-8

The CAM-8 Cellular Automaton Machine comes from the MIT Laboratory for
Computer Science, and is mostly the creation of Norman Margolus. CAM-8 is the next
generation of interactive desktop parallel processor, offering a unique combination of
computing power and visualization capability for the study of cellular automaton dynamics.
CAM-8 has greatly benefited our exploration of LtL space. It is a bit more complicated to use
than WinCA, since creating initial states and varying parameters is not as easy as clicking a
button. However, Bob Fisch wrote a program that converts bitmaps into ".pat" files, which
are in CAM-8's language. Thus, we are able to design initial states using WinCA and then
import them to CAM-8. This enables us to take advantage of the CAM-8's main attraction
— speed. Let us describe some of the features that make CAM-8 an excellent CA simulator.

CAM-8 is a modular computing device for extremely fast computation of arbitrarily
large cellular automaton (CA) systems. Each CAM-8 module can independently store and
update as many as 224 cells of a CA. Each of these cells contains 16 bits of information,
permitting 65,536 possible states at each cell. Furthermore, each module can update these
cells at the rate of 25 million cell updates per second. A SUN SPARCstation is responsible
for driving CAM-8 modules by means of a customized controller card on the SUN's internal

bus. The SUN is used to initialize modules with the appropriate starting state and update rule



137
for a particular CA of interest. After initialization, the host signals CAM-8 to begin

computation, at which time the machine performs independently of the host.

Modularity of CAM-8 is realized as follows. As many as eight modules can reside in a
single box. The box is an enclosure containing sockets for accepting modules, a frame buffer
for video output, circuitry for communication among the modules and with the host, and other
necessities (such as a power supply and fan). Within a box, the eight modules operate in
parallel. Thus, a full box comprising eight modules can perform 200 million cell-updates per
second. CAM-8 architecture permits arbitrarily many boxes to be physically arranged and
interconnected into a three-dimensional array, and each box in this arrangement computes in
parallel with the others. In this manner, one can compute as large a system as desired; the
only limitation is the number of modules available for computation. Furthermore, such a
system updates at the rate of 25V million cell-updates per second, where N is the number of
modules in the arrangement of boxes.

The mechanism used by CAM-8 for updating a CA consists of two stages. In the first
stage information is kicked, or shifted, throughout the universe. The kicking stage permits
any cell of a module to receive state information from any of the 224 cells within its module, or
from any cell in a neighboring module that satisfies the property that in each extensible
dimension the distance between the two cells is no greater than the extent of a single module
in that dimension. Of course, since CA rules are translation invariant, one can think of the
kicking stage as taking individual “bit planes” (also known as layers) of state information and
shifting each as much as one module distant in each dimension. Each layer may be shifted
independently, so that a cell may receive state information from different locations of a very
large neighborhood.

After kicking the layers, the bits from each cell, which contain the gathered state
information from each cell's neighborhood, are fed into a lookup table. The lookup table
accepts 16 bits of input and generates 16 bits of output to be used as the new state at that cell.
Thus, the lookup table represents the actual updating rule for the CA. Its contents are
precomputed within the host and loaded into each of the modules before the CAM-8 receives
the signal to begin computation. Within a module, each cell's new state is computed serially at
a rate of 25 million cell-updates per second. Thus, no parallel processing occurs within a
module, although each module computes in parallel with the other modules.

Our CAM-8 frame buffer is connected to a VGA monitor that displays either a
512 x 512 or 1K x 1K portion of the CA, using 256 colors. This frame buffer may also be
connected to a VCR for producing videotapes of CAM-8 display output. Thus, one can
conveniently generate and record movies of a CA evolution for sharing with others. CAM-8

also has the capability of producing event counts for gathering aggregate information about a



138

CA. The events to be counted may be detected using arbitrary Boolean functions of the state
bits for a cell. Furthermore, one may divide the CA into subregions of any desired size and
report the event counts over each individual subregion. In this way, one may generate
quantitative evidence of spatial variations within a CA. The host may take these event counts
and generate visuals on the fly to convey the presence of any such variations.

For more information on CAM-8, see [Mar]. For more information on cellular
automaton machines, see [TM].

10.2 Two examples of LtL research strategies

The search for bugs

As we explained in chapter 7, it is often the case that no bugs appear when a buggin'
rule is run starting from a random initial state. It is thus essential to devise techniques that
enable one to discover bugs. One such technique is to run a buggin' rule from a random initial
state and capture one of the bugs it generates. The bug is then used as an initial state and the
same rule is run. As the rule updates, its parameters are varied and if successful, the geometry
of the bug also varies. In some cases, this "sculpts" an appropriately shaped bug for a
different rule.

Another strategy that is often fruitful is to create finite deterministic configurations,
thought up by studying known bugs. For example, in the thin bug regime, many of the bugs
are generated from appropriately sized rectangles. In order to decide what "appropriate"
means for a given rule it is usually convenient to sketch possible sizes by hand. Then a paint
program, or the WinCA "special initialization" feature, is used to insert rectangles, and the
rule 1s run with that as its initial state. Another strategy is to find bugs in one range, and
rescale them up or down to other ranges. If successful, one can compare the objects admitted

in a variety of ranges, and generalize the findings.

Local periodicity and other extreme behaviors
For extreme behaviors, it is essential to be very careful not to jump to conclusions.
For example, there are rules which seem, from random initial states, to be locally periodic.
However, if one inserts a large lattice ball consisting of only one of the two states, that set
grows to fill the lattice. For some rules, two large lattice balls, one of each state, may both
grow and end in a stand-off with boundaries composed of a pattern created by the two states.
For other rules, such a competition between states results in the demise of one of them. Thus,

it is essential to test these rules using a variety of initial states, including those that are partly



139

random and partly consisting of deterministic sets composed of one state or the other. For
example, a large lattice ball filled with a cut-out of a time step generated by a rule known to
be either aperiodic or periodic can be placed on a background of all zeros. Such an initial
state tests the ability of the aperiodic or periodic region to grow. As we discussed in Chapter
8, for rules near the phase transitions in LtL space it is often the case that aperiodic or
periodic lattice balls need "help" to grow. Without the help, they either die out, or get stuck
inside regions that are convex-confined. Such dynamics are reminiscent of the bootstrap
growth of the discrete TGM.



