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Peak-Constrained Least-Squares Optimization
John W. Adams,Senior Member, IEEE, and James L. Sullivan

Abstract— We presented the basic concepts for peak-
constrained least-squares (PCLS) optimization in previous
papers. We present advanced PCLS optimization concepts in
this paper.

I. INTRODUCTION

I N THE PAST, most digital filters were designed according
to the minimax (MM) or least-squares (LS) optimality

criteria. MM filters were used in applications where the peak
errors were more important than the total squared errors. LS
filters were used in applications where the total squared errors
were more important than the peak errors.

In [1] and [2], we showed that MM and LS optimization
problems can both be viewed as special cases in the class of
peak-constrained least-squares (PCLS) optimization problems.
In PCLS optimization problems, we constrain the peak error
while minimizing the total squared error.

We pronounce PCLS as “pickles.” When selecting the
terminology in [1] and [2], we also considered maximum-
constrained least-squares (MCLS). However, PCLS was easier
to pronounce than MCLS.

We showed how to use PCLS optimization to design sym-
metric FIR digital filters and windows in [1] and [2]. We also
showed that the tradeoff between the total squared error and
the peak error has the fundamental shape shown in Fig. 1.
In particular, we used Kuhn–Tucker multiplier theory in [1]
and [2] to prove that the tradeoff monotonically decreases and
terminates with zero slope for symmetric FIR digital filters and
windows. We use a more general theory in Section III-D of
this paper to prove the PCLS tradeoff theorem (PTT). It states
that the tradeoff monotonically decreases and terminates with
zero slope forall types of filters, including IIR digital filters,
complex FIR digital filters, and analog filters.

The best solutions for most practical applications are in the
knees of tradeoff curves. The LS and MM solutions are at the
endpoints where the slopes are the most extreme. Therefore,
the LS and MM solutions are the two special cases of PCLS
solutions that have the worst performance tradeoffs. Ironically,
the filter design literature and textbooks are dominated by these
extremely bad special cases.

Starting from the LS solution, a very large reduction in the
peak error can be obtained at the expense of a very small
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Fig. 1. Tradeoff between total squared error and peak error.

increase in the total squared error. Starting from the MM
solution, a very large reduction in the total squared error can
be obtained at the expense of a very small increase in the peak
error. Therefore, we argued in [1] and [2] that LS and MM
solutions are inherently inefficient.

Very few filter design papers discuss systematic approaches
to making tradeoffs between conflicting performance mea-
sures. In [10], we have one of the rare papers that deals with
this important practical problem. In [10], systematic strategies
for handling the tradeoff between the error energy in a filter’s
frequency response and its sensitivity to coefficient errors
are discussed. The strategies in [10] are based on the theory
of “multicriterion optimization.” One strategy optimizes the
weighted sum of normalized performance measures. Another
strategy constrains one performance measure while optimizing
the other. PCLS optimization is based on this strategy.

We first presented the PCLS optimality criterion in [29]
along with our first algorithm for PCLS optimization. It was
an iterative reweighted least-squares (IRLS) algorithm, and it
was very slow. Moreover, it was not guaranteed to converge.
On the other hand, the algorithm in Section IV of this paper
is very fast, and it is guaranteed to converge to optimal PCLS
solutions.

PCLS optimization problems are special forms of con-
strained least-squares (CLS) problems. A CLS problem is not
in the PCLS category unless it includes inequality constraints
that are used to control the error peaks on a smooth function.
For the sake of brevity in this paper, maxima and minima of
an error function are both called “error peaks.”

Most constrained optimization algorithms use a single ex-
change of active constraints from one iteration to the next.
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Single exchange algorithms are appropriate for solving general
CLS problems where the constraints are arbitrary. Unfortu-
nately, single exchange algorithms converge very slowly. If
a CLS problem includes peak-error constraints on a smooth
function, then we can take advantage of multiple exchanges
to improve the rate of convergence. Therefore, it is important
to determine whether a CLS problem is in the PCLS category
before selecting the optimization algorithm.

We presented a new algorithm for PCLS optimization,
which is called the multiple exchange algorithm, in [1]–[3].
We showed how to use the method of Lagrange multipliers in
a systematic sequence of multiple exchanges to quickly solve
PCLS problems. In addition, we showed how to apply the
Kuhn–Tucker conditions in the context of PCLS filters. (A
generic discussion of Kuhn–Tucker conditions is in [28].)

The original multiple exchange algorithm usually converged
to optimal solutions for lowpass FIR filter design problems.
The examples in [1] were designed by the multiple exchange
algorithm, and they were all confirmed to be optimal with
the Kuhn–Tucker conditions. However, the original multiple
exchange algorithm is not guaranteed to always converge to
optimal solutions. In particular, it can converge to suboptimal
solutions with negative Kuhn–Tucker multipliers.

A modified multiple exchange algorithm that inspected the
polarities of the Kuhn-Tucker multipliers in each iteration
was presented in [4] and [5]. If one or more Kuhn–Tucker
multipliers were negative, it temporarily switched to single
exchanges to drop the offending constraints until it obtained
an active set with nonnegative Kuhn–Tucker multipliers, and
then, it switched back to multiple exchanges. (It appears to us
that this same modification of the multiple exchange algorithm
was described as a new modification in [9] and was used
in [13]. We assume that this modification was developed
independently.) This modification guaranteed that the solution
was optimal if the algorithm converged. Unfortunately, this
modification was not sufficient to guarantee convergence in
[4], [5], [9], or [13].

In order to guarantee convergence to the optimal solution,
we introduced the generalized multiple exchange algorithm in
[2] and provided more details in [6] and [7]. The algorithm
is “generalized” in the sense that it can do both single and
multiple exchanges. We would prefer to have a more specific
and descriptive name for the algorithm because the term
“generalized” is vague and overused. However, we continue
to call it the generalized multiple exchange algorithm for lack
of a better name.

In [6] and [7] it was proved that the generalized multiple
exchange algorithm is guaranteed to converge to the unique
optimal solution of any feasible positive-definite quadratic
programming problem. (This type of problem naturally arises
for real symmetric FIR digital filters and windows.) The
generalized multiple exchange algorithm does multiple ex-
changes using the fundamental concepts in [1]–[3]. In addition,
it includes the method from [4] and [5] that inspects the
Kuhn–Tucker multiplier polarities and uses single exchanges
to drop constraints with negative Kuhn–Tucker multipliers.
It also uses single exchanges to exploit the convergence
properties of the Goldfarb–Idnani algorithm [20].

We proposed combining the multiple exchange and
Goldfarb-Idnani algorithms in [2], where we stated that
“This is a natural combination because the Goldfarb-Idnani
algorithm does not require primal feasibility until the
last iteration is completed.” Most quadratic programming
algorithms in the mathematics literature require primal
feasibility at the beginning and end of each iteration.
They are inefficient when combined with the multiple
exchange algorithm. We studied numerous (more than 30)
single-exchange quadratic programming algorithms, and we
concluded that the Goldfarb–Idnani algorithm is the best one
to use in conjunction with multiple exchanges.

We presented several examples of optimal filters that were
designed with the generalized multiple exchange algorithm in
[12], including multiband filters that failed to converge with
the original multiple exchange algorithm. We also discussed
multirate applications for FIR PCLS filters in [12]. However,
we called them FIR CLS filters in [12] to be consistent
with the title of that conference paper. Coincidentally, the

approach to dealing with the tradeoff between peak error
and error energy in FIR filters was presented in [11] at the
same conference. The optimality criterion permits the filter
designer to obtain solutions that are betweenand but it
does not permit the designer to make a direct tradeoff between
peak error and error energy.

II. OPTIMALITY CRITERIA

The PCLS optimality criterion is easy to customize for
different applications. For example, in PCLS filter design
problems, we can minimize the total weighted-squared error

subject to inequality constraints on the error magnitude

and inequality constraints on the phase

and inequality constraints on the phase delay

and inequality constraints on the group delay

and direct equality constraints on the variables

and direct inequality constraints on the variables

denotes the desired frequency response.
denotes the actual frequency response. denotes
the actual phase response. The lower and upper inequality
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constraints are indicated with and subscripts. denotes
the vector of variables (filter coefficients). denotes
the squared-error weighting function.

Arbitrary functions can be specified for in PCLS
optimization problems. In most practical applications, we
specify the squared-error weighting to be zero in at least one
band, such as a transition band. However, in some applications,
we specify the squared-error weighting to be nonzero at all
frequencies. For example, in [2, Sec. III-G], we minimize the
error energy using a weighting of 1.0 in the entire digital
frequency band from 0.5 to 0.5 cycles/sample. (In our
opinion, the discussion in [13] implies that we always use
zero weighting in at least one band when we do PCLS
optimization. There are actually no restrictions on PCLS
weighting functions.)

When designing symmetric FIR digital filters, we can im-
pose constraints on the zero-phase response as

and denote the lower and upper limits on
the zero-phase response. (A nonnegative zero-phase response
can be obtained by setting as in [30].) We can
also specify constraints on the derivative of the zero-phase
response

One of the anonymous reviewers of this paper questioned
whether band edge frequencies are inflexible in practical
design problems. We believe that band edge frequencies are
often inflexible and must be controlled in many practical
applications. For example, passband edge frequencies need to
be controlled in communication filters to pass the channels
of interest. Stopband edge frequencies need to be controlled
in multirate filters to suppress the aliased signals in the
appropriate frequency bands.

For the sake of simplicity in the following discussion about
the importance of band edge frequencies, we will focus on
lowpass filters, and we will use the notation in [1].

impulse response length;
passband edge frequency in cycles per sample;
stopband edge frequency in cycles per sample;
passband variation in decibels;
peak stopband gain in decibels.

We believe that the primary reason why minimax optimization
has generally been more popular than least-squares optimiza-
tion is because of the ability to specify band edge frequencies.
For example, in most lowpass MM filter design programs,
the user can specify the passband edge frequencyand
the stopband edge frequency In most lowpass LS filter
design programs, the user can only specify a single “cut-off”
frequency, which is usually denoted as

When using a lowpass LS filter design program, the user
typically specified to be between the desired and
The resulting filter would typically have an unacceptably large
attenuation for passband signals nearand an unacceptably
large gain for stopband signals near Designers usually

needed to control the gains at band edge frequencies, and this
led them to prefer the MM method over the LS method.

On the other hand, there are some applications where band
edge frequencies are flexible. For example, there are spectral
analysis applications where stopband edge frequencies are
flexible for windows. These windows can be designed with
ripple-bounded least-squares (RBLS) optimization. (RBLS can
be pronounced as “rebels.”) In particular, the ripple bounded
maximum directivity (RBMD) window is designed with RBLS
optimization in [18]. In RBLS design problems, there is at least
one frequency band where inequality constraints are used for
ripple peaks (local extrema or stationary points) of the error
function but not for band edges.

In [18, sec. III], the RBMD window with flexible stopband
edge frequency was discussed, and it includes an example. We
note that the RBMD window can be considered to be a special
case of the peak-constrained maximum directivity (PCMD)
window presented in [2, Sec. III-G]. Given an RBMD window,
we can always find a PCMD window that is identical to it. In
particular, the RBMD example in [18, Fig. 3] is identical to
the PCMD example in [2, Fig. 11].

The PCMD example in [2] was designed to minimize the
total energy forall frequencies subject to a unity dc gain
constraint and a maximum gain of30.0 dB in the interval

, where was specified to be 0.013 95. The RBMD
example in [18] was designed to minimize the total energy
for all frequencies subject to a unity dc gain constraint and a
maximum gain of 30.0 dB at the frequencies of sidelobe
ripple peaks (local extrema), but was unspecified. The
RBMD example in [18] is identical to the PCMD example
in [2] because the inequality constraint at is inactive in [2].

Another example of RBLS optimization was presented in
[18, Sec. IV] for a lowpass FIR filter. The total energy was
minimized in the interval subject to

and was unspecified.
The resulting filter had a ripple-bounded stopband.

In practice, this type of RBLS filter can arise at an inter-
mediate stage in the design of a lowpass decimation filter,
where depends on the decimation ratio, but the decimation
ratio has not yet been determined. In the first cut and try, a
ripple-bounded stopband filter is designed, and its resulting

(corresponding to is measured. Based on this initial
estimate for , the nearest appropriate integer is selected for
the decimation ratio , and is then used to determine
the final specification for In most applications, we specify

so that only stopband signals are permitted
to alias into the passband. In particular, a signal ataliases
to be at after it is decimated by Therefore, controlling
the gain at is very important in the final design.

The final PCLS filter is designed to minimize the to-
tal weighted energy of the important aliased signals (which
are usually the signals that alias into the passband), given

and The squared-error weighting
for the final PCLS filter is usually specified to be zero in the
transition band because those frequencies do not alias into the
passband. (Transition band signals alias back into the transition
band.) If a nonzero squared-error weighting were used in the
transition band, the resulting filter would reduce the energy
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of signals aliasing into the transition band at the expense of
increasing the energy of signals aliasing into the passband.
That would be an undesirable trade in most applications.

Given a RBLS filter, it is always possible to find a PCLS
filter that is identical to it. On the other hand, given a PCLS
filter, it is not always possible to find a RBLS filter that is
identical to it. Therefore, RBLS filters can be considered to be
special cases of PCLS filters.

In [13], an extensive discussion of RBLS filters is provided,
and applications for filters with unspecified transition band-
widths and unspecified gains at band edge frequencies are
described. Examples of lowpass filters are also included, where
the passband and stopband edge frequencies are unspecified.

In [13], we are provided with interesting justifications for
using RBLS filters in some special applications. However, for
most practical applications, we believe that [13] overempha-
sizes the importance of RBLS filters compared with PCLS
filters.

In [17], we find a discussion that refers to [13]. We believe
that the discussion in [17] exaggerates the importance of RBLS
filters significantly more than in [13]. Moreover, we believe
that the overemphasis on RBLS filters is exaggerated in [17]
to the point of excluding PCLS filters with specified band edge
frequencies. We also believe that the constrained least-squares
symmetric FIR filter design algorithms used in [17] do not
always converge.

In our opinion, the discussion in [17] (especially on pp.
2–27) implies that the primary advantage of constrained least
squares optimization is the ability to design filters with unspec-
ified transition bandwidths and unspecified gains at band edge
frequencies. We disagree with this implication for two reasons.
First, we believe that the primary advantage of constrained
least squares optimization is the ability to control the tradeoff
between peak error and total weighted squared error. Second,
in most practical applications, we believe that it is important
for the filter designer to have the ability to specify inequality
constraints on the gains at band edge frequencies. (Without
this ability, the gain at a passband edge may be too small, and
the gain at a stopband edge may be too high.) It appears to
us that the constrained least squares filter design algorithms in
[17] do not provide this ability. Moreover, it seems to us that
the discussion in [17] implies that this inability is desirable.

III. PCLS DIGITAL FILTER EXAMPLES

A. FIR Filter with Monotonic Passband

We now consider the following symmetric FIR lowpass
filter design problem: Minimize the stopband energy subject to

dB
dB and constrain the passband to be monotonically

decreasing. The specifications in this example are identical
to the ones used in [1, Sec. III-A] except that the passband is
required to be monotone here, and the impulse response length
is 118. The monotonic passband is obtained by including the
following inequality constraints in the PCLS optimization:

for

Fig. 2. Symmetric FIR filter with monotonic passband.

The optimal solution is shown in Fig. 2. Refer to [1, Fig. 3]
to see the results for the corresponding example where the
passband was not constrained to be monotone. The passband
turned out to be equiripple in [1].

We also presented a PCLS digital filter example with a
monotonic passband in [12, Fig. 2]. It was a multirate filter
with multiple stopbands to attenuate signals that aliased into
the passband. The monotonic-passband filter in [12] was
motivated by a radar application where signal frequencies
migrated through the passband. If the passband had ripples,
they would have produced periodic amplitude modulations that
would have created false radar echos.

As alternatives to filters with monotonic passbands, filters
with maximally-flat passbands could be used in applications
where passband ripples are objectionable. However, the num-
ber of derivatives that are set to zero must be an integer in a
maximally-flat filter. Therefore, it is difficult for a maximally-
flat filter to efficiently meet a specification on the passband
gain variation, such as the 1.0-dB specification in this example.
We believe that filters with maximally-flat passbands are dis-
cussed in many textbooks because they are easy to design and
not because they are the best filters for practical applications.

B. Lowpass Asymmetric FIR Filter

If the impulse response is asymmetric, then we can si-
multaneously constrain the frequency response magnitude and
group delay. (We note that an approach to constraining the
magnitude of the complex error in asymmetric FIR filters was
discussed in [9], but the phase and delay were unconstrained
in [9].) As an example of simultaneous PCLS optimization
of the frequency response magnitude and group delay, we
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designed a filter to minimize the stopband energy subject to

samples, and samples.
Fig. 3(a) shows the overall frequency response. Figs. 3(b) and
(c) show blowups of the passband gain and group delay. The
group delay has an equiripple behavior centered around 47.25
samples and constrained within samples. As a practical
application, this type of asymmetric filter with specified group
delay is useful for digital range gate tracking of a reference
point to synchronize radar echos. (Each radar echo needs to
be shifted by a specified fraction of a sample. The worst-case
asymmetry occurs in the case of a 0.25 sample shift as in this
example.) For purposes of comparison, we refer to [1, Fig. 3]
to see the corresponding symmetric PCLS filter with the same
specifications as in this example, except the group delay was
47.0 samples.

We presented the key concepts for the simultaneous PCLS
optimization of the frequency response magnitude and group
delay in [8] and [25]. The same methods can readily be used
to perform simultaneous PCLS optimization of the frequency
response magnitude, phase, phase delay, and group delay.
However, in most applications, only one phase-related quantity
needs to be included in the optimization.

C. Multiband FIR Filter with Symmetric Impulse Response

We now consider a multiband FIR filter design example that
fails to converge with the original multiple exchange algorithm
in [1]. The specifications in this example were developed to
challenge the robustness of the generalized multiple exchange
algorithm.

The objective is to minimize the stopband energyin the
interval [0.35, 0.5] subject to the peak gain specification
in the same stopband and subject to the following inequality
constraints in two other stopbands:

for
for

and subject to the following inequality constraints in two
passbands:

for

and

and subject to a stopband null constraint: at
cycles/sample. The impulse response is required to

be real and symmetric. The unique optimal solution is shown in
Fig. 4(a) for the case whereis specified to be 0.03. Fig. 4(b)
shows the tradeoff betweenand

The specifications in this example are challenging because
of the discontinuity at 0.16 cycles/sample. The specifications
require that for cy-
cles/sample, and they require that for

cycles/sample.
Fig. 4(c) shows the minimax solution obtained from min-

imizing Although the filter in Fig. 4(c) is a symmetric
FIR filter with an equiripple frequency response, it cannot
be designed with the Parks–McClellan algorithm. The filter
in Fig. 4(c) is actually a “constrained minimax” (CMM)

filter because the design problem includes constraints, such
as the stopband null constraint at 0.414 cycles/sample and
the specified limits on the ripples in the two passbands and
the lower two stopbands. CMM problems are usually solved
with a single-exchange linear programming algorithm such
as the simplex algorithm. However, single-exchange linear
programming algorithms are very slow.

We used multiple exchanges to design the filter in Fig. 4(c).
We have developed several variations of the generalized
multiple exchange algorithm for CMM problems, and we plan
to present them in future papers. (One method systematically
adjusts the parameter to be minimized, such asin this
example, until the CMM solution is obtained. Another method
converts the CMM problem into a QP problem.)

D. IIR Digital Filter

We now consider an eighth-order IIR lowpass filter. The fil-
ter in Fig. 5(a) was designed to minimize the stopband energy

subject to the following specifications:
and (corresponding to

Fig. 5(b) shows a blowup of the passband.
Fig. 5(c) shows the tradeoff between the stopband energy
and the peak stopband gainFig. 5(d) shows the constrained
minimax filter where the passband variation is constrained
to be less than or equal to 1.0 dB, andis minimized.
This IIR CMM filter was designed with a CMM variation
of the recursive generalized multiple exchange algorithm. It
corresponds to the top endpoint of the PCLS tradeoff curve
in Fig. 5(c).

In [1] and [2], we proved that PCLS tradeoff curves must
monotonically decrease and terminate with zero slope for
symmetric FIR filters and windows. Although it corresponds
to a set of IIR filters, the tradeoff curve in Fig. 5(c) seems
to monotonically decrease and terminate with zero slope. The
similarity between FIR and IIR tradeoff curves is more than a
coincidence, as indicated by the following theorem.

PCLS Tradeoff Theorem (PTT): versus tradeoff curves
for all types of optimal PCLS filters must monotonically
decrease and terminate with zero slope.

PTT Proof: The feasible set for must be a subset of
the feasible set for if Therefore,
if , and both solutions are optimal. This proves that
must be a monotonically decreasing function offor optimal
PCLS filters. The slope at the LS solution must be zero
because all -inequality constraints are inactive, and their KT
multipliers vanish.

Although the PTT proof is very simple, the PTT is a
very general and useful theorem. The PTT is true for all
types of optimal PCLS filters, including IIR digital filters,
asymmetric FIR filters, complex FIR filters, and analog filters.
Moreover, it is applicable to filters with very complicated
nonlinear inequality constraints. For example, the tradeoff
between the stopband energy and the peak stopband gain
in optimal PCLS filters must satisfy the PTT, regardless of
the passband constraints, such as inequality constraints on
the passband magnitude, phase, and delay. The PTT is not
restricted to analyzing the tradeoffs between the stopband
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(a) (b)

(c)

Fig. 3. Asymmetric FIR filter with constrained group delay. (a) Frequency response magnitude. (b) Passband group delay. (c) Passband magnitude.

energies and the peak stopband gains in filters. It can also
be used for analyzing tradeoffs between other types of peak
errors and total squared errors.

The PTT can be used as one-way optimality test. (It states
a necessary but not a sufficient condition for optimality.) A

set of filters is definitely not a set of optimal PCLS filters
if its tradeoff curve has “bumps,” indicating that it is not
monotonically decreasing.

The tradeoff curve in Fig. 5(c) was obtained by systemat-
ically designing a large number of PCLS IIR digital filters.
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(a) (b)

(c)

Fig. 4. Multiband FIR filter. (a) Frequency response for the PCLS filter with� = 0:03: (b) Tradeoff between the total squared error and the peak
error in the upper stopband. (c) Minimax filter.

(We have developed algorithms for efficiently automating the
generation of tradeoff curves, and we plan to present them
in future papers.) All of the filters corresponding to Fig. 5(c)
have nonnegative Kuhn–Tucker (KT) multipliers, which is a

necessary condition for optimality. Unfortunately, these filters
cannot be proven to be globally optimal because their objective
functions are nonlinear. However, we believe that they are
globally optimal for reasons discussed in [26]. Our belief is
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(a) (b)

(c) (d)

Fig. 5. IIR digital filter. (a) PCLS frequency response. (b) PCLS passband details. (c) Tradeoff between the total squared error and the peak error in
the stopband. (d) Minimax filter.

strengthened by the fact that the tradeoff curve in Fig. 5(c)
satisfies the PTT.

We discuss PCLS IIR digital filters that meet simultaneous
specifications on the frequency response magnitude and group

delay in [25] and [26]. In particular, we consider Example
1 in Deczky’s classic IIR digital filter paper [22]. The same
example also appears in the popular textbook by Oppenheim
and Schafer [23, pp. 442–443]. In addition, the same example
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(a) (b)

(c) (d)

Fig. 6. Complex FIR filter. (a) Frequency response magnitude of the complex PCLS filter withDBus = �36:0 dB and constant group delay of 19.5
samples. (b) Tradeoff between the total squared error and the peak error in the upper stopband. (c) Passband group delay of the complex PCLS filter with
DBus = �36:0 dB and passband group delay constrained between 19.2 and 19.3 samples. (d) Passband magnitude for the filter in Fig. 6(c).
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(a) (b)

(c) (d)

Fig. 7. Analog filter. Solid curve: PCLS filter. Shaded curve: Minimax filter C071 062. (a) Frequency response. (b) Passband details. (c) Tradeoff between
the total squared error and the peak error in the stopband. (d) Passband details for the PCLS filter and C071 062 filter when the inductors haveQL = 1000:

appears in the recentHandbook for Digital Signal Process-
ing [24]. Simultaneous PCLS optimization of the frequency
response magnitude and group delay provides a dramatic
improvement in the solution of this classic IIR filter design

problem. Using the same number of quadratic sections and
the same specifications for the frequency response magnitude
as in [22]–[24], we reduce the group delay ripple by a factor
of 35 in [25] and [26]. In [26], the simultaneous optimization
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of the frequency response magnitude, phase, phase delay, and
group delay is also discussed.

For [22, Example 3], PCLS optimization can reduce the
group delay ripple to only samples (giving an im-
provement factor of 40) at the same time the stopband energy is
reduced by 6 dB, without sacrificing any performance measure.
More details are in [26].

E. Complex FIR Digital Filter

We now consider an FIR filter with complex impulse
response. The objective is to minimize the total squared error
in the upper stopband from 0.21 to 0.5 cycles/sample, subject
to the peak gain specification of dB in the upper
stopband and subject to the following inequality constraints
in the lower stopband:

dB

for cycles/sample

and subject to the following inequality constraints in the
passband:

dB dB

for cycles/sample

and the passband group delay is required to be 19.5 samples.
Fig. 6(a) shows the unique optimal solution to this design

problem for the case, where is specified to be 36.0
dB. Unlike other plots in this paper, the plot in Fig. 6(a) spans
the digital frequency band from 0.5 to 0.5 cycles/sample.
The frequency response magnitude is not symmetric about dc
because the impulse response is complex valued. Fig. 6(b)
shows the tradeoff between the total squared error and the
peak error in the upper stopband as the specification
is varied.

If we modify the specifications for the filter shown in
Fig. 6(a) to have a desired group delay of 19.25 samples
with lower and upper inequality constraints of 19.2 and 19.3
samples, we obtain the passband group delay plot in Fig. 6(c).
The corresponding passband magnitude is plotted in Fig. 6(d).
The stopbands for this complex filter with passband group
delay constrained between 19.2 and 19.3 samples are virtually
identical to the stopbands for the filter with 19.5 sample delay
shown in Fig. 6(a). The lower stopband is equiripple at50.0
dB, and the upper stopband has four sidelobe peaks that touch
the specification of 36.0 dB. This paper does not
include a separate plot for the overall frequency response
magnitude of this filter because it is virtually identical to the
plot in Fig. 6(a).

We present details for simultaneous PCLS optimization of
the frequency response magnitude, phase, phase delay, and
group delay in asymmetric and complex FIR filters in [19].

F. Analog Filter

We include an analog filter example to show that PCLS
optimization is not restricted to digital filters. As the basis

for this example, we consider the LC ladder filter used by
Orchardet al. in [27]. The schematic is labeled Filter C071 062
in [27, Fig. 4]. Orchardet al. obtained the component val-
ues from a table in a filter handbook. C071 062 was the
table address. C071 062 is a lowpass filter with an equiripple
frequency response in both the passband and stopband. It
has the following characteristics: Hz

Hz dB and dB
We designed a PCLS filter to match the C071 062 values

for and , but we minimized the stopband energy
subject to dB and subject to component
inequality constraints to ensure nonnegative values for the ten
capacitors and inductors comprising the filter. The resulting
PCLS frequency response is shown in Fig. 7(a) and (b).

For purposes of comparison, the frequency response for the
C071 062 filter is overlaid in Fig. 7(a) and (b). The PCLS
filter is shown with a solid curve, and the C071 062 filter is
shown with a shaded curve. The PCLS filter has slightly higher
stopband sidelobes within a very narrow frequency range
adjacent to the transition band, but its frequency response
is much lower over the remainder of the enormously wide
stopband. (Of course, the analog stopband extends to infinity.)
When computing the stopband energy, we used numerical inte-
gration for moderate frequencies and an analytical asymptotic
approximation for frequencies approaching infinity.

We used PCLS optimization to design the filters comprising
the tradeoff curve in Fig. 7(c). These filters were designed
to match the C071 062 values for and but the
stopband energy was minimized subject to a variety of
specifications, and the components were constrained to be
nonnegative. The minimax filter at the top endpoint of the
tradeoff curve in Fig. 7(c) corresponds to the C071 062 filter
studied by Orchardet al. in [27].

PCLS optimization has special advantages over the tradi-
tional minimax optimization methods for analog filters because
the stopbands usually have infinite bandwidths. The stopband
energy is especially important in an antialiasing filter ahead
of an A/D converter because the energy of the aliased signals
depends on the energy in the analog filter’s infinitely wide
stopband. It is difficult for us to understand why stopband
energy is ignored in most of the analog filter literature. The
emphasis has clearly been on the peak error as evidenced by
the many analog filter papers based on elliptic and Chebyshev
solutions.

Analog filter handbooks provide tables based on ideal
components because the classical analog network synthesis
methods are based on the assumption that components are
ideal. Engineers often accept the degradation resulting from
component values that were optimized under this false as-
sumption.

PCLS optimization is especially powerful for dealing with
lossy components such as inductors. Inductors have predictable
wire resistance losses. The resistance is proportional to the
inductance. It is easy to include predictable losses (and para-
sitics) in PCLS optimization problems.

Fig. 7(d) shows the passband gain for the C071 062 filter
when the inductors have quality factors of The
passband variation degrades from 0.0436 dB to 0.16
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dB when is changed from to 1000. The C071 062
filter, along with most filters in the analog literature, was
optimized under the assumption that Fig. 7(d)
includes the passband gain for the PCLS filter that was
optimized to maintain dB and nonnegative
component values when (The specification
was increased to dB to obtain a feasible solution in
the knee of the tradeoff curve for The first three
stopband peaks are at dB, and the fourth peak is at

dB In this example, PCLS optimization permitted
us to control the effects of lossy components, rather than
accepting the degradation resulting from an optimization based
on a false assumption.

We have found that letting load resistances be variables
in PCLS optimization of analog filters permits very lossy
components to be optimized to meet surprisingly stringent
frequency response specifications. We plan to present more
details for PCLS optimization of nonideal components in
future papers.

IV. GENERALIZED MULTIPLE EXCHANGES

In order to efficiently implement multiple exchanges, it
is important to divide the inequality constraints into two
categories: smooth and nonsmooth. In filter design problems,
inequality constraints that vary smoothly inside of each fre-
quency band are in the smooth category. On the other hand,
inequality constraints at the edges of frequency bands are in
the nonsmooth category. Conventional quadratic programming
algorithms do not distinguish between smooth and nonsmooth
inequality constraints. They are much less efficient than the
generalized multiple exchange (GME) algorithm.

The GME algorithm includes the following parameters:
and denotes the number of

degrees of freedom. denotes the limit on the increase
in the number of constraints in the active set from one
iteration to the next. ( stands for “increase.”) The
original multiple exchange algorithm in [1] effectively had

corresponding to infinity because it did not control the
increase in the number of active constraints. can be set
to any value from 1 to infinity, and the GME algorithm will
converge to the same unique optimal solution. However, if the
number of active constraints is permitted to suddenly increase
by a large amount, the algorithm can waste time by dropping
many constraints in Step 2. (If the algorithm is permitted
to suddenly activate a large number of new constraints, this
usually means that it has been sidetracked to a bad path and
will waste time getting back to a good path.) We use the

parameter to avoid this inefficiency. We recommend
using INCR Int , where Int denotes the
integer part of

The parameter is used to control the number of
constraints dropped in Step 2. ( stands for “negative
Kuhn–Tucker multipliers.”) The GME algorithm will converge
to the same optimal solution if is set to any number
from 1 to infinity. However, if it drops many constraints
in Step 2, then it will usually find that the Step 2 error

energy test eventually fails and it will be forced to go to
Step 3 after wasting time with many drops. We use theNKT
parameter to avoid this inefficiency. We recommend using

Int
The GME algorithm obtains its initial guess in Step 0. It

performs multiple exchanges in Step 1, and it performs single
exchanges in Steps 2 and 3. These steps are described in the
following paragraphs.

Step 0a) Use the method of Lagrange multipliers to min-
imize subject to the set of equality constraints If the
solution is 0, then go to Step 0b. Otherwise, initialize
to the null set, to 0, and to 0. Test for optimality using
the KT conditions. Terminate if the solution is optimal. Else
compute and go to Step 1.

Step 0b) Select any inequality constraint that yields a
nonzero solution, put it into , and use the method
of Lagrange multipliers to minimize subject to and

(As an example of selecting a constraint corresponding
to a nonzero solution in a filter design problem, we can
select a passband edge frequency and activate the constraint
corresponding to the minimum passband gain specification.
This allows us to get a nontrivial solution, even when the
passband squared-error weighting is zero.) Setto 0, and
set to 1. Test for optimality using the KT conditions.
Terminate if the solution is optimal. Otherwise, compute
and go to Step 1.

Step 1) Let denote the subset of that corre-
sponds to nonsmooth inequality constraints. Let denote
the subset of that corresponds to smooth inequality
constraints at local error extrema. Define

Let denote the number of constraints in
Let denotes the non-
smooth inequality constraints that violate the specifications.

denotes the smooth inequality constraints at local error
extrema that violate the specifications. At first, it may seem
unnecessary to exclude from because any constraint
that was active in the previous iteration should now be satisfied
with exact equality and, theoretically, should not violate the
specifications. However, due to machine rounding errors, we
may encounter small violations of constraints that were active
in the previous iteration. It is useful to separately keep track
of the constraints in and because the constraints in

were previously active, and the computations associated
with them do not need to be recalculated in the next iteration.

Let denote the number of constraints in , and let
If or if and

, then go to Step 3. Otherwise, define
Use the method of Lagrange multipliers to

minimize subject to the constraints in and and obtain
Terminate if the solution is optimal. If any KT multiplier

is negative, then set to 1 and go to Step 2. Otherwise,
if and all KT multipliers are nonnegative, then let

, and repeat
Step 1. Otherwise, if , go to Step 3.

Step 2) If , then go to Step 3. Otherwise,
drop the constraint with the most negative KT multiplier from

and increment Use the method of
Lagrange multipliers to minimize subject to the constraints
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in and , and obtain Terminate if the solution is
optimal. Otherwise, if and all KT multipliers
are nonnegative, then let

, and go to Step 1. If and any KT
multiplier is negative and , then repeat Step
2. If or if any KT multiplier is negative and

, then go to Step 3.
Step 3) Starting from , perform an iteration based

on the Goldfarb–Idnani algorithm, and obtain the correspond-
ing constraints and error energy (For improved
efficiency, our implementation of the Goldfarb–Idnani algo-
rithm in Step 3 exploits the special structures of the vectors
and matrices in filter design problems instead of using the
numerical implementation in [20]. It is also customized to
exploit the calculations in Steps 1 and 2. We plan to discuss
the numerical details in a future publication.) If the solution
is optimal, then terminate. If the problem is infeasible, then
notify the user and terminate. (We plan to discuss other
options for infeasible problems in future papers.) Otherwise,
let , and go to Step
1.

The GME algorithm must converge to the unique optimal
solution of any feasible positive-definite quadratic program-
ming problem within a finite number of iterations. (Error
energies are always positive definite in filter design problems.)
The number of iterations is finite because each iteration
terminates with a different set of active constraints and because
the number of different active constraint sets is finite. (We
can use a finite number of frequency grid points in filter
problems.) Each iteration terminates with a different set of
active constraints because the objective function increases
monotonically. The final solution must be optimal because
the algorithm cannot stop until the KT conditions are satis-
fied.

The tests may be replaced by tests for violations of
previously active constraints as discussed in [6] and [7]. This
approach may increase the number of iterations, but it can re-
duce the number of computations within each iteration. (Fewer
computations are usually required to check for violations of
previously active constraints than to check) Both approaches
are guaranteed to converge to the unique optimal solution when
used in the GME algorithm.

The GME algorithm is inherently very fast. Step 1 is very
efficient because it uses multiple exchanges. Steps 2 and 3
usually reduce the rate of convergence for the iterations where
they are used, but they are not used unless they are needed
to guarantee convergence to the optimal solution. Even in
difficult design problems, the GME algorithm usually does
Step 1 multiple exchanges in most iterations.

The GME algorithm is especially fast for symmetric FIR
filter design problems because we can exploit the special
structures of and where

Hessian matrix;
working constraint matrix;
linear component of the objective.

For example, we discussed a fast method for solving FIR filter
equations in [21]. We are now working on improvements to

it along with fast Toeplitz-plus-Hankel methods to include
in the GME algorithm. In addition to permitting us to use
fast matrix-vector methods for solving equations in the GME
algorithm, symmetric FIR filters also permit us to use fast
discrete cosine transform (FDCT) methods for computing the
zero-phase response.

For the sake of numerical efficiency in the GME algorithm,
it is important to compute static quantities only once and
reuse them in later iterations. For example, FDCT coefficients
(twiddle factors) should only be computed once because the
grid frequencies are the same in every iteration. Moreover, the

matrix and vector are static, and computations should be
performed on them only one time. The equality constraints
are also static, and their intermediate solution vectors should
be saved.

Some dynamic quantities should be saved until the next
iteration in case they can be reused. For example, the interme-
diate solution vectors for the active constraint equations should
be saved until the next iteration because some of the active
constraints may remain active. In addition, the intermediate
computations for solving the KT-multiplier system of equa-
tions should be saved until the next iteration because updating
methods can be used. Of course, brute-force methods such as
matrix inversion should not be used.

We have observed that the GME algorithm has three basic
phases of iterations. In the early (Phase I) iterations, most
of the smooth active constraints have significant frequency
changes from one iteration to the next. In the middle (Phase
II) iterations, only a few of the smooth active constraints have
significant frequency changes from one iteration to the next. In
the final (Phase III) iterations close to convergence, none of the
smooth active constraints have significant frequency changes
from one iteration to the next.

We have found that the overall computational cost can be
reduced by preventing minor frequency changes for smooth
active constraints during iterations where there are major
frequency changes for smooth active constraints. This mod-
ification of the GME algorithm tends to be activated during
Phase II iterations. It permits more computations to be reused
at the expense of a small increase in the number of iterations.
The tradeoff between the number of recycled computations
and the number of iterations can be controlled by adjusting
the thresholds for minor and major frequency changes. We are
continuing to explore modifications of the GME algorithm to
trade off the amount of work inside each iteration with the
number of iterations. The goal is to find the best balance to
minimize the total computational cost.

The GME algorithm was used directly to design the sym-
metric FIR digital filter examples in this paper. The GME al-
gorithm was used as a subroutine inside of recursive quadratic
programming (RQP) loops to design the other examples. We
use RQP to convert nonlinear programming problems (for
example, group-delay inequality constraints are highly non-
linear functions of filter coefficients) into chains of quadratic
programming problems that we solve with the GME algo-
rithm. The overall algorithm is called the recursive gen-
eralized multiple exchange (RGME) for lack of a better
name.
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The RGME algorithm cannot be guaranteed to converge to
the optimal solutions for all problems in the very broad class of
nonlinear programming problems. However, we have observed
it to be very robust for practical engineering applications.
Details about its convergence properties are included in [26].

We are developing computer programs that optimize the
component values in digital and analog schematics with ar-
bitrary topologies. They are based on the component opti-
mization using the recursive generalized multiple exchange
(CORGME) algorithm. The programs use nodal analysis and
read disk files containing branch descriptions in the format
From Node, To Node, Component Type, Initial Component
Value, Lower Limit on the Component Value, Upper Limit on
the Component Value. We usually set the lower limits on the
component values to zero in analog filters. The component
values in the input file are used as the initial guess for
the CORGME optimization. The output file has the same
format as the input file, except Initial Component Value is
replaced by Optimized Component Value. The CORGME
algorithm is very useful for optimizing circuits that were
derived from human intuition and approximations. It is also
useful for optimizing “recipe book” circuits obtained from
handbooks.

If the initial guess is very far from meeting the specifica-
tions, then we usually need to use the CORGME algorithm
in multiple stages. We relax the specifications so that they
are almost met by the initial guess, and then we tighten the
inequality constraints in each stage as we nudge the design
toward the solution that meets the original specifications. This
multistage strategy is useful for preventing the occurrence of
infeasible intermediate design problems.

The multistage approach is usually needed when making
large changes to many specifications. For example, if we start
with an analog handbook filter as an initial guess and we
wish to significantly change the band edge frequencies and
the ripple sizes, then we usually need multiple optimization
stages. In addition to permitting large changes to handbook
designs, the multistage approach permits CORGME to start
from rough and intuitive (human) initial guesses, even when
designing high-order filters.

The CORGME algorithm converges very rapidly because it
uses multiple exchanges. The quick turnaround significantly
reduces the importance of finding accurate initial guesses
because many initial guesses can be optimized in a short time.

PCLS optimization with the CORGME algorithm can liber-
ate the designer from many of the intricate details of classical
analog network synthesis theory. It is ideal for designing ana-
log circuits because it can easily include inequality constraints
on the component values to ensure that they are nonnegative
and realizable. Moreover, it can perform simultaneous PCLS
optimization in the time and frequency domains. For example,
the overshoot of the step response in the time domain can
be constrained while the gain and phase are optimized in the
frequency domain.

PCLS optimization is not restricted to one-dimensional (1-
D) responses. In [15], two-dimensional (2-D) PCLS filters
and windows are discussed, and several design examples are
included. We plan to publish the work in [15] along with

numerical refinements for the 2-D implementation of the GME
algorithm in a future journal paper. (The publication of the
work based on [15] was disrupted by the infamous 1994
Northridge earthquake and two deaths in the family of J.
W. Adams.) We presented brief discussions of 2-D PCLS
optimization in conference papers [16], [18]. A 2-D PCLS
example was included in [16] and [18]. The example showed
a 2-D PCLS window with a mainlobe peak constrained to be
equal to 0.0 dB while the sidelobes were constrained to be less
than or equal to 34.0 dB across the 2-D frequency plane. The
first three error peaks along each frequency axis turned out to
be exactly 34.0 dB, and the remaining sidelobes decayed
to minimize the total sidelobe energy in the 2-D frequency
plane.

Conventional multidimensional (M-D) minimax design al-
gorithms are notoriously slow. Moreover, the alternation the-
orem cannot test the optimality of M-D MM solutions. On
the other hand, it is easy to use the KT theorem to test
the optimality of M-D PCLS solutions. The GME algo-
rithm is ideal for solving M-D problems. We note that steps
0–3, which define the GME algorithm, do not depend on
the number of dimensions. The primary differences between
the 1-D and M-D implementations are in the details of
formulating and the constraint equations. For example, in
the 2-D implementation of the GME algorithm for FIR filters
and windows, we formulate using a 2-D integral instead
of a 1-D integral, and we define the inequality constraint
equations on a 2-D frequency grid instead of a 1-D grid.
The GME algorithm is guaranteed to converge to the unique
optimal solution regardless of the dimensionality of the prob-
lem.

A 2-D PCLS filter design algorithm was proposed in [14].
However, the algorithm proposed in [14] is not guaranteed to
converge, and it is only a single exchange algorithm. Single
exchange algorithms are very slow in 2-D problems.

V. CONCLUSION

In this paper, we extended our previous discussions of PCLS
optimization. We also presented details for the GME algorithm,
and we introduced the RGME and CORGME algorithms. The
GME and RGME algorithms solve quadratic and nonlinear
programming problems, respectively. The CORGME algo-
rithm is a schematic-based version of the RGME algorithm.
Unlike the conventional algorithms in the optimization litera-
ture, the algorithms in this paper use both single and multiple
exchanges.

We have developed another algorithm that can be used for
PCLS and RBLS design problems, but we did not discuss it
in the main body of this paper because it is generally not
as powerful as the GME algorithm. It is called the ripple-
weighted least-squares (RWLS) algorithm in [31].

Unfortunately, the RWLS algorithm converges slowly when
designing PCLS filters with specified band edge frequencies.
It converges more rapidly for RBLS filters with unspecified
band edge frequencies, but as previously discussed, we believe
that RBLS filters are not appropriate for most applications.
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(In our early experiments with the RWLS algorithm, we used
it initially to design RBLS filters because it had the most
difficulty controlling the gains at band edge frequencies.)
Another problem with the RWLS algorithm is that it is not
guaranteed to converge.

On the other hand, the RWLS algorithm has an impor-
tant advantage compared with the GME algorithm. It easily
accommodates nonlinear inequality constraints on the error
magnitude. (We must use the GME algorithm recursively
in order to accommodate nonlinear constraints.) The RWLS
algorithm has not yet been fully developed, but we believe
that it may be useful for designs with problematic nonlinear
constraints. It may also be useful in combination with the
RGME algorithm. For example, we may use the RWLS
algorithm to compute a RBLS solution as the initial guess
to a nonlinear programming problem and then use the RGME
algorithm to obtain the final PCLS solution. This is an area
for future research.

We have published over 25 papers on PCLS optimiza-
tion and supervised over 30 graduate student theses on this
topic, but much work remains to be done. We believe that
many researchers will become interested in PCLS optimization
because there are many practical applications for it.

This paper discussed only a few of the many ways that
PCLS design problems can be formulated. We believe that the
PCLS optimality criterion can be customized to fit virtually
any practical application. For example, PCLS optimization can
readily be used to design equalizers in the prefilter-equalizer
or interpolated FIR (IFIR) implementations of filters.

Our previous PCLS research emphasized analog and dig-
ital filter design problems. However, PCLS optimization is
certainly not restricted to filters. For example, PCLS opti-
mization could be used to solve many classical problems in
numerical analysis, such as curve fitting, where textbooks
now recommend minimax and least-squares optimization. It
could also be used in the field of antenna design to mini-
mize total sidelobe energy subject to peak-sidelobe inequality
constraints and directional-null equality constraints. There
are also many applications for PCLS optimization in other
fields.
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