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Peak-Constrained Least-Squares Optimization

John W. AdamsSenior Member, IEEEand James L. Sullivan

Abstract— We presented the basic concepts for peak-
constrained least-squares (PCLS) optimization in previous » <—— MINIMAX SOLUTION
papers. We present advanced PCLS optimization concepts in
this paper.

I. INTRODUCTION

N THE PAST, most digital filters were designed according

to the minimax (MM) or least-squares (LS) optimality
criteria. MM filters were used in applications where the peak F
errors were more important than the total squared errors. LS
filters were used in applications where the total squared errors
were more important than the peak errors.

In [1] and [2], we showed that MM and LS optimization & (ENTIRE CURVE)
problems can both be viewed as special cases in the class of A4 ZERO SLoPE ™
peak-constrained least-squares (PCLS) optimization problems. ./ -
In PCLS optimization problems, we constrain the peak error ¢ PEAK ERROR
while minimizing the total squared error. Fig. 1.

We pronounce PCLS as “pickles.” When selecting the
terminology in [1] and [2], we also considered maximum- _ i
constrained least-squares (MCLS). However, PCLS was eadfgéase in the total squared error. Starting from the MM
to pronounce than MCLS. solution, a very large reduction in the total squared error can

We showed how to use PCLS optimization to design syrﬁ-e obtained at the expense of a very small increase in the peak
metric FIR digital filters and windows in [1] and [2]. We alsc€MT0r- Therefore, we argued in [1] and [2] that LS and MM

showed that the tradeoff between the total squared error axfiutions are inherently inefficient. _

the peak error has the fundamental shape shown in Fig. 1Very few filter design papers discuss systematic approaches
In particular, we used Kuhn-Tucker multiplier theory in [1f0 Making tradeoffs between conflicting performance mea-

and [2] to prove that the tradeoff monotonically decreases anideS: In [10], we have one of the rare papers that deals with
terminates with zero slope for symmetric FIR digital filters anf!iS important practical problem. In [10], systematic strategies

windows. We use a more general theory in Section I1I-D ¢P" handling the tradeoff between the error energy in a filter's

this paper to prove the PCLS tradeoff theorem (PTT). It statf§duency response and its sensitivity to coefficient errors

that the tradeoff monotonically decreases and terminates wiif discussed. The _Stff’ﬂegies,,i” [10] are based on the theory
zero slope forall types of filters, including IIR digital filters, ©f ‘multicriterion optimization.” One strategy optimizes the
complex FIR digital filters, and analog filters. weighted sum of normalized performance measures. Another

The best solutions for most practical applications are in tiffategy constrains one performance measure while optimizing
knees of tradeoff curves. The LS and MM solutions are at ti{g® other. PCLS optimization is based on this strategy.
endpoints where the slopes are the most extreme. Therefore/Veé first presented the PCLS optimality criterion in [29]
the LS and MM solutions are the two special cases of PCI&PNg With our first algorithm for PCLS optimization. It was
solutions that have the worst performance tradeoffs. Ironicalfj) iterative reweighted least-squares (IRLS) algorithm, and it
the filter design literature and textbooks are dominated by thé¥@S Very slow. Moreover, it was not guaranteed to converge.
extremely bad special cases. On the other hand, the algorithm in Section IV of this paper

Starting from the LS solution, a very large reduction in thi Very fast, and it is guaranteed to converge to optimal PCLS
peak error can be obtained at the expense of a very spfglutions. _

PCLS optimization problems are special forms of con-
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Single exchange algorithms are appropriate for solving generaWe proposed combining the multiple exchange and
CLS problems where the constraints are arbitrary. Unfort@oldfarb-ldnani algorithms in [2], where we stated that
nately, single exchange algorithms converge very slowly. ‘IThis is a natural combination because the Goldfarb-Idnani
a CLS problem includes peak-error constraints on a smodatlgorithm does not require primal feasibility until the

function, then we can take advantage of multiple exchangdest iteration is completed.” Most quadratic programming
to improve the rate of convergence. Therefore, it is importaatgorithms in the mathematics literature require primal
to determine whether a CLS problem is in the PCLS categdigasibility at the beginning and end of each iteration.
before selecting the optimization algorithm. They are inefficient when combined with the multiple

We presented a new algorithm for PCLS optimizatiorgxchange algorithm. We studied numerous (more than 30)
which is called the multiple exchange algorithm, in [1]-[3]single-exchange quadratic programming algorithms, and we
We showed how to use the method of Lagrange multipliers @oncluded that the Goldfarb—Idnani algorithm is the best one
a systematic sequence of multiple exchanges to quickly solzeuse in conjunction with multiple exchanges.

PCLS problems. In addition, we showed how to apply the We presented several examples of optimal filters that were
Kuhn-Tucker conditions in the context of PCLS filters. (Alesigned with the generalized multiple exchange algorithm in
generic discussion of Kuhn—Tucker conditions is in [28].) [12], including multiband filters that failed to converge with

The original multiple exchange algorithm usually convergeithe original multiple exchange algorithm. We also discussed
to optimal solutions for lowpass FIR filter design problemsnultirate applications for FIR PCLS filters in [12]. However,
The examples in [1] were designed by the multiple exchangee called them FIR CLS filters in [12] to be consistent
algorithm, and they were all confirmed to be optimal withwith the title of that conference paper. Coincidentally, the
the Kuhn-Tucker conditions. However, the original multipld., approach to dealing with the tradeoff between peak error
exchange algorithm is not guaranteed to always convergeatd error energy in FIR filters was presented in [11] at the
optimal solutions. In particular, it can converge to suboptimahme conference. Thg, optimality criterion permits the filter
solutions with negative Kuhn—-Tucker multipliers. designer to obtain solutions that are betwégrand L., but it

A modified multiple exchange algorithm that inspected th#éoes not permit the designer to make a direct tradeoff between
polarities of the Kuhn-Tucker multipliers in each iteratioppeak error and error energy.
was presented in [4] and [5]. If one or more Kuhn-Tucker
multipliers were negative, it temporarily switched to single II. OPTIMALITY CRITERIA
exchanges to drop the offending constraints until it obtained
an active set with nonnegative Kuhn—Tucker multipliers, ar}ﬂ
then, it switched back to multiple exchanges. (It appears to
that this same modification of the multiple exchange algorith
was described as a new modification in [9] and was used
in [13]. We assume that this modification was developed
independently.) This modification guaranteed that the solution . . . )
was optimal if the algorithm converged. Unfortunately, thiSUPi€ct to inequality constraints on the error magnitude
modification was not sufficient to guarantee convergence in |H(e2™F) — Hy(e3?™5)) < §(ei?)

[4], [5], [9], or [13].

In order to guarantee convergence to the optimal soluticand inequality constraints on the phase
we introduced the generalized multiple exchange algorithm in i i o
[2] and provided more details in [6] and [7]. The algorithm PH(e”)) < PH(e*™) < PH,(e™)
is “generalized” in the sense that it can do both single arghq inequality constraints on the phase delay
multiple exchanges. We would prefer to have a more specific P
and descriptive name for the algorithm because the term POy < —PH(e25™7) < PDy (i)
“generalized” is vague and overused. However, we continue - 2n f -
to call it the generalized multiple exchange algorithm for lack, 4 inequality constraints on the group delay
of a better name. ,

In [6] and [7] it was proved that the generalized multiple Gy < —dPH(e/*7)
exchange algorithm is guaranteed to converge to the unique - 27 df
optimal sqlution of any fe_asible positive-definite quadr_atignd direct equality constraints on the variables
programming problem. (This type of problem naturally arises
for real symmetric FIR digital filters and windows.) The Cv—c.=0
generalized multiple exchange algorithm does multiple ex- ) ) ) )
changes using the fundamental concepts in [1]-[3]. In additigid direct inequality constraints on the variables
it includes the method from [4] and [5] that inspects the Civ—c > 0.

Kuhn—Tucker multiplier polarities and uses single exchanges -

to drop constraints with negative Kuhn—Tucker multiplierstf,(c/?*/) denotes the desired frequency respod$éei?™/)

It also uses single exchanges to exploit the convergersenotes the actual frequency responBéd(c/?*/) denotes
properties of the Goldfarb—Idnani algorithm [20]. the actual phase response. The lower and upper inequality

The PCLS optimality criterion is easy to customize for
fferent applications. For example, in PCLS filter design
#]lsoblems, we can minimize the total weighted-squared error
0.5

€= W (™) H (™) — Ha(e"*™)|? df
—-0.5

< GD, (7))
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constraints are indicated withand « subscriptsw denotes needed to control the gains at band edge frequencies, and this
the vector of variables (filter coefficientdi (¢/27/) denotes led them to prefer the MM method over the LS method.
the squared-error weighting function. On the other hand, there are some applications where band
Arbitrary functions can be specified fé¥ (¢/>*/) in PCLS edge frequencies are flexible. For example, there are spectral
optimization problems. In most practical applications, wanalysis applications where stopband edge frequencies are
specify the squared-error weighting to be zero in at least ofiexible for windows. These windows can be designed with
band, such as a transition band. However, in some applicatiorigple-bounded least-squares (RBLS) optimization. (RBLS can
we specify the squared-error weighting to be nonzero at &k pronounced as “rebels.”) In particular, the ripple bounded
frequencies. For example, in [2, Sec. IlI-G], we minimize themaximum directivity (RBMD) window is designed with RBLS
error energy using a weighting of 1.0 in the entire digitadptimization in [18]. In RBLS design problems, there is at least
frequency band from-0.5 to +0.5 cycles/sample. (In our one frequency band where inequality constraints are used for
opinion, the discussion in [13] implies that we always usépple peaks (local extrema or stationary points) of the error
zero weighting in at least one band when we do PCLlf@inction but not for band edges.
optimization. There are actually no restrictions on PCLS In [18, sec. Ill], the RBMD window with flexible stopband

weighting functions.) edge frequency was discussed, and it includes an example. We
When designing symmetric FIR digital filters, we can imnote that the RBMD window can be considered to be a special
pose constraints on the zero-phase respdihse’>"/) as case of the peak-constrained maximum directivity (PCMD)

window presented in [2, Sec. llI-G]. Given an RBMD window,
we can always find a PCMD window that is identical to it. In

i2pf jonf I particular, the RBMD example in [18, Fig. 3] is identical to
a(e??P7) andw, (e?*77) denote the lower and upper limits onrI~J1 CMD example in [2, Fig. 11].

e e phase Tesporse (L ol e onese e5bMife P crampe n ] vas designed to minimiz te
also specify constraints on the derivative of the zero-phatsoéaI energy forall fre_quenmes_ subject to a unlty_ dc gain
response constraint and a maximum gain 6f30.0 dB in the interval
[£5,0.5], where F; was specified to be 0.01395. The RBMD
dHo(c?? 1) example in [18] was designed to minimize the total energy
o for all frequencies subject to a unity dc gain constraint and a
maximum gain of—30.0 dB at the frequencies of sidelobe
One of the anonymous reviewers of this paper questionﬁgme peaks (local extrema), buf, was unspecified. The
Whether band edge frequencies are inflexible in prectiquMD example in [18] is identical to the PCMD example
design problems. We believe that band edge frequencies g¢2] pecause the inequality constraintat is inactive in [2].
often inflexible and must be controlled in many practical apother example of RBLS optimization was presented in
applications. For example, passband edge frequencies neeﬁg? Sec. IV] for a lowpass FIR filter. The total energy was
be controlled in communication filters to pass the channgl§inimized in the interval 7}, 0.5] subject toL, = 95, F, =
of interest. Stopband edge frequencies need to be control{e@625’DBp < 1.0, and DB, < —35.0. F, was unspecified.
in multirate filters to suppress the aliased signals in thg,e resu'ting_f”ter had a rippTe-bounded stopband.
appropriate frequency bands. In practice, this type of RBLS filter can arise at an inter-
For the sake of simplicity in the following discussion aboyegiate stage in the design of a lowpass decimation filter,
the importance of band edge frequencies, we will focus Qfhere 7, depends on the decimation ratio, but the decimation
lowpass filters, and we will use the notation in [1]. ratio has not yet been determined. In the first cut and try, a
L impulse response length; ripple-bounded stopband filter is designed, and its resulting
F,  passband edge frequency in cycles per sample; F, (corresponding td)B,) is measured. Based on this initial
Fs  stopband edge frequency in cycles per sample; estimate forF,, the nearest appropriate integer is selected for
DB, passband variation in decibels; the decimation ratidDR, and DR is then used to determine
DB, peak stopband gain in decibels. the final specification fo#,. In most applications, we specify
We believe that the primary reason why minimax optimizatioh; = (1/DR)— F, so that only stopband signals are permitted
has generally been more popular than least-squares optimizaalias into the passband. In particular, a signatatliases
tion is because of the ability to specify band edge frequenciés.be atf, after it is decimated by) K. Therefore, controlling
For example, in most lowpass MM filter design programshe gain atZ; is very important in the final design.
the user can specify the passband edge frequeicynd The final PCLS filter is designed to minimize the to-
the stopband edge frequendy. In most lowpass LS filter tal weighted energy of the important aliased signals (which
design programs, the user can only specify a single “cut-offfe usually the signals that alias into the passband), given
frequency, which is usually denoted &5. L,FE,, F,,DB,, DB,, and DR. The squared-error weighting
When using a lowpass LS filter design program, the uskar the final PCLS filter is usually specified to be zero in the
typically specified#; to be between the desiref, and £,. transition band because those frequencies do not alias into the
The resulting filter would typically have an unacceptably larggassband. (Transition band signals alias back into the transition
attenuation for passband signals négrand an unacceptably band.) If a nonzero squared-error weighting were used in the
large gain for stopband signals nea. Designers usually transition band, the resulting filter would reduce the energy

oq(ej%f) < Ho(ej%f) < au(ej%f).

Bu(e’*™) < < Bule?™).
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of signals aliasing into the transition band at the expense of e
increasing the energy of signals aliasing into the passband.
That would be an undesirable trade in most applications.

Given a RBLS filter, it is always possible to find a PCLS
filter that is identical to it. On the other hand, given a PCLS
filter, it is not always possible to find a RBLS filter that is
identical to it. Therefore, RBLS filters can be considered to be
special cases of PCLS filters.

In [13], an extensive discussion of RBLS filters is provided,
and applications for filters with unspecified transition band-
widths and unspecified gains at band edge frequencies are;i:
described. Examples of lowpass filters are also included, whereg
the passband and stopband edge frequencies are unspecified?

In [13], we are provided with interesting justifications for
using RBLS filters in some special applications. However, for
most practical applications, we believe that [13] overempha-
sizes the importance of RBLS filters compared with PCLS
filters.

In [17], we find a discussion that refers to [13]. We believe
that the discussion in [17] exaggerates the importance of RBLS
filters significantly more than in [13]. Moreover, we believe
that the overemphasis on RBLS filters is exaggerated in [17]
to the point of excluding PCLS filters with specified band edge

-15

4
1
—
—_—
——
——

-60

. ] - 0 0.1 0.2 0.3 0.4 0.5
frequenqes. We _also bell_eve that 'Fhe constram_ed least-squares CYCLES/SAMPLE
symmetric FIR filter design algorithms used in [17] do not

Fig. 2. Symmetric FIR filter with monotonic passband.

always converge.

In our opinion, the discussion in [17] (especially on pp.
2-27) implies that the primary advantage of constrained leastlhe optimal solution is shown in Fig. 2. Refer to [1, Fig. 3]
squares optimization is the ability to design filters with unspet@ see the results for the corresponding example where the
ified transition bandwidths and unspecified gains at band edg@ssband was not constrained to be monotone. The passband
frequencies. We disagree with this implication for two reasoniirned out to be equiripple in [1].

First, we believe that the primary advantage of constrainedWe also presented a PCLS digital filter example with a
least squares optimization is the ability to control the tradedfionotonic passband in [12, Fig. 2]. It was a multirate filter
between peak error and total weighted squared error. Secoffiih multiple stopbands to attenuate signals that aliased into
in most practical applications, we believe that it is importarife passband. The monotonic-passband filter in [12] was
for the filter designer to have the ability to specify inequalitynotivated by a radar application where signal frequencies
constraints on the gains at band edge frequencies. (Withtigrated through the passband. If the passband had ripples,
this ability, the gain at a passband edge may be too small, 4Agy would have produced periodic amplitude modulations that
the gain at a stopband edge may be too high.) It appearsiguld have created false radar echos.

us that the constrained least squares filter design algorithms ifvS alternatives to filters with monotonic passbands, filters
[17] do not provide this ability. Moreover, it seems to us tha¥ith maximally-flat passbands could be used in applications

the discussion in [17] implies that this inability is desirable.Wwhere passband ripples are objectionable. However, the num-
ber of derivatives that are set to zero must be an integer in a

IIl. PCLS DIGITAL FILTER EXAMPLES maximally-flat filter. Therefore, it is difficult for a maximally-
flat filter to efficiently meet a specification on the passband
A. FIR Filter with Monotonic Passband gain variation, such as the 1.0-dB specification in this example.

. ) . We believe that filters with maximally-flat passbands are dis-
We now consider the following symmetric FIR lowpasg, ssed in many textbooks because they are easy to design and

filter design problem: Minimize the stopband energy subject o, pecause they are the best filters for practical applications.
L =118, F, = 0.0625, F, = 0.0804, DB, < 1.0dB, DB, <

—45.0 d_B and constra_li_n the pa_ssba_nd to be monot_onica_\llg/_ Lowpass Asymmetric FIR Filter

decreasing. The specifications in this example are identical ) . . ]
to the ones used in [1, Sec. IlI-A] except that the passband idf the impulse response is asymmetric, then we can si-
required to be monotone here, and the impulse response lerfgtfitaneously constrain the frequency response magnitude and
is 118. The monotonic passband is obtained by including tHEPUP delay. (We note that an approach to constraining the

following inequality constraints in the PCLS optimization: Magnitude of the complex error in asymmetric FIR filters was
JHo(¢7) discussed in [9], but the phase and delay were unconstrained
o{e?"™

<0 for0< f<0.0625 in [9].) As an example of simultaneous PCLS optimization
df N T of the frequency response magnitude and group delay, we
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designed a filter to minimize the stopband energy subject fitier because the design problem includes constraints, such
L = 95, F, = 00625 F, = 0.0804,DB, < 1.0,DB, < as the stopband null constraint at 0.414 cycles/sample and
—45.0,GD; > 47.24 samples, and7D, < 47.26 samples. the specified limits on the ripples in the two passbands and
Fig. 3(a) shows the overall frequency response. Figs. 3(b) ahé lower two stopbands. CMM problems are usually solved
(c) show blowups of the passband gain and group delay. Téh a single-exchange linear programming algorithm such
group delay has an equiripple behavior centered around 475 the simplex algorithm. However, single-exchange linear
samples and constrained withir0.01 samples. As a practical programming algorithms are very slow.
application, this type of asymmetric filter with specified group We used multiple exchanges to design the filter in Fig. 4(c).
delay is useful for digital range gate tracking of a referend&'e have developed several variations of the generalized
point to synchronize radar echos. (Each radar echo needsmualtiple exchange algorithm for CMM problems, and we plan
be shifted by a specified fraction of a sample. The worst-caepresent them in future papers. (One method systematically
asymmetry occurs in the case of a 0.25 sample shift as in thdjusts the parameter to be minimized, suchéam this
example.) For purposes of comparison, we refer to [1, Fig. 8kample, until the CMM solution is obtained. Another method
to see the corresponding symmetric PCLS filter with the sarmenverts the CMM problem into a QP problem.)
specifications as in this example, except the group delay was
47.0 samples.

We presented the key concepts for the simultaneous PCPS!IR Digital Filter

optimization of the frequency response magnitude and groupwe now consider an eighth-order IIR lowpass filter. The fil-
delay in [8] and [25]. The same methods can readily be usgg in Fig. 5(a) was designed to minimize the stopband energy
to perform simultaneous PCLS optimization of the frequengysubject to the following specificationg, = 0.0625, F, =
response magnitude, phase, phase delay, and group dalayss, DB, < 1.0, and DB, < —45.0 (corresponding to
However, in most applications, only one phase-related quantity= 0,005 623 4). Fig. 5(b) shows a blowup of the passband.
needs to be included in the optimization. Fig. 5(c) shows the tradeoff between the stopband energy
and the peak stopband gdinFig. 5(d) shows the constrained
C. Multiband FIR Filter with Symmetric Impulse Response minimax filter where the passband variation is constrained

We now consider a multiband FIR filter design example thi be less than or equal to 1.0 dB, addis minimized.
fails to converge with the original multiple exchange algorithmniS IR CMM filter was designed with a CMM variation
in [1]. The specifications in this example were developed g the recursive generalized multlple exchange algorithm. It
challenge the robustness of the generalized multiple exchafgérésponds to the top endpoint of the PCLS tradeoff curve
algorithm. in” Fig. 5(c).

The objective is to minimize the stopband enetgin the N [1] and [2], we proved that PCLS tradeoff curves must
interval [0.35, 0.5] subject to the peak gain specificatbon monoton_lcally d_ecrease an_d terminate with zero slope for
in the same stopband and subject to the following inequali%}’mmetr'c FIR filters and windows. Although it corresponds

constraints in two other stopbands: to a set of IR filters, the tradeoff curve in Fig. 5(c) seems
to monotonically decrease and terminate with zero slope. The
jor f 0.125f, for0.08 < f <0.16 similarity between FIR and IIR tradeoff curves is more than a
|H(e/*™) < e T ;
0.01, for0.16 < f <0.22 coincidence, as indicated by the following theorem.
and subject to the following inequality constraints in tw? PCLS Tradeoft Th(_aorem (PTT)::_versusé tradeoff curves
. or all types of optimal PCLS filters must monotonically
passbands: . .
' decrease and terminate with zero slope.
0.9 < |H(eﬂ7’f)| <1.0 foro< £<0.05 PTT Proof: The feasible set fof = §, must be a subset of
and 0.25 < f <0.33 the feasible set fof = ¢ if 6, < 6. Therefores(6;) < €(6a)

if 6, < &, and both solutions are optimal. This proves that
and subject to a stopband null constraift{c’>*f) = 0.0 at must be a monotonically decreasing functionsdbr optimal
f = 0.414 cycles/sample. The impulse response is required RCLS filters. The slope at the LS solution must be zero
be real and symmetric. The unique optimal solution is shown logcause alb-inequality constraints are inactive, and their KT
Fig. 4(a) for the case wheteis specified to be 0.03. Fig. 4(b) multipliers vanish.
shows the tradeoff betweenand é. Although the PTT proof is very simple, the PTT is a
The specifications in this example are challenging becausgry general and useful theorem. The PTT is true for all
of the discontinuity at 0.16 cycles/sample. The specificatiohges of optimal PCLS filters, including IIR digital filters,
require that|H(c/?"/)| < 0.02 for f = 0.159999... cy- asymmetric FIR filters, complex FIR filters, and analog filters.
cles/sample, and they require thgf(c/?~/)| < 0.01 for Moreover, it is applicable to filters with very complicated
f = 0.16 cycles/sample. nonlinear inequality constraints. For example, the tradeoff
Fig. 4(c) shows the minimax solution obtained from minbetween the stopband energy and the peak stopband gain
imizing 6. Although the filter in Fig. 4(c) is a symmetricin optimal PCLS filters must satisfy the PTT, regardless of
FIR filter with an equiripple frequency response, it canndhe passband constraints, such as inequality constraints on
be designed with the Parks—McClellan algorithm. The filtdhe passband magnitude, phase, and delay. The PTT is not
in Fig. 4(c) is actually a “constrained minimax” (CMM)restricted to analyzing the tradeoffs between the stopband
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DECIBELS

Fig. 3. Asymmetric FIR filter with constrained group delay. (a) Frequency response magnitude. (b) Passband group delay. (c) Passband magnitude.

-15

-30

.45

-60

-75

0.2 0.3
CYCLES/SAMPLE
@
0.5 -
0 4

PASSBAND GAIN (DECIBELS)

-0.5 A

GROUP DELAY (SAMPLES)

47.27 —

47.25

47.23

311

UPPER INEQUALITY CONSTRAINT ON THE GROUP DELAY

LOWER INEQUALITY CONSTRAINT ON THE GROUP DELAY

1 } 1 i

T T T 1
0.015625 0.03125 0.046875 0.0625
CYCLES/SAMPLE

(b)

LOWER INEQUALITY CONSTRAINT ON THE PASSBAND GAIN

0.015625

0.03125
CYCLES/SAMPLE

0.046875 0.0625

energies and the peak stopband gains in filters. It can akst of filters is definitely not a set of optimal PCLS filters
be used for analyzing tradeoffs between other types of peiékts tradeoff curve has “bumps,” indicating that it is not
errors and total squared errors.

The PTT can be used as one-way optimality test. (It statesThe tradeoff curve in Fig. 5(c) was obtained by systemat-
a necessary but not a sufficient condition for optimality.) Acally designing a large number of PCLS IIR digital filters.

monotonically decreasing.
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Fig. 4. Multiband FIR filter. (a) Frequency response for the PCLS filter wite= 0.03. (b) Tradeoff between the total squared error and the peak
error in the upper stopband. (c) Minimax filter.

(We have developed algorithms for efficiently automating theecessary condition for optimality. Unfortunately, these filters
generation of tradeoff curves, and we plan to present therannot be proven to be globally optimal because their objective
in future papers.) All of the filters corresponding to Fig. 5(clunctions are nonlinear. However, we believe that they are
have nonnegative Kuhn—Tucker (KT) multipliers, which is globally optimal for reasons discussed in [26]. Our belief is
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Fig. 5. 1IR digital filter. (a) PCLS frequency response. (b) PCLS passband details. (c) Tradeoff between the total squared error and the peak error in
the stopband. (d) Minimax filter.

strengthened by the fact that the tradeoff curve in Fig. 5(dglay in [25] and [26]. In particular, we consider Example

satisfies the PTT. 1 in Deczky’s classic IIR digital filter paper [22]. The same
We discuss PCLS IIR digital filters that meet simultaneowesxample also appears in the popular textbook by Oppenheim

specifications on the frequency response magnitude and gramg Schafer [23, pp. 442—-443]. In addition, the same example
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62. (a) Frequency response. (b) Passband details. (c) Tradeoff betwe
the PCLS filter and C071 062 filter when the indgtoss hae

appears in the receiandbook for Digital Signal Process- problem. Using the same number of quadratic sections and
ing [24]. Simultaneous PCLS optimization of the frequencthe same specifications for the frequency response magnitude
response magnitude and group delay provides a dramaticin [22]-[24], we reduce the group delay ripple by a factor

improvement in the solution of this classic IIR filter desigmf 35 in

[25] and [26]. In [26], the simultaneous optimization



316 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 2, FEBRUARY 1998

of the frequency response magnitude, phase, phase delay, fandhis example, we consider the LC ladder filter used by
group delay is also discussed. Orchardet al.in [27]. The schematic is labeled Filter CO71 062

For [22, Example 3], PCLS optimization can reduce th& [27, Fig. 4]. Orchardet al. obtained the component val-
group delay ripple to only+0.002 samples (giving an im- ues from a table in a filter handbook. C071062 was the
provement factor of 40) at the same time the stopband energyeble address. C071062 is a lowpass filter with an equiripple
reduced by 6 dB, without sacrificing any performance measufeequency response in both the passband and stopband. It
More details are in [26]. has the following characteristicd;, = 0.159 155 Hz, F, =

0.180254 Hz, DB, = 0.0436 dB, and DB, = —40.1 dB.
We designed a PCLS filter to match the C071062 values

E. Complex FIR Digital Filter for F,, F,, and DB, but we minimized the stopband energy

We now consider an FIR filter with complex impulsesubject to DB, < —38.00 dB and subject to component
response. The objective is to minimize the total squared eriBgquality constraints to ensure nonnegative values for the ten
in the upper stopband from 0.21 to 0.5 cycles/sample, subjéapacitors and inductors comprising the filter. The resulting
to the peak gain specification abB,, dB in the upper PCLS frequency response is shown in Fig. 7(a) and (b).
stopband and subject to the following inequality constraints For purposes of comparison, the frequency response for the

in the lower stopband: C071062 filter is overlaid in Fig. 7(a) and (b). The PCLS
filter is shown with a solid curve, and the C071062 filter is
20log, o [H(e*™)| < —50.0 dB shown with a shaded curve. The PCLS filter has slightly higher

stopband sidelobes within a very narrow frequency range

adjacent to the transition band, but its frequency response
and subject to the following inequality constraints in thé& much lower over the remainder of the enormously wide

passband: stopband. (Of course, the analog stopband extends to infinity.)

When computing the stopband energy, we used numerical inte-

—2.0 dB < 20log,, |H(¢**/)| < 0.0 dB gration for moderate frequencies and an analytical asymptotic

approximation for frequencies approaching infinity.

We used PCLS optimization to design the filters comprising

and the passband group delay is required to be 19.5 sampl€, tradeoff curve in Fig. 7(c). These filters were designed

Fig. 6(a) shows the unique optimal solution to this desiglq Match the CO71062 values fd,, F;, and DB,, but the
problem for the case, wherB B, is specified to be-36.0 Stopband energy was minimized subject to a variety)ds,
dB. Unlike other plots in this paper, the plot in Fig. 6(a) Spar%oeuflcat!ons, and t.h(f.' components were constra_med to be
the digital frequency band from0.5 to +0.5 cycles/sample. NONNegative. The minimax filter at the top endpoint of the
The frequency response magnitude is not symmetric abouttfdeoff curve in Fig. 7(c) corresponds to the C071062 filter
because the impulse response is complex valued. Fig. 6fjdied by Orcharet al. in [27]. _
shows the tradeoff between the total squared error and the’CLS optimization has special advantages over the tradi-
peak error in the upper stopband as #,, specification tional minimax optimization methods for analog filters because
is varied. the stopbands usually have infinite bandwidths. The stopband

If we modify the specifications for the filter shown in€N€ray is especially important in an antialiasing'ﬁlter ahead
Fig. 6(a) to have a desired group delay of 19.25 sampl@fsa” AID converter because the energy of the aliased signals
with lower and upper inequality constraints of 19.2 and 19@¢Pends on the energy in the analog filter’s infinitely wide
samples, we obtain the passhand group delay plot in Fig. 6(§t)qpban_d._lt is d|ff_|cult for us to underste_md vyhy stopband
The corresponding passband magnitude is plotted in Fig. 6(B)€M9Y IS ignored in most of the analog filter Ilterat_ure. The
The stopbands for this complex filter with passband groﬁ{“phas's has clearly been on the peak error as evidenced by
delay constrained between 19.2 and 19.3 samples are virtu&l§ many analog filter papers based on elliptic and Chebyshev
identical to the stopbands for the filter with 19.5 sample del&plutions. _ _
shown in Fig. 6(a). The lower stopband is equiripple-80.0 Analog filter handbooks prm_nde tables based on |deal_
dB, and the upper stopband has four sidelobe peaks that toGef’Ponents because the classical analog network synthesis
the DB,, specification of—36.0 dB. This paper does notMethods are based on the assumption that components are
include a separate plot for the overall frequency responiéieal- Engineers often accept the degradation resulting from
magnitude of this filter because it is virtually identical to théomponent values that were optimized under this false as-
plot in Fig. 6(a). sumption. _ . .

We present details for simultaneous PCLS optimization of PCLS optimization is especially powerful for dealing with
the frequency response magnitude, phase, phase delay, Igggy components such as inductors. Inductors have predictable

group delay in asymmetric and complex FIR filters in [19]. Wire resistance losses. The resistance is proportional to the
inductance. It is easy to include predictable losses (and para-

. sitics) in PCLS optimization problems.
F. Analog Filter Fig. 7(d) shows the passband gain for the C071062 filter
We include an analog filter example to show that PCL®hen the inductors have quality factors @f, = 1000. The
optimization is not restricted to digital filters. As the basipassband variatiod) B, degrades from 0.0436 dB to 0.16

for —0.5 < f < —0.02 cycles/sample

for 0.03 < f < 0.18 cycles/sample
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dB when @ is changed fromoc to 1000. The C071062 energy test eventually fails and it will be forced to go to
filter, along with most filters in the analog literature, wa$tep 3 after wasting time with many drops. We use KheT
optimized under the assumption th&; = oo. Fig. 7(d) parameter to avoid this inefficiency. We recommend using
includes the passband gain for the PCLS filter that wa€K7T = 4 + Int{ NDF/16}.
optimized to maintainDB, = 0.0436 dB and nonnegative The GME algorithm obtains its initial guess in Step 0. It
component values whe@?;, = 1000. (The DB, specification performs multiple exchanges in Step 1, and it performs single
was increased te-25.0 dB to obtain a feasible solution in exchanges in Steps 2 and 3. These steps are described in the
the knee of the tradeoff curve fép; = 1000. The first three following paragraphs.
stopband peaks are at25.0 dB, and the fourth peak is at Step 0a) Use the method of Lagrange multipliers to min-
—30.8 dB.) In this example, PCLS optimization permittedmize ¢ subject to the set of equality constraimis. If the
us to control the effects of lossy components, rather thaplution is O, then go to Step Ob. Otherwise, initialiZg(0)
accepting the degradation resulting from an optimization basgdthe null set,V,4 to 0, andk to 0. Test for optimality using
on a false assumption. the KT conditions. Terminate if the solution is optimal. Else
We have found that letting load resistances be variablesmputes(0) and go to Step 1.
in PCLS optimization of analog filters permits very lossy Step 0Ob) Select any inequality constraint that yields a
components to be optimized to meet surprisingly stringenbnzero solution, put it intoS,4(0), and use the method
frequency response specifications. We plan to present mofeLagrange multipliers to minimize subject to Sg and
details for PCLS optimization of nonideal components i 4(0). (As an example of selecting a constraint corresponding
future papers. to a nonzero solution in a filter design problem, we can
select a passhand edge frequency and activate the constraint
corresponding to the minimum passband gain specification.
IV. GENERALIZED MULTIPLE EXCHANGES This allows us to get a nontrivial solution, even when the
passband squared-error weighting is zero.) BSdb 0, and
In order to efficiently implement multiple exchanges, iget N4 to 1. Test for optimality using the KT conditions.
is important to divide the inequality constraints into twderminate if the solution is optimal. Otherwise, compste)
categories: smooth and nonsmooth. In filter design problenagd go to Step 1.
inequality constraints that vary smoothly inside of each fre- Step 1) LetS,y denote the subset &f 4(k) that corre-
quency band are in the smooth category. On the other hafgpnds to nonsmooth inequality constraints. kgts denote
inequality constraints at the edges of frequency bands arethe subset ofS4(k) that corresponds to smooth inequality
the nonsmooth category. Conventional quadratic programmiggnstraints at local error extrema. Defidge = Sin U
algorithms do not distinguish between smooth and nonsmodths. Let NAC denote the number of constraints fc.
inequality constraints. They are much less efficient than thet Sty = (Syn U Sys) — Sac. Syn denotes the non-
generalized multiple exchange (GME) algorithm. smooth inequality constraints that violate the specifications.
The GME algorithm includes the following parametersSy s denotes the smooth inequality constraints at local error
NDF,INCR, and NKT. NDF denotes the number ofextrema that violate the specifications. At first, it may seem
degrees of freedom.NCR denotes the limit on the increaseunnecessary to excludgs ¢ from Sry- because any constraint
in the number of constraints in the active st from one thatwas active in the previous iteration should now be satisfied
iteration to the next. [INCR stands for “increase.”) The with exact equality and, theoretically, should not violate the
original multiple exchange algorithm in [1] effectively hadspecifications. However, due to machine rounding errors, we
INCR corresponding to infinity because it did not control thenay encounter small violations of constraints that were active
increase in the number of active constraid®.C' R can be set in the previous iteration. It is useful to separately keep track
to any value from 1 to infinity, and the GME algorithm willof the constraints ir;y and.S 4 because the constraints in
converge to the same unique optimal solution. However, if thf&;~ were previously active, and the computations associated
number of active constraints is permitted to suddenly increaséh them do not need to be recalculated in the next iteration.
by a large amount, the algorithm can waste time by droppingLet N7’V denote the number of constraintsSiy-, and let
many constraints in Step 2. (If the algorithm is permitte&? = NTV + NAC. If NI > NDF —1orif k> 1 and
to suddenly activate a large number of new constraints, tl&l’ > NA + INCR , then go to Step 3. Otherwise, define
usually means that it has been sidetracked to a bad path &d= Srv U S.4c. Use the method of Lagrange multipliers to
will waste time getting back to a good path.) We use thainimize e subject to the constraints $iz and.St and obtain
INCR parameter to avoid this inefficiency. We recommens;. Terminate if the solution is optimal. If any KT multiplier
using INCR= 4 + IntNDF/8}, where In{x} denotes the is negative, then set/k7" to 1 and go to Step 2. Otherwise,
integer part ofzx. if e > e(k) and all KT multipliers are nonnegative, then let
The NKT parameter is used to control the number of — k+1,54(k) — Sp, NA — NT,e(k) — er, and repeat
constraints dropped in Step 2NET stands for “negative Step 1. Otherwise, ifr < (k), go to Step 3.
Kuhn—Tucker multipliers.”) The GME algorithm will converge Step 2) IfIKT > NKT, then go to Step 3. Otherwise,
to the same optimal solution iINKT is set to any number drop the constraint with the most negative KT multiplier from
from 1 to infinity. However, if it drops many constraintsSy and increment! KT' — IKT + 1. Use the method of
in Step 2, then it will usually find that the Step 2 erroLagrange multipliers to minimize subject to the constraints
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in Sg and S, and obtainep. Terminate if the solution is it along with fast Toeplitz-plus-Hankel methods to include
optimal. Otherwise, ifex > (k) and all KT multipliers in the GME algorithm. In addition to permitting us to use
are nonnegative, then lét — &k + 1,54(k) — Sy, NA — fast matrix-vector methods for solving equations in the GME
NT,e(k) «— e, and go to Step 1. I; > (k) and any KT algorithm, symmetric FIR filters also permit us to use fast
multiplier is negative and KT° < NKT, then repeat Step discrete cosine transform (FDCT) methods for computing the
2. If ex < e(k) or if any KT multiplier is negative and zero-phase response.
IKT > NKT, then go to Step 3. For the sake of numerical efficiency in the GME algorithm,
Step 3) Starting fromS 4(k), perform an iteration basedit is important to compute static quantities only once and
on the Goldfarb—Idnani algorithm, and obtain the correspongguse them in later iterations. For example, FDCT coefficients
ing constraintsSg; and error energyec;. (For improved (twiddle factors) should only be computed once because the
efficiency, our implementation of the Goldfarb—Idnani algogrid frequencies are the same in every iteration. Moreover, the
rithm in Step 3 exploits the special structures of the vectof$é matrix andp vector are static, and computations should be
and matrices in filter design problems instead of using tf@rformed on them only one time. The equality constraints
numerical implementation in [20]. It is also customized t@re also static, and their intermediate solution vectors should
exploit the calculations in Steps 1 and 2. We plan to discugg saved.
the numerical details in a future publication.) If the solution Some dynamic quantities should be saved until the next
is optimal, then terminate. If the problem is infeasible, theiteration in case they can be reused. For example, the interme-
notify the user and terminate. (We plan to discuss othé8jate solution vectors for the active constraint equations should

options for infeasible problems in future papers.) OtherwisB® saved until the next iteration because some of the active
let bk — k4 1,S54(k) — Sar,e(k) — eqr, and go to Step constraints may remain active. In addition, the intermediate

1. computations for solving the KT-multiplier system of equa-
solution of any feasible positive-definite quadratic progranft€thods can be used. Of course, brute-force methods such as
ming problem within a finite number of iterations. (Errofmatrix inversion should not be used. _
energies are always positive definite in filter design problems.)\We have observed that the GME algorithm has three basic

The number of iterations is finite because each iterati@d@ses of iterations. In the early (Phase I) iterations, most

terminates with a different set of active constraints and becalfeth® smooth active constraints have significant frequency

the number of different active constraint sets is finite. (We'@nges from one iteration to the next. In the middle (Phase
can use a finite number of frequency grid points in filteh!) iterations, only a few of the smooth active constraints have

problems.) Each iteration terminates with a different set stanificant frequency changes from one iteration to the next. In

active constraints because the objective function increadB final (Phase Il iterations close to convergence, none of the
monotonically. The final solution must be optimal becausqénomh active constraints have significant frequency changes

the algorithm cannot stop until the KT conditions are satigr—om one iteration to the next. )
fied. We have found that the overall computational cost can be

The ¢ tests may be replaced by tests for violations d]educed by preventing minor frequency changes for smooth

previously active constraints as discussed in [6] and [7]. Tl’f'é.'t've coneralnts dfurlng |te:ﬁt|ont_s where tth_e;e ?I_rﬁ. maJ(()jr
approach may increase the number of iterations, but it can re:qttj_encyf ihangeli/TE orl sm_;)ho tac(;vet cobns ra'tn S.t d Ids mod-
duce the number of computations within each iteration. (Fevx)g :slgr]l?tera?ions It aegr(:r?itsnr;oeig cson? u?atzii(():nl\s/atloebe :gg;% d

computations are usually required to check for violations of -1t perm comp : :
i . " at the expense of a small increase in the number of iterations.

previously active constraints than to checkBoth approaches .
; . . The tradeoff between the number of recycled computations

are guaranteed to converge to the unigue optimal solution when . : S
. : and the number of iterations can be controlled by adjusting

used in the GME algorithm. . .
The GME algorithm is inherently very fast. Step 1 is verthe thresholds for minor and major frequency changes. We are
’ éogtinuing to explore modifications of the GME algorithm to

efficient because it uses multiple exchanges. Steps 2 an - . : .

usually reduce the rate of convergence for the iterations wherr%de off the amount of work inside each iteration with the

the ayre used. but thev are notgused unless thev are neemémber of iterations. The goal is to find the best balance to
y ’ y . Y l%irﬁilmize the total computational cost.

to guarantee convergence to the optimal solution. Even in

e . X The GME algorithm was used directly to design the sym-
difficult de5|-gn problems, the GME. algo.nthm usually OloeFhetric FIR digital filter examples in this paper. The GME al-
Step 1 multiple exchanges in most iterations.

The GME algorithm i llv fast f ic Fl orithm was used as a subroutine inside of recursive quadratic
_the LVE aigorithm 1S especially fast Tor symmetric rogramming (RQP) loops to design the other examples. We
filter design problems because we can exploit the spec

R C. and H e RQP to convert nonlinear programming problems (for
structures ofk, ¢, and p, where example, group-delay inequality constraints are highly non-

R Hessian matrix; _ linear functions of filter coefficients) into chains of quadratic
C working constraint matrix; programming problems that we solve with the GME algo-
p linear component of the objective. rithm. The overall algorithm is called the recursive gen-

For example, we discussed a fast method for solving FIR filteralized multiple exchange (RGME) for lack of a better
equations in [21]. We are now working on improvements toame.
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The RGME algorithm cannot be guaranteed to converge namerical refinements for the 2-D implementation of the GME
the optimal solutions for all problems in the very broad class afgorithm in a future journal paper. (The publication of the
nonlinear programming problems. However, we have observedrk based on [15] was disrupted by the infamous 1994
it to be very robust for practical engineering application®orthridge earthquake and two deaths in the family of J.
Details about its convergence properties are included in [26). Adams.) We presented brief discussions of 2-D PCLS

We are developing computer programs that optimize thgtimization in conference papers [16], [18]. A 2-D PCLS
component values in digital and analog schematics with axample was included in [16] and [18]. The example showed
bitrary topologies. They are based on the component omi-2-D PCLS window with a mainlobe peak constrained to be
mization using the recursive generalized multiple exchangegual to 0.0 dB while the sidelobes were constrained to be less
(CORGME) algorithm. The programs use nodal analysis atiten or equal te-34.0 dB across the 2-D frequency plane. The
read disk files containing branch descriptions in the forméitst three error peaks along each frequency axis turned out to
From Node, To Node, Component Type, Initial Componefite exactly—34.0 dB, and the remaining sidelobes decayed
Value, Lower Limit on the Component Value, Upper Limit orto minimize the total sidelobe energy in the 2-D frequency
the Component Value. We usually set the lower limits on thgane.
component values to zero in analog filters. The componentConventional multidimensional (M-D) minimax design al-
values in the input file are used as the initial guess f@orithms are notoriously slow. Moreover, the alternation the-
the CORGME optimization. The output file has the samgrem cannot test the optimality of M-D MM solutions. On
format as the input file, except Initial Component Value ithe other hand, it is easy to use the KT theorem to test
replaced by Optimized Component Value. The CORGMthe optimality of M-D PCLS solutions. The GME algo-
algorithm is very useful for optimizing circuits that wererithm is ideal for solving M-D problems. We note that steps
derived from human intuition and approximations. It is als6-3, which define the GME algorithm, do not depend on
useful for optimizing “recipe book” circuits obtained fromthe number of dimensions. The primary differences between
handbooks. the 1-D and M-D implementations are in the details of

If the initial guess is very far from meeting the specificaformulating e and the constraint equations. For example, in
tions, then we usually need to use the CORGME algoriththe 2-D implementation of the GME algorithm for FIR filters
in multiple stages. We relax the specifications so that theyd windows, we formulate using a 2-D integral instead
are almost met by the initial guess, and then we tighten thé a 1-D integral, and we define the inequality constraint
inequality constraints in each stage as we nudge the desiguations on a 2-D frequency grid instead of a 1-D grid.
toward the solution that meets the original specifications. Thisie GME algorithm is guaranteed to converge to the unique
multistage strategy is useful for preventing the occurrence @ptimal solution regardless of the dimensionality of the prob-
infeasible intermediate design problems. lem.

The multistage approach is usually needed when makingA 2-D PCLS filter design algorithm was proposed in [14].
large changes to many specifications. For example, if we sthi@wever, the algorithm proposed in [14] is not guaranteed to
with an analog handbook filter as an initial guess and v@®nverge, and it is only a single exchange algorithm. Single
wish to significantly change the band edge frequencies a@xchange algorithms are very slow in 2-D problems.
the ripple sizes, then we usually need multiple optimization
stages. In addition to permitting large changes to handbook

designs, the multistage approach permits CORGME to start V. CONCLUSION
from rough and intuitive (human) initial guesses, even when
designing high-order filters. In this paper, we extended our previous discussions of PCLS

The CORGME algorithm converges very rapidly becausedptimization. We also presented details for the GME algorithm,
uses multiple exchanges. The quick turnaround significantind we introduced the RGME and CORGME algorithms. The
reduces the importance of finding accurate initial guess€sE and RGME algorithms solve quadratic and nonlinear
because many initial guesses can be optimized in a short tirpepgramming problems, respectively. The CORGME algo-

PCLS optimization with the CORGME algorithm can libertithm is a schematic-based version of the RGME algorithm.
ate the designer from many of the intricate details of classidahlike the conventional algorithms in the optimization litera-
analog network synthesis theory. It is ideal for designing anawe, the algorithms in this paper use both single and multiple
log circuits because it can easily include inequality constrairggchanges.
on the component values to ensure that they are nonnegativéVe have developed another algorithm that can be used for
and realizable. Moreover, it can perform simultaneous PCIEECLS and RBLS design problems, but we did not discuss it
optimization in the time and frequency domains. For examplie, the main body of this paper because it is generally not
the overshoot of the step response in the time domain cas powerful as the GME algorithm. It is called the ripple-
be constrained while the gain and phase are optimized in theighted least-squares (RWLS) algorithm in [31].
frequency domain. Unfortunately, the RWLS algorithm converges slowly when

PCLS optimization is not restricted to one-dimensional (designing PCLS filters with specified band edge frequencies.
D) responses. In [15], two-dimensional (2-D) PCLS filter#t converges more rapidly for RBLS filters with unspecified
and windows are discussed, and several design examplestened edge frequencies, but as previously discussed, we believe
included. We plan to publish the work in [15] along withthat RBLS filters are not appropriate for most applications.



320

(In our early experiments with the RWLS algorithm, we useds]
it initially to design RBLS filters because it had the most
difficulty controlling the gains at band edge frequencies.)
Another problem with the RWLS algorithm is that it is not

guaranteed to converge.
On the other hand, the RWLS algorithm has an impo
tant advantage compared with the GME algorithm. It easi

o

ly

accommodates nonlinear inequality constraints on the err i
magnitude. (We must use the GME algorithm recursively
in order to accommodate nonlinear constraints.) The RWL$!
algorithm has not yet been fully developed, but we believe

that it may be useful for designs with problematic nonlinedto]

constraints. It may also be useful in combination with th

RGME algorithm. For example, we may use the RWLEy

e

algorithm to compute a RBLS solution as the initial guess

to a nonlinear programming problem and then use the RGME]

algorithm to obtain the final PCLS solution. This is an area

for future research.

[13]

We have published over 25 papers on PCLS optimiza-

tion and supervised over 30 graduate student theses on this

topic, but much work remains to be done. We believe th&t
many researchers will become interested in PCLS optimization

because there are many practical applications for it.
This paper discussed only a few of the many ways th
PCLS design problems can be formulated. We believe that

(18]
at
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, “Quadratic programming approach to new optimal windows and
antennas,” inProc. IEEE Conf. Signals, Syst., Compuct. 1990, pp.
69-72.

J. W. Adams, E. A. Gauer, J. L. Sullivan, and B. Tucker, “Digital filters
with peak-constrained weighted least-squared errétt. IEEE Conf.
Signals, Syst., CompuOct. 1992, pp. 256—-260.

J. W. Adams, J. Sullivan, R. Hashemi, and C. Ghadimi, “New ap-
proaches to constrained optimization of digital filterBfoc. IEEE Int.
Symp. Circuits SystMay 1993, pp. 80-83.

J. L. Sullivan and J. W. Adams, “A new nonlinear optimization
algorithm for asymmetric FIR digital filters,Proc. IEEE Int. Symp.
Circuits Syst. London, U.K., May 1994, pp. 541-544.

M. Lang and J. Bamberger, “Nonlinear phase FIR filter design according
to the 12 norm with constraints for the complex erragignal Process.
vol. 36, pp. 259-268, July 1994.

V. E. DeBrunner, “The design of low sensitivity digital filters using
multi-criterion optimization strategiesProc. ICASSPMar. 1992, vol.

IV, pp. 317-320.

C. S. Burrus and J. Barreto, “Leagstpower error design of FIR filters,”

in Proc. IEEE Int. Symp. Circuits SysSan Diego, CA, May 1992, pp.
545-548.

J. W. Adams, “Constrained least-squares digital filters,Pinc. IEEE

Int. Symp. Circuits SystSan Diego, CA, May 1992, pp. 565-568.

I. W. Selesnick, M. Lang, and C. S. Burrus, “Constrained least square
design of FIR filters without specified transition bands,Pioc. IEEE

Int. Conf. Acoust., Speech, Signal Procedday 1995, vol. 2, pp.
1260-1263.

M. Lang, I. W. Selesnick, and C. S. Burrus, “Constrained least-squares
design of 2-D FIR filters,1EEE Trans. Signal Processingol. 44, pp.
1234-1241, May 1996.

R. Hashemi,Two-Dimensional PCLS FIR Filter and Window Design
Master’s thesis, Calif. State Univ., Northridge, CA, pp. 1-158, Dec.
1994.

6] J. wW. Adams, P. Kruethong, R. Hashemi, J. L. Sullivan, and D. Gleeson,

PCLS optimality criterion can be customized to fit virtually
any practical application. For example, PCLS optimization can
readily be used to design equalizers in the prefilter-equalizef,

or interpolated FIR (IFIR) implementations of filters.

Our previous PCLS research emphasized analog and Q{ijgBJ
ital filter design problems. However, PCLS optimization is
certainly not restricted to filters. For example, PCLS opti-

mization could be used to solve many classical problems

o

numerical analysis, such as curve fitting, where textbook=]

now recommend minimax and least-squares optimization.

It

could also be used in the field of antenna design to minpy

mize total sidelobe energy subject to peak-sidelobe inequal

constraints and directional-null equality constraints. Theli

ity
51

are also many applications for PCLS optimization in other

fields.
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