

Wind

With a wind of 6 m/s (strong, force 4 wind) and the top of the line technology, wind farms can generate 2 W/m^2 of flat ground.

Put wind farms on 5% of the country

- = 1500 m² per person
- = 3000 W
- = 72 kWh/day per person

Wind

The typical windmill of today has a rotor diameter of around 54 metres centred at a height of 80 metres; such a machine has a "capacity" of 1MW. The "capacity" or "peak power" is the *maximum* power the windmill can generate in optimal conditions. Usually, wind turbines are designed to start running at wind speeds somewhere around 3 to 5m/s and to stop if the wind speed reaches gale speeds of 25m/s. The actual average power delivered is the "capacity" multiplied by a factor that describes the fraction of the time that wind conditions are near optimal. This factor, sometimes called the "load factor" depends on the site; a typical load factor for a *good* site is 30%. In the Netherlands, the typical load factor is 22%; in Germany, it is 19%.

Assuming a load factor of 33%, an average power of 72 kWh/day per person requires an installed capacity of 2710 GW. As of 1/31/09 the U.S. had an installed capacity of 26.3 GW. At the end of 2006, Denmark had an installed capacity of 3.1GW; Germany had 20.6GW. The world total was 74 GW (wwindea.org).

Geothermal Energy

- In 2007, 353 trillion Btus of energy were generated from geothermal
- = 0.94 kWh/day per person So currently we get about

1 kWh/day per person

Possible?

- Researchers at MIT say that there is 1.9e20 Btu recoverable
- For \$1 billion over 40 years they estimate about 100 Gigawatts available at a similar price to coal
- = 8 kWh/day per person

U.S. Energy Consumption			
		<u>2007</u>	Potential?
	Geothermal	1 kWh/day	8 kWh/day
	Hydroelectric	6.5 kWh/day	6.5 kWh/day
	Biofuel	3.7 kWh/day	20 kWh/day
	Wood	5.7 kWh/day	5.7 kWh/day
	TOTAL	12.3 kWh/day 284 kWh/day!! > current energy use, 270 kWh/day	

