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Abstract. Existence of global in time, spatially inhomogeneous, and L
1-renormalized solutions is proven for

the model of simple reacting spheres under the assumptions that initially the system has a finite total mass,

energy, and entropy.

1. Introduction

The kinetic theory of simple reacting spheres (SRS) had been proposed by Marron [1] and further developed by

Xystris and Dahler [2]. In the model the molecules behave as if they were single mass points with two internal

states of excitation. Collisions may alter the internal states (this occurs when the kinetic energy associated with

the reactive motion exceeds the activation energy) but can not transfer mass from one molecule to another.

Reactive and non-reactive collision events are considered to be hard spheres–like. I start by considering a four

component mixture A, B, A∗, B∗, and the chemical reaction of the type

A + B 
 A∗ + B∗. (1.1)

Here, A∗ and B∗ are the distinct species from A and B. In the paper I use the indices 1, 2, 3, and 4 for the

particles A, B, A∗, and B∗, respectively. I assume no net mass transfer in reactive collisions; this implies

m1 = m3 and m2 = m4, where mi denotes the mass of the i-th particle, i = 1, . . . , 4. Reactions take place

when the reactive particles are separated by a distance σ12 = 1
2 (d1 +d2), where di denotes the diameter of the

i-th particle. Since in the SRS model reactions do not change diameters of the particles, d1 = d3 and d2 = d4.

The last set of equalities also implies that σ34 = 1
2 (d3 +d4) = σ12. I note that by not allowing the hard sphere

diameter to change upon reaction one avoids complications of producing overlapping configurations (see, [3]).

Key words and phrases. Kinetic theory of gas mixtures, chemical reactions, reacting mixtures, simple reacting spheres, hard-

sphere systems, initial value problem.
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In contrast to some more advanced models of chemical reactions considered in the literature (see e.g., the

references in [1] for multiply reacting rigid spheres (MIRS) models), internal degrees variables do not appear

explicitly in the collisional integrals of the kinetic equation based on the SRS model. The SRS, being a

natural extension of the hard–sphere collisional model, reduces itself to the Enskog theory when the chemical

reactions are turned off. Furthermore, in the dilute–gas limit it provides an interesting kinetic model of

chemical reactions that has not been considered before.

In a series of papers C. P. Grünfeld and E. Georgescu ([4], [5]) consider a general class of Boltzmann-like

kinetic equations with multiple inelastic collisions, where they prove existence and uniqueness of vacuum-type

solutions for small initial data. M. Groppi, A. Rossani, and G. Spiga in [6] and [7] formally analyze various

kinetic theories of chemically reacting gases , including gas-photon interactions. They show existence of an

H-function and described possible equilibrium solutions. Their results are based on the micro-reversibility

conditions that relate the differential cross-section scattering kernels before and after reactive collisions. In the

case of SRS, however, the reacting molecules behave like hard spheres before and after reactive collisions. Thus,

the micro-reversibility conditions reduce themselves to the symmetries of the separation distances σ12 = σ34

and the steric factors βij = βji (see, (2.11)–(2.12)).

After introducing a general model in Section 2, I consider, in Section 3, important physical properties of the

dilute SRS kinetic equations. They will play a fundamental role in proving existence of renormalized solutions

(see, [8] for a single specie Boltzmann equation), global in time, and under the assumptions that, initially,

the system has a finite total mass, energy, and entropy. Section 4 contains the existence result and its proof.

This is the first part of a series of papers on kinetic equations of simple reacting spheres. The rigorous results

concerning asymptotical behavior, convergence to equilibrium, passage to hydrodynamics, and the case of the

dense-gas SRS kinetic equations will appear in forthcoming papers.

2. The SRS kinetic system

Following [9], for each i (i = 1, . . . , 4), fi(t, x, v) denotes the one-particle distribution function of the ith

component of the reactive mixture. The function fi(t, x, v), which changes in time due to free streaming and

collisions (both elastic and reactive), represents at time t the number density of particles at point x with

velocity v.
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In the case of elastic encounters between a pair of particles from species i and s, the initial velocities v, w

take post–collisional values

v′ = v − 2
µis

mi
ε〈ε, v − w〉, w′ = w + 2

µis

ms
ε〈ε, v − w〉. (2.1)

Here, 〈·, ·〉 is the inner product in R
3, ε is a vector along the line passing through the centers of the spheres at

the moment of impact, i.e., ε ∈ S
2
+ = {ε ∈ R

3 : |ε| = 1, 〈ε, v−w〉 ≥ 0}. Also, µis = mims

mi+ms

is the reduced mass

of the colliding pair, where mi and ms are the masses of particles from i-th and s-th species, respectively.

Finally, let us note that conditions m1 = m3 and m2 = m4 imply µ12 = µ34. This property is crucial to prove

the main results in this work.

For the reactive collision between particles of species i and s to occur (i, s = 1, . . . , 4), the kinetic energy

associated with the relative motion along the line of centers must exceed the activation energy γi (defined

below),

1

2
µis

(
〈ε, v − w〉

)2
≥ γi, (2.2)

with ε having the same meaning as above. In the case of the reaction A + B → A∗ + B∗ the velocities v, w

take their post–reactive values

v‡ = v −
µ12

m1
ε

[

〈ε, v − w〉 − α−

]

, w‡ = w +
µ12

m2
ε

[

〈ε, v − w〉 − α−

]

, (2.3)

with α− =

√
(
〈ε, v − w〉

)2
− 2Eabs/µ12 and, Eabs, the energy absorbed by the internal degrees of freedom.

The absorbed energy Eabs has the property

Eabs = E3 + E4 − E1 − E2 > 0, (2.4)

where Ei > 0, i = 1, . . . 4, is the energy of i-th particle associated with its internal degrees of freedom.

Now, in order to complete the definition of the model, the activation energies γ1, γ2 for A and B are chosen

to satisfy γ1 ≥ Eabs > 0, and by symmetry, γ2 = γ1.

For the inverse reaction, A∗ + B∗ → A + B, the post–reactive velocities are given by

v† = v −
µ34

m3
ε

[

〈ε, v − w〉 − α+

]

, w† = w +
µ34

m4
ε

[

〈ε, v − w〉 − α+

]

, (2.5)

with α+ =

√
(
〈ε, v − w〉

)2
+ 2Eabs/µ34, and the activation energies for A∗ and B∗, γ3 = γ1 − Eabs and, as

before, γ4 = γ3.
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The pairs of velocities in (2.3) and (2.5) satisfy conservation of the momentum

m1v + m2w = m1v
‡ + m2w

‡ = m3v
‡ + m4w

‡, m3v + m4w = m3v
† + m4w

† = m1v
† + m2w

†; (2.6)

they do not, however, obey conservation of the kinetic energy. A part of kinetic energy is exchanged with the

energy absorbed by the internal states. The following equalities hold:

m1v
2 + m2w

2 = m1v
‡2 + m2w

‡2 + 2Eabs = m3v
‡2 + m4w

‡2 + 2Eabs,

m3v
2 + m4w

2 = m3v
†2 + m4w

†2 − 2Eabs = m1v
†2 + m2w

†2 − 2Eabs.

(2.7)

Also, it is easy to show that the relatives velocities before and after reactions, i.e., V = v −w, V ‡ = v‡ −w‡,

and V † = v† − w†, respectively, satisfy the identities

V ‡2 = V 2 −
2Eabs

µ12
, V †2 = V 2 +

2Eabs

µ34
. (2.8)

Finally, the reactive collisions A + B 
 A∗ + B∗ can be also represented in the form i + j → k + l, where the

set of indices (i, j, k, l) can be enumerated:

(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1) (2.9)

Now, for i = 1, . . . , 4, the SRS kinetic system can be expressed as follows

∂fi

∂t
+ v

∂fi

∂x
= JE

i + JR
i , (2.10)

with

JE
i =

4∑

s=1

{

σ2
is

∫∫

R3×S2

[

f
(2)
is (t, x, v′, x − σisε, w

′) − f
(2)
is (t, x, v, x + σisε, w)

]

Θ (〈ε, v − w〉) 〈ε, v − w〉 dεdw

}

− βijσ
2
ij

∫∫

R3×S2

[

f
(2)
ij (t, x, v′, x − σijε, w

′) − f
(2)
ij (t, x, v, x + σijε, w)

]

Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw,

(2.11)

and

JR
i = βijσ

2
ij

∫∫

R3×S2

[

f
(2)
kl (t, x, v�ij , x − σijε, w

�
ij) − f

(2)
ij (t, x, v, x + σijε, w)

]

Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw.

(2.12)

Here, the function f
(2)
is approximates the density of pairs of particles in collisional configurations, 0 ≤ βij < 1

is the steric factor for reactive collisions between species i and j, Γij =
√

2γi/µij , and Θ is the Heaviside step

function. The prime velocities in (2.11) are given in (2.1). The pair of velocities (v�
i , v�j ) refers to post-reactive
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velocities described either in (2.3) or (2.5), i.e., (v�
ij , w

�
ij) = (v‡, w‡) for i, j = 1, 2, and (v�

ij , w
�
ij) = (v†, w†)

for i, j = 3, 4. Also, the index pairs (i, j) and (k, l) appearing in (2.11)-(2.12) are associated with the set of

indices (i, j, k, l) specified in (2.9).

The first term of (2.11) is a hard-spheres collision operator with the usual pre-collisional range of integration,

while the second term of (2.11) singles out those pre-collisional states that are energetic enough to result in

reaction. The collision operator in (2.12) is purely reactive.

When the steric factors βij = 0, i.e., there are no reactive collisions, and f
(2)
is is the exact two–particle distri-

bution function, system (2.10)–(2.12) becomes the exact first BBGKY hierarchy system for a four component

hard–spheres mixture (with the diameters and masses satisfying d1 = d3, d2 = d4 and m1 = m3, m2 = m4,

respectively). As in the kinetic theory of non–reactive mixtures, different ways in which one approximates the

two–particle distribution function f
(2)
ij give rise to different kinetic equations. For this purpose it is convenient

to write f
(2)
ij in form of the closure relation

f
(2)
ij (t, x, v, y, w) = Yij (t, x, v, y, w | {Λifi}) fi(t, x, v)fj(t, y, w), (2.13)

where Yij is assumed to be given, for each i and j and for each fixed t ≥ 0, Λ = (Λ1, Λ2, Λ3, Λ4) is an (possibly

nonlinear) operator acting on (f1, f2, f3, f4), typically through one or more velocity moments, In [10] various

forms of Λ and the resulting kinetic equations were considered. For example, in the case of the revised Enskog

system for non-reactive mixtures (see, [11] and [12]) Yij = Y ijRET has the form

Y RET
ij = g

(2)
ij (x1, x2 | {ni(t, ·)}) (2.14)

where ni(t, x) =
∫

R3 fi(t, x, v)dv is the local number density of the component i and g
(2)
ij is the pair cor-

relation function for a non-uniform system at equilibrium with the local densities ni(t, x). The notation

g
(2)
ij (x1, x2 | {ni(t, ·)}) indicates that g

(2)
ij is a functional of the local densities ni.

In this work, I will be concerned only with the dilute-gas limit of the system (2.10)–(2.12). Formally at least,

one can show that when σij → 0, ni → 0, with niσ
2
ij → const 6= 0 and niσ

3
ij → 0, then g

(2)
ij → 1 in (2.14).

Another (more ad hoc) way to obtain the system of reactive kinetic equations for dilute-gas regime is to take

Yij ≡ 1, for i = 1, . . . , 4 and assume that the change of fi(t, x, v) over a length σij , for arbitrary t and v, is

negligible (resulting in fi(t, x, v) ≈ fi(t, x + σijε, v)).
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Let us notice that in the dilute-gas limit the system (2.10)–(2.12), with βij = 0 (no reactive collisions),

becomes the Boltzmann system for hard–spheres mixture. This fact becomes even more important if one

realizes that the cross sections of gas phase reactions are usually smaller as compared to the non-reactive

collisions. This way the reactive collision terms can be considered as perturbative corrections to non-reactive

collisional terms.

3. Properties of the dilute SRS kinetic system

The main result of this work is the global existence theorem for the dilute-gas system

∂fi

∂t
+ v

∂fi

∂x
= JE

i + JR
i , fi(0, x, v) = fi0(x, v), i = 1, . . . , 4, (x, v) ∈ Ω × R

3 (3.1)

with

JE
i =

4∑

s=1

{

σ2
is

∫∫

R3×S2

[

fi(t, x, v′)fs(t, x, w′) − fi(t, x, v)fs(t, x, w)

]

Θ (〈ε, v − w〉) 〈ε, v − w〉 dεdw

}

− βijσ
2
ij

∫∫

R3×S2

[

fi(t, x, v′)fs(t, x, w′) − fi(t, x, v)fs(t, x, w)

]

Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw,

(3.2)

and

JR
i = βijσ

2
ij

∫∫

R3×S2

[

fk(t, x, v�ij )fl(t, x, w�
ij) − fi(t, x, v)fj(t, x, w)

]

Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw, (3.3)

where fi0, i = 1, . . . , 4 are suitable nonnegative initial conditions that will be defined later. The gas mixture

is confined in Ω ⊆ R
3. I consider two choices for the set Ω:, Ω = R

3, or Ω being a 3-dimensional torus [0, L]3,

L > 0. The latter choice corresponds to case of the periodic boundary conditions on [0, L]3.

The following properties of (3.1)–(3.3) are crucial in proving the existence result.

Proposition 3.1. Assume that βij = βji for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}. Then for φi measurable on

Ω × R
3 and fi ∈ C0(Ω × R

3), i = 1, . . . , 4,

4∑

i=1

∫

R3

φiJ
E
i dv =

4∑

i=1

4∑

s=1

σ2
is

∫∫∫

R3×R3×S2

[φi(x, v) + φs(x, w) − φi(x, v′) − φs(x, w′)]×

[fi(v
′)fs(w

′) − fi(v)fs(w)] Θ(〈ε, v − w〉)〈ε, v − w〉Ξis dεdwdv,

(3.4)
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4∑

i=1

∫

R3

φiJ
R
i dv =

∫∫∫

R3×R3×S2

[
β12σ

2
12φ1(x, v) + β21σ

2
21φ2(x, w) − β34σ

2
34φ3(x, v‡) − β43σ

2
43φ4(x, w‡)

]
×

[
f3(x, v‡)f4(x, w‡) − f1(x, v)f2(x, w)

]
Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉 dεdwdv,

(3.5)

and

4∑

i=1

∫

R3

φiJ
R
i dv =

∫∫∫

R3×R3×S2

[
β34σ

2
34φ3(x, v) + β43σ

2
43φ4(x, w) − β12σ

2
12φ1(x, v†) − β21σ

2
21φ2(x, v†)

]
×

[
f1(x, v†)f2(x, w†) − f3(x, v)f4(x, w)

]
Θ(〈ε, v − w〉 − Γ34)〈ε, v − w〉 dεdwdv,

(3.6)

where Xis, appearing in (3.4), is given by

Ξis =







1
2Θ(〈ε, v − w〉 − Γis) + 1

2 (1 − βis)Θ(Γis − 〈ε, v − w〉), if (i, s) ∈ I;

1
4Θ(〈ε, v − w〉), if i = s;

1
2Θ(〈ε, v − w〉), otherwise,

(3.7)

with I = {(1, 2), (2, 1), (3, 4), (4, 3)}.

The post-collisional velocities, v′ and w′ are given in (2.1), while the post-reactive velocities, v‡, w‡ and v†,

w†, are given in (2.3) and (2.5), respectively.

Proof. The proof of (3.4) is standard, see, for example, [13] for single specie treatment. The proof for mixture

gases is similar: it is based on the fact that the absolute value of the Jacobians of the transformations

(v, w) 7→ (v′, w′) and (v, w) 7→ (w, v) are one, together with the identity 〈ε, v −w〉 = 〈−ε, w − v〉. The change

of variables, (v, w) 7→ (v′, w′), (v, w) 7→ (w, v), and ε 7→ −ε, together with the fact that βis = βsi, results

in (3.4). The multiplicative factor Xis comes from the fact that second term of the non-reactive collisional

integral (3.2), with βij in front of it, singles out those pre-collisional states that are energetic enough to result

in the reaction, and thus preventing double counting of the events in the collisional integrals (3.2)–(3.3).

In order to prove (3.5) and (3.6) one needs the following lemma.

Lemma 3.1. For fixed ε, the Jacobians of the transformations (v, w) 7→ (v†, w†) and (v, w) 7→ (v‡, w‡) are

given by 〈ε, v−w〉/α+ and 〈ε, v−w〉/α−, respectively. Furthermore, 〈ε, v† −w†〉 = α+ and 〈ε, v‡ −w‡〉 = α−.
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Proof of Lemma 3.1. If J(v†, w†; v, w) and J(G†
34, V

†; G43, V ) denote the Jacobians of the transformations

(v, w) 7→ (v†, w†) and (G34, V ) 7→ (G†
34, V

†), respectively, where

G34(v, w) = m3v + m4w, (the velocity of the center of mass before reaction)

V (v, w) = v − w, (the relative velocity before reaction)

G†
34(v

†, w†) = m3v
† + m4w

†, (the velocity of the center of mass after reaction)

V †(v†, w†) = v† − w†, (the relative velocity after reaction)

(3.8)

then the following equality holds

J(v†, w†; v, w) = J(v†, w†; G†
34, V

†)J(G†
34, V

†; G34, V )J(G34, V ; v, w) = J(G†
34, V

†; G34, V ). (3.9)

Note that J(v†, w†; G†
34, V

†) = 1/J(G34, V ; v, w). Next, the conservation of momentum before and after

reaction implies that G†
34 = G34 (see, (2.6)), and thus

J(G†
34, V

†; G34, V ) = J(V †, V ), (3.10)

where J(V †, V ) is the Jacobian of the transformation V 7→ V † given by

V † = V − ε
[
〈ε, V 〉 − α+

]
= V − ε

[

〈ε, V 〉 −

√

〈ε, V 〉2 +
2Eabs

µ34

]

(3.11)

The value of J(V †, V ) is 〈ε, V 〉/
√

〈ε, V 〉2 + 2Eabs

µ34
, This shows that J(v†, w†; v, w) = 〈ε, v −w〉/α+. The proof

that J(v‡, w‡; v, w) = 〈ε, v − w〉/α− follows the same arguments as above. Finally, using the definitions (2.3)

and (2.5) together with simple algebra one obtains the identities 〈ε, v† − w†〉 = α+ and 〈ε, v‡ − w‡〉 = α−.

This completes the proof of Lemma 3.1. �

Next, I consider the integrals

∫

R3

φ1J
R
1 dv = β12σ

2
12

∫∫∫

R3×R3×S2

φ1(v)
[
f3(v

‡)f4(w
‡) − f1(v)f2(w)

]
〈ε, v − w〉Θ(〈ε, v − w〉 − Γ12) dεdwdv, (3.12)

∫

R3

φ2J
R
2 dv = β21σ

2
21

∫∫∫

R3×R3×S2

φ2(v)
[
f4(v

‡)f3(w
‡) − f2(v)f1(w)

]
〈ε, v − w〉Θ(〈ε, v − w〉 − Γ12) dεdwdv, (3.13)

∫

R3

φ3J
R
3 dv = β34σ

2
34

∫∫∫

R3×R3×S2

φ3(v)
[
f1(v

†)f2(w
†) − f3(v)f4(w)

]
〈ε, v − w〉Θ(〈ε, v − w〉 − Γ34) dεdwdv, (3.14)
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and

∫

R3

φ4J
R
4 dv = β43σ

2
43

∫∫∫

R3×R3×S2

φ4(v)
[
f2(v

†)f1(w
†) − f4(v)f3(w)

]
〈ε, v − w〉Θ(〈ε, v − w〉 − Γ34) dεdwdv, (3.15)

appearing in the sum on the left hand side of (3.5). In (3.12)–(3.15), I also suppressed x dependence in φi

and fi. Changing the variables of integration in (3.14)–(3.15) from (v, w) to (v†, w†) and using Lemma 3.1

one obtains

∫

R3

φ3J
R
3 dv = β34σ

2
34

∫∫∫

R3×R3×S2

φ3(v)
[
f1(v

†)f2(w
†) − f3(v)f4(w)

]
〈ε, v† − w†〉Θ(〈ε, v − w〉 − Γ34) dεdw†dv†

(3.14′)

and

∫

R3

φ4J
R
4 dv = β43σ

2
43

∫∫∫

R3×R3×S2

φ4(v)
[
f2(v

†)f1(w
†) − f4(v)f3(w)

]
〈ε, v† − w†〉Θ(〈ε, v − w〉 − Γ34) dεdw†dv†.

(3.15′)

Next, one notices that v and w (as the functions of v†, w†) become

v = v† +
µ34

m3
ε
[
〈ε, v − w〉 − α+

]
= v† −

µ12

m1
ε
[
〈ε, v† − w†〉 − 〈ε, v − w〉

]

= v† −
µ12

m1
ε

[

〈ε, v† − w†〉 −

(

(〈ε, v − w〉)2 +
2Eabs

µ34
︸ ︷︷ ︸

(〈ε,v†−w†〉)2

−
2Eabs

µ12

) 1
2
]

= v† −
µ12

m1
ε
[
〈ε, v† − w†〉 − α−(v†, w†)

]
= v‡(v†, w†)

(3.16)

and

w = w† −
µ34

m3
ε
[
〈ε, v − w〉 − α+

]
= w† +

µ12

m1
ε
[
〈ε, v† − w†〉 − 〈ε, v − w〉

]

= w† +
µ12

m1
ε

[

〈ε, v† − w†〉 −

(

(〈ε, v − w〉)2 +
2Eabs

µ34
︸ ︷︷ ︸

(〈ε,v†−w†〉)2

−
2Eabs

µ12

) 1
2
]

= w† +
µ12

m1
ε
[
〈ε, v† − w†〉 − α−(v†, w†)

]
= w‡(v†, w†),

(3.17)

where the identity 〈ε, v† − w†〉 = α+ (from Lemma 3.1) and the property of the reduced masses µ12 = µ34

were used in (3.16)–(3.17).
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Similarly, since µ12 = µ34, one observes that

(〈ε, v − w〉)2 ≥ 2(γ1 −Eabs)/µ34 ⇐⇒
(
〈ε, v† − w†〉

)2
= (〈ε, v − w〉)2 +

2Eabs

µ34
≥

2(γ1 − Eabs)

µ34
+

2Eabs

µ34
=

2γ1

µ12
,

(3.18)

thus implying that Θ(〈ε, v − w〉 − Γ34) in (3.14′)–(3.15′) can by replaced by Θ(〈ε, v† − w†〉 − Γ12).

Now, combining (3.16)–(3.17) and (3.18), (3.14′)–(3.15′) take the form

∫

R3

φ3J
R
3 dv = β34σ

2
34

∫∫∫

R3×R3×S2

φ3(v
‡)
[
f1(v

†)f2(w
†) − f3(v

‡)f4(w
‡)
]
〈ε, v† − w†〉Θ(〈ε, v† − w†〉 − Γ12) dεdw†dv†

(3.14′′)

and

∫

R3

φ4J
R
4 dv = β43σ

2
43

∫∫∫

R3×R3×S2

φ‡
4(v)

[
f2(v

†)f1(w
†) − f4(v

‡)f3(w
‡)
]
〈ε, v† − w†〉Θ(〈ε, v† − w†〉 − Γ12) dεdw†dv†.

(3.15′′)

Next, change of the variables (v, w, ε) 7→ (w, v,−ε) in (3.13) and (3.15′′) together with renaming the integration

variables from (v†, w†) to (v, w) in (3.14′′)–(3.15′′), and finally summing up the resulting left hand sides of

(3.12)–(3.15), results in (3.5).

Proof of (3.6) follows the same line of arguments; this time however, one changes the integration variables in

(3.12)–(3.13) from (v, w) to (v‡, w‡). In this process v and w, as the functions of v‡, w‡, become v† and w†,

respectively. �

Remark 1. The assumption in Proposition 3.1 that fi ∈ C0(Ω × R
3), for i = 1, . . . , 4, is only needed to make

sure that all the integrals exist and are finite.

Proposition 3.1 has been proven under the conditions that βij = βji for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)},

and µ12 = µ34. Although it is possible to obtain extensions of Proposition 3.1 without any assumptions

on βij , I will not consider here these generalizations. Furthermore, since we already have the identities

σ12 = σ34 = σ21 = σ43, in order to have the conservation laws (of mass, momentum, and energy) built into

the model one has to require that β12 = β34. Below, I state the conditions that will be assumed from now on

in this work:
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Condition 1.

(1) Reactive distances: σ12 = σ34,

(2) Masses: m1 = m3 and m2 = m4, (implying µ12 = µ34)

(3) Steric factors: 0 ≤ β12 ≤ 1 and β12 = β21 = β34 = β43,

(4) Internal energies: Ei > 0, i = 1, . . . , 4, and Eabs = E3 + E4 − E2 − E1 > 0,

(5) Activation energies: γ1 = γ2 ≥ Eabs and γ3 = γ4 = γ1 − Eabs.

Now, under Condition 1 and in view of (3.4) and (3.5), one has, for any a, c ∈ R and b ∈ R
3,

φi(x, v) = ami + mi〈b, v〉 + c

(
miv

2

2
+ Ei

)

, i = 1, . . . , 4, =⇒







4∑

i=1

∫

R3

φiJ
E
i dv = 0,

4∑

i=1

∫

R3

φiJ
R
i dv = 0.

(3.19)

Property (3.19) implies that if fi is a nonnegative smooth solution of (3.1) on [0, T ], T > 0, then, at least

formally, we have the following conservation laws for t ∈ [0, T ]:

4∑

i=1

∫∫

Ω×R3

mifi(t, x, v) dvdx =
4∑

i=1

∫∫

Ω×R3

mifi0(x, v) dvdx, (conservation of mass)

(3.20)

4∑

i=1

∫∫

Ω×R3

mivfi(t, x, v) dvdx =

4∑

i=1

∫∫

Ω×R3

mivfi0(x, v) dvdx, (conservation of momentum)

(3.21)

4∑

i=1

∫∫

Ω×R3

(
miv

2

2
+ Ei

)

fi(t, x, v) dvdx =

4∑

i=1

∫∫

Ω×R3

(
miv

2

2
+ Ei

)

fi0(x, v) dvdx, (conservation of energy)

(3.22)

where fi0(x, v), i = 1, . . . , 4, are nonnegative initial conditions of the dilute SRS kinetic system (3.1). The

above conservation laws follow easily from multiplying the dilute SRS system by corresponding φi, integrating

with respect to (t, x, v) ∈ [0, T ]× Ω × R
3, and using (3.19).

An additional conservation law (along the characteristics of the streaming operator in the left hand side

of (3.1)) can be obtained by noticing that
4∑

i=1

∫

R3

φiJ
E
i dv = 0 and

4∑

i=1

∫

R3

φiJ
R
i dv = 0 also for φi(x, v) =

mi
(x − tv)2

2
+Ei and any t ∈ [0, T ]. Next, after multiplying dilute SRS kinetic system (3.1) by mi

(x − tv)2

2
+Ei
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and integrating by parts, one has, for t ∈ [0, T ],

4∑

i=1

∫∫

Ω×R3

(

mi (x − tv)
2

2
+ Ei

)

fi(t, x, v) dvdx =

4∑

i=1

∫∫

Ω×R3

(
mix

2

2
+ Ei

)

fi0(x, v) dvdx, (3.23)

Similarly to the cases of the kinetic equations for a single specie (see, for example, [8], [14]), the conservation

laws (3.20)–(3.23) and non-negativity of fi, fi0 yield the following estimation

sup
i

sup
t∈[0,T ]

∫∫

Ω×R3

x2fi(t, x, v) dvdx ≤ C1, (3.24)

where C1 > 0 depends only on T , sup
i

∫∫

Ω×R3

x2fi dvdx, and on sup
i

∫∫

Ω×R3

(1 + v2)fi dvdx.

Remark 2. The estimation (3.24) is superfluous in the case Ω = [0, L]3.

Proposition 3.1 also implies existence of a Liapunov functional (an H-function) for (3.1), consistent with

system’s physical equilibrium. For fi a smooth nonnegative solution, we multiply (3.1) by 1+ log fi, integrate

over Ω × R
3, and use (3.4)–(3.5) (with φi = log fi) to obtain the following entropy identity:

d

dt

4∑

i=1

∫∫

Ω×R3

fi log fi dvdx

+
4∑

i,s=1

σ2
is

∫

· · ·

∫

Ω×R3×R3×S2

[

fi(v
′)fs(w

′) − fi(v)fs(w)

]

log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)

Θ(〈ε, v − w〉)〈ε, v − w〉Ξis dεdwdvdx

+ β12σ
2
12

∫

· · ·

∫

Ω×R3×R3×S2

{[

f3(v
‡)f4(w

‡) − f1(v)f2(w)

]

×

log

(
f3(v

‡)f4(w
‡)

f1(v)f2(w)

)

Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉

}

dεdwdvdx = 0, (3.25)

with Ξis given in (3.7). It is important to notice that the second and the third terms in the left hand side of

(3.25) are nonnegative. Indeed, this follows from the inequalities

[

fi(v
′)fs(w

′) − fi(v)fs(w)

]

log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)

≥ 0,

[

f3(v
‡)f4(w

‡) − f1(v)f2(w)

]

log

(
f3(v

‡)f4(w
‡)

f1(v)f2(w)

)

≥ 0,

(3.26)
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for any i, s = 1, . . . , 4. Next, integrating (3.25) over 0 ≤ t1 ≤ τ ≤ t2 ≤ T and using (3.26), one obtains the

corresponding H-theorem,

4∑

i=1

∫∫

Ω×R3

fi(t2) log fi(t2) dvdx ≤ (3.27)

4∑

i=1

∫∫

Ω×R3

fi(t2) log fi(t2) dvdx +

∫ t2

t1

∫∫

Ω×R3

∆(v, {fi}) dvdx ≡

4∑

i=1

∫∫

Ω×R3

fi(t2) log fi(t2) dvdx+

4∑

i,s=1

σ2
is

∫ t2

t1

∫

· · ·

∫

Ω×R3×R3×S2

[

fi(v
′)fs(w

′) − fi(v)fs(w)

]

log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)

Θ(〈ε, v − w〉)〈ε, v − w〉Ξis dεdwdvdxdτ

+ β12σ
2
12

∫ t2

t1

∫

· · ·

∫

Ω×R3×R3×S2

{[

f3(v
‡)f4(w

‡) − f1(v)f2(w)

]

×

log

(
f3(v

‡)f4(w
‡)

f1(v)f2(w)

)

Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉

}

dεdwdvdxdτ

=

4∑

i=1

∫∫

Ω×R3

fi(t1) log fi(t1) dvdx,

since ∆(v, {fi}) ≥ 0. This shows that, for a nonnegative solution fi of (3.1), the convex function H(t) defined

by

H(t) =

4∑

i=1

∫∫

Ω×R3

fi(t, x, v) log fi(t, x, v) dvdx (3.28)

is non-increasing in t.

Remark 3. If instead of (3.5) one uses identity (3.6), then the following (equivalent) entropy identities is true:

d

dt

4∑

i=1

∫∫

Ω×R3

fi log fi dvdx

+

4∑

i,s=1

σ2
is

∫

· · ·

∫

Ω×R3×R3×S2

[

fi(v
′)fs(w

′) − fi(v)fs(w)

]

log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)

Θ(〈ε, v − w〉)〈ε, v − w〉Ξis dεdwdvdx

+ β12σ
2
12

∫

· · ·

∫

Ω×R3×R3×S2

{[

f1(v
†)f2(w

†) − f3(v)f4(w)

]

×

log

(
f1(v

†)f2(w
†)

f3(v)f4(w)

)

Θ(〈ε, v − w〉 − Γ34)〈ε, v − w〉

}

dεdwdvdx = 0. (3.29)

With the help of the entropy identity (3.25) and the inequalities (3.26) one can describe the equilibria solutions

of (3.1). First, it is convenient to define macroscopic quantities (as the moments of fi): the number densities
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n(t, x), the macroscopic velocity u(t, x), and the macroscopic temperature T (t, x):

ni(t, x) =

∫

R3

fi(t, x, v) dv, n(t, x) =

4∑

i=1

ni(t, x); (3.30)

u(t, x) =

4∑

i=1

mini(t, x)ui(t, x)

4∑

i=1

mini(t, x)

, ui(t, x) =

∫

R3

vfi(t, x, v) dv

ni(t, x)
; (3.31)

3kn(t, x)T (t, x) =

4∑

i=1

mi

∫

R3

[v − u(t, x)]
2
fi(t, x, v) dv; (3.32)

where k is the Boltzmann constant.

Proposition 3.2 (Equilibrium solutions). Assume Condition 1 and let ni(t, x) ≥ 0, u(t, x), and T (t, x) ≥

0 be given measurable functions. Then for all 0 ≤ fi ∈ L1(Ω × R
3) with the moments given by (3.30)–(3.32)

the following statements are equivalent:

(1) fi = ni

( mi

2πkT

)3/2

exp

(

−
mi(v − u)2

2kT

)

, i = 1, . . . , 4, and n1n2 = n3n4 exp

(
Eabs

kT

)

,

(2) JE
i ({fi}) = 0 and JR

i ({fi}) = 0, i = 1, . . . , 4,

(3)
4∑

i=1

∫

R3

[
JE

i ({fi}) + JR
i ({fi})

]
log fi dv = 0.

Proof. I proceed by showing that (1) ⇒ (2) ⇒ (3) ⇒ (1). The proof of the first implication follows from

substituting fi, given in (1), into the collision integrals JE
i and JR

I and applying the conservation of mass,

momentum, and energy on the microscopical level (see (2.6) and (2.7) for the corresponding identities). The

second implication (i.e., (2) ⇒ (3)) is trivially satisfied. In order to show the last implication (3) ⇒ (1) one

observes that using Proposition 3.1

0 =

4∑

i=1

∫

R3

[
JE

i ({fi}) + JR
i ({fi})

]
log fi dv

=

4∑

i,s=1

σ2
is

∫

· · ·

∫

Ω×R3×R3×S2

[

fi(v
′)fs(w

′) − fi(v)fs(w)

]

log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)

Θ(〈ε, v − w〉)〈ε, v − w〉Ξis dεdwdvdx

+ β12σ
2
12

∫

· · ·

∫

Ω×R3×R3×S2

{[

f3(v
‡)f4(w

‡) − f1(v)f2(w)

]

×

log

(
f3(v

‡)f4(w
‡)

f1(v)f2(w)

)

Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉

}

dεdwdvdx, (3.33)
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where, as before, I suppressed t and x dependence in fi. Next, inequalities Ξis ≥ 0 and (3.26) together with

fact that the for the function f(y, z) = (y − z) log
(y

z

)

≥ 0, y, z > 0 , the equality sign, (y − z) log
(y

z

)

= 0,

holds if and only if y = z, yield the set of functional identities for fi, i = 1, . . . , 4,

fi(v
′)fs(w

′) = fi(v)fs(w), almost everywhere in (v, w) ∈ R
3 × R

3, i, s = 1, . . . 4, (3.34)

f3(v
‡)f4(w

‡) = f1(v)f2(w), almost everywhere in (v, w) ∈ R
3 × R

3. (3.35)

The solution to (3.34) is well known from the kinetic theory of non-reactive mixtures (see, for example, [13]):

fi(v) = exp
(
ai + 〈bi, v〉 + civ

2
)
, (3.36)

for some ai, ci ∈ R and bi ∈ R
3. Next, integrability conditions together with the normalization and constraints

(3.30)–(3.32) imposed on fi imply that

fi = ni

( mi

2πkT

)3/2

exp

(

−
mi(v − u)2

2kT

)

, i = 1, . . . , 4. (3.37)

Finally, for fi given in (3.37), the identity (3.35) is easily seen to be equivalent to n1n2 = n3n4 exp

(
Eabs

kT

)

,

which is expresses equilibrium reaction rate of the chemical processes in the mixture. �

Remark 4. For the proof of equilibrium solutions, found in Proposition 3.2, I utilized identities (3.4)–(3.5) of

Proposition 3.1. If instead of (3.5) one uses identity (3.6), then, in the proof, identity (3.35) is replaced by

f1(v
†)f2(w

†) = f3(v)f4(w), almost everywhere in (v, w) ∈ R
3 × R

3, (3.38)

which, for fi in (3.37), is also equivalent to n1n2 = n3n4 exp

(
Eabs

kT

)

.

4. Existence results for the dilute SRS system

The proof of the existence theorem presented bellow follows the ideas developed by R. DiPerna and P. L. Lions

([8]) for the non-reactive single specie Boltzmann equation. It has three ingredients: (1) use of the L1-weak

compactness argument that follows from the conservation laws (3.20)–(3.22) and the entropy identity (3.25),

(2) the velocity averaging lemma ([15]), and (3) a suitable notion of mild (or renormalized) solutions.

For the weak compactness argument one notices that if a nonnegative initial value fi0 of the evolution system

(3.1) satisfies

sup
i

∫∫

Ω×R3

(
1 + x2 + v2 + log+ fi0

)
fi0 dvdx = C0 < ∞, (4.1)
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then (3.20)–(3.22), (3.24), and the entropy identity (3.25) yield the following estimation for a smooth and

nonnegative solution, fi, of (3.1)

sup
i

sup
0≤t≤T

∫∫

Ω×R3

(
1 + x2 + v2 + log+ fi

)
fi dvdx = CT < ∞, (4.2)

where log±(z) = max{± log(z), 0}.

Remark 5. When Ω = [0, L]3, constant CT in (4.2) is independent of T .

Estimation (4.2) (the Dunford-Pettis theorem, see, for example, [16]) implies that the family of solutions

{fi(t) : 0 ≤ t ≤ T} is relatively weakly compact in L1(Ω × R
3).

From the physical point of view, (4.1) means that we start with the system that has finite total mass,

momentum, energy, as well as finite initial entropy. In fact, at least at equilibrium and in the non-reactive

situations, −H(t), where H(t) is an H-function defined in (3.28), represents an entropy of the considered

system. Furthermore, (4.2) shows that these properties are maintained during the evolution of the system.

For the proof of estimation (4.2) it is enough to notice that (3.27), with t2 = t and t1 = 0, yields (since

∆(v, {fi}) ≥ 0) for 0 ≤ t ≤ T ,

sup
i

∫∫

Ω×R3

fi(t) log+ fi(t) dvdx ≤

4∑

i=1

∫∫

Ω×R3

fi(t) log+ fi(t) dvdx +

∫ t

0

∫∫

Ω×R3

∆(v, {fi}) dvdx (4.3)

=

4∑

i=1

∫∫

Ω×R3

fi(t) log− fi(t) dvdx +

4∑

i=1

∫∫

Ω×R3

fi0 log+ fi0 dvdx −

4∑

i=1

∫∫

Ω×R3

fi0 log− fi0 dvdx. (4.4)

Next, use of the inequality z log (z/y) ≥ −y with y = exp(−x2 − v2) and z = fi together with estimation (4.1)

and boundedness of supi sup 0≤t≤T

∫

Ω×R3(1 + x2 + v2)fi dvdx implies

sup
i

sup
0≤t≤T

∫∫

Ω×R3

fi(t) log+ fi(t) dvdx ≤ CT , (4.5)

and ultimately, (4.2).

Estimation (4.5) has another important physical interpretation: there can be now concentration of densities

in the system. Indeed, using the Dunford-Pettis theorem (see, for example, [16]) one obtains that the family

of macroscopic densities {ni(t, x) : 0 ≤ t ≤ T} is uniformly integrable, i.e., to each λ > 0 there corresponds a

δ > 0 such that

sup
i

sup
0≤t≤T

∫

E

ni(t, x) dx < λ (4.6)
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for any E ⊂ Ω with vol(E) < δ. In particular, when Ω = [0, L]3, T can be set to ∞ in (4.6).

The next step consists in finding suitable approximations JE
in and JR

in of JE
i and JR

i , respectively, for which

the problem

∂fn
i

∂t
+ v

∂fn
i

∂x
= JE

in + JR
in, fn

i (0, x, v) = fn
i0(x, v), i = 1, . . . , 4, (x, v) ∈ Ω × R

3 (4.7)

can be solved by known methods. Then, one takes the weak limit fn
i −−−−→

n→∞
fi, and tries to show that fi

satisfies (3.1) in some specified sense. An important criterion of suitable approximations for JE
i and JR

i is that

JE
in and JR

in must satisfy the properties listed in Proposition 3.1. These properties alone yield the crucial weak

compactness estimation (4.2). The collision integrals JE
i and JR

i are not weakly continuous in L1(Ω×R
3) (in

fact, they are even difficult to define in a reasonable way in L1(Ω×R
3)), thus the passage to the limit in (4.7)

cannot be achieved without additional tools. This brings us to the remaining two ingredients of DiPerna-Lions

method. The velocity averaging lemma provides an additional compactness argument needed in the passage

to the limit in (4.7).

Lemma 4.1 (Velocity averaging ([15])). If hn ∈ L1((0, T )×Ω×R
3) and gn ∈ L1

loc((0, T )×Ω×R
3) satisfy

the following transport equation

Tvhn ≡
∂hn

∂t
+ v

∂hn

∂x
= gn, (4.8)

in D′((0, T ) × Ω × R
3), and for each compact set K ⊂ (0, T ) × Ω × R

3 the sequences {hn} and {gn} are

relatively weakly compact in L1((0, T )×Ω×R
3) and L1(K), respectively, then for all φ ∈ L∞((0, T )×Ω×R

3)

the set






∫

R3

φ(t, x.v)fn(t, x, v) dv : n = 1, 2, . . .






=







∫

R3

φ(t, x.v)(T−1
v gn)(t, x, v) dv : n = 1, 2, . . .






, (4.9)

is relatively compact in L1((0, T ) × Ω).

Velocity averaging compensates for lack of regularity of Tv on the set of characteristic directions.

Definition 4.1. A nonnegative fi ∈ L1
loc((0, T ) × Ω × R

3) is a renormalized solution of (3.1) if

1

1 + fi
JE±

i ∈ L1
loc((0, T )× Ω × R

3),
1

1 + fi
JR±

i ∈ L1
loc((0, T )× Ω × R

3), (4.10)

and

∂

∂t
log(1 + fi) + v

∂

∂x
log(1 + fi) =

1

1 + fi

[
JE

i + JR
i

]
, (4.11)
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in D′((0, T ) × Ω × R
3), where

JE
i = JE+

i − JE−
i , JR

i = JR+
i − JR−

i , (4.12)

with JE±
i and JR±

i given by

JE+
i =

4∑

s=1

{

σ2
is

∫∫

R3×S2

fi(t, x, v′)fs(t, x, w′)Θ (〈ε, v − w〉) 〈ε, v − w〉 dεdw

}

(4.13)

− βijσ
2
ij

∫∫

R3×S2

fi(t, x, v′)fs(t, x, w′)Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw,

JE−
i = fi(t, x, v)

4∑

s=1

{

σ2
is

∫∫

R3×S2

fs(t, x, w)Θ (〈ε, v − w〉) 〈ε, v − w〉 dεdw

}

(4.14)

− βijσ
2
ijfi(t, x, v)

∫∫

R3×S2

fs(t, x, w)Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw,

and

JR+
i = βijσ

2
ij

∫∫

R3×S2

fk(t, x, v�ij )fl(t, x, w�
ij)Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw, (4.15)

JR−
i = βijσ

2
ijfi(t, x, v)

∫∫

R3×S2

fj(t, x, w)Θ (〈ε, v − w〉 − Γij) 〈ε, v − w〉 dεdw, (4.16)

respectively.

In (4.15)–(4.16), as before, (v�
ij , w

�
ij) = (v‡, w‡) for i, j = 1, 2, and (v�

ij , w
�
ij) = (v†, w†) for i, j = 3, 4. Also the

index pairs (i, j) and (k, l) are associated with the set of indices (i, j, k, l) specified in (2.9).

Remark 6. The steric factors 0 ≤ βij ≤ 1, therefore both operators JE+
i and JE−

i (at least formally) map

nonnegative functions into nonnegative functions.

Next, let us assume for a moment that one already has found suitable approximations JE
in and JR

in to (3.1).

If for i = 1, 2, 3, 4, {fn
i }

∞
n=1 is a sequence of nonnegative, solutions to (4.7) satisfying (4.2), uniformly in n,

then, for = 1, 2, 3, 4 and δ > 0, fnδ
i = (1/δ) log(1 + δfn

i ) satisfies 0 ≤ fnδ
i ≤ fn

i . Thus, the sequence {fnδ
i }∞n=1

is relatively weakly compact in L1((0, T )× Ω × R
3) and satisfies

∂

∂t
fnδ

i + v
∂

∂x
fnδ

i =
1

1 + δfn
i

[
JE

in({fn
i }) + JR

in({fn
i })
]
. (4.17)
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The averaging velocity Lemma 4.1 yields that the sequence {
∫

R3 φfnδ
i dv}∞n=1, for each fixed i = 1, 2, 3, 4 and

δ > 0, is relatively compact in L1((0, T ) × Ω), for all φ ∈ L∞((0, T ) × Ω × R
3), if the sequence

{
1

1 + δfn
i

[
JE

in({fn
i }) + JR

in({fn
i })
]
}∞

n=1

is relatively weakly compact in L1((0, T ) × Ω × Br), (4.18)

with Br = {y ∈ R
3 : |z| ≤ r}. For the proof of (4.18) one needs gain-loss comparison estimates (a similar

estimation appears in the case of a single specie Boltzmann equation [8]). For simplicity, I formulate them

only for the original collision integrals JE
i and JR

i .

Lemma 4.2. For i, s = 1, 2, 3, 4 and any M > 1

JE+
i ({fn

i }) ≤ MJE−
i ({fn

i }) (4.19)

+ σ2
is

∫∫

R3×S2

[

fi(v
′)fs(w

′) − fi(v)fs(w)

]

log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)

Θ(〈ε, v − w〉)〈ε, v − w〉Ξis dεdw

JR+
1 (fn

3 , fn
4 ) ≤ MJE−

1 (fn
1 , fn

2 ) (4.20)

+
1

log M
β12σ

2
12

∫∫

R3×S2

[

fn
3 (v‡)fn

4 (w‡) − fn
1 (v)fn

2 (w)

]

log

(
fn
3 (v‡)fn

4 (w‡)

fn
1 (v)fn

2 (w)

)

Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉 dεdw,

JR+
2 (fn

3 , fn
4 ) ≤ MJE−

2 (fn
1 , fn

2 ) (4.21)

+
1

log M
β12σ

2
12

∫∫

R3×S2

[

fn
4 (v‡)fn

3 (w‡) − fn
2 (v)fn

1 (w)

]

log

(
fn
4 (v‡)fn

3 (w‡)

fn
2 (v)fn

1 (w)

)

Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉 dεdw,

JR+
3 (fn

1 , fn
2 ) ≤ MJE−

3 (fn
3 , fn

4 ) (4.22)

+
1

log M
β34σ

2
34

∫∫

R3×S2

[

fn
1 (v†)fn

2 (w†) − fn
3 (v)fn

4 (w)

]

log

(
fn
1 (v†)fn

2 (w†)

fn
3 (v)fn

4 (w)

)

Θ(〈ε, v − w〉 − Γ34)〈ε, v − w〉 dεdw

JR+
4 (fn

1 , fn
2 ) ≤ MJE−

4 (fn
3 , fn

4 ) (4.23)

+
1

log M
β34σ

2
34

∫∫

R3×S2

[

fn
2 (v†)fn

1 (w†) − fn
4 (v)fn

3 (w)

]

log

(
fn
2 (v†)fn

1 (w†)

fn
4 (v)fn

3 (w)

)

Θ(〈ε, v − w〉 − Γ34)〈ε, v − w〉 dεdw,

where Ξis is given by

Ξis =







Θ(〈ε, v − w〉 − Γis) + (1 − βis)Θ(Γis − 〈ε, v − w〉), if (i, s) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)};

Θ(〈ε, v − w〉), otherwise.

(4.24)
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Each of the inequalities (4.19)–(4.23) can be proven in a similar way as in the case of a single specie Boltzmann

equation (see [8], page 336).

Now, since fn
i satisfy (4.2), uniformly in n, the sequences,

{
1

1 + δfn
i

JE−
i ({fn

i })

}∞

n=1

,

{
1

1 + δfn
i

JR−
i ({fn

i })

}∞

n=1

⊂ L∞((0, T ); L1(Ω × Br)) (4.25)

are relatively weakly compact in L1((0, T ) × Ω × Br), for any r > 0. Proof of this is similar to the single

specie case (see, for example, [8], pp. 353-354). Next, the second terms of the right hand sides in each of

the inequalities (4.19)–(4.20) are nonnegative and bounded above by the nonnegative function 4∆(v, {f n
i })

that appears in the H-theorem (3.27). The entropy identity (3.25) together with (4.2) yields that the set

{∆(v, {fn
i })}

∞
n=1 is bounded in L1((0, T )×Ω×R

3), and the comparison principle implies the weak compactness

in L1((0, T ) × Ω × Br) of the sequences

{
1

1 + δfn
i

JE+
i ({fn

i })

}∞

n=1

,

{
1

1 + δfn
1

JR+
1 (fn

3 , fn
4 )

}∞

n=1

. (4.26)

The second term of the right hand side of (4.21) is nonnegative and its L1-norm, after performing the change of

variables (v, w, ε) 7→ (w, v,−ε), is bounded above by supn ‖∆(fn
i )‖L1((0,T )×Ω×R3) < ∞. As before, this proves

the weak compactness of the sequence {(1+δfn
2 )−1JR+

2 (fn
3 , fn

4 )}∞n=1 in L1((0, T )×Ω×Br). The steps in proving

the weak compactness of the sequences {(1 + δfn
3 )−1JR+

3 (fn
1 , fn

2 )}∞n=1 and {(1 + δfn
4 )−1JR+

4 (fn
1 .fn

2 )}∞n=1 are

identical to the previous ones, with one exception that this time one uses the form of the entropy identity

given in (3.29). This ends the proof of (4.18), at least for the original collision integrals. Once a suitable

approximation is defined, it will become clear how to use the just given proof to show (4.18).

Finally, we have

Lemma 4.3. If for each i = 1, 2, 3, 4 the nonnegative sequence {fn
i }

∞
n=1 satisfies (4.2), uniformly in n,

and for each δ > 0 the sequence {
∫

R3 φfnδ
i dv}∞n=1, with fnδ

i = (1/δ) log(1 + δfn
i ), is relatively compact in

L1((0, T ) × Ω), for all φ ∈ L1((0, T ) × Ω × R
3), then the sequence {

∫

R3 φfn
i dv}∞n=1 is also relatively compact

in L1((0, T ) × Ω), for all φ ∈ L1((0, T ) × Ω × R
3).

Proof. Estimation (4.2) implies that {fn
i }

∞
n=1, i = 1, 2, 3, 4, are weakly relatively compact in L1(Ω×R

3), thus

it is enough to show that for all φ ∈ L1((0, T ) × Ω × R
3) and after passing to a subsequence, if necessary,

∫

R3

φfn
i dv −−−−→

n→∞

∫

R3

φfi dv strongly in L1((0, T ) × Ω), i = 1, 2, 3, 4, (4.27)
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where fi is a weak limit of {fn
i }

∞
n=1. I claim that (4.27) follows if it can be shown that

sup
n

sup
0≤t≤T

‖fn
i − fnδ

i ‖L1(Ω×R3) −−−−→
δ→0+

0, i = 1, 2, 3, 4. (4.28)

Indeed, since the norm is lower weakly semi-continuous, one obtains from (4.28)

sup
0≤t≤T

‖fi − f δ
i ‖L1(Ω×R3) ≤ sup

0≤t≤T
lim inf
n→∞

‖fn
i − fnδ

i ‖L1(Ω×R3) −−−−→
δ→0+

0, i = 1, 2, 3, 4, (4.29)

and

∫

R3

fn
i φ dv =

∫

R3

(fn
i − fnδ

i )φ dv +

∫

R3

(fnδ
i − f δ

i )φ dv +

∫

R3

f δ
i φ dv, i = 1, 2, 3, 4, (4.30)

where f δ
i is the weak limit of {fnδ

i }∞n=1 satisfying, by the assumption,

∫

R3

φfnδ
i dv −−−−→

n→∞

∫

R3

φf δ
i dv strongly in L1((0, T ) × Ω), i = 1, 2, 3, 4. (4.31)

Thus, the application of (4.28)–(4.31) gives (4.27) for all φ ∈ L1((0, T ) × Ω × R
3). Next, in order to prove

(4.28) we notice that for all R > 0

0 ≤ s −
1

δ
log(1 + δs) ≤ s

[(

1 −
log(1 + δs)

δs

)

χ{s≤R}

]

+ sχ{s≥R}, (4.32)

with χA the characteristic function of the set A and [1 − log(1 + δs)/(δs)] χ{s≤R} −−−−→
δ→0+

0 locally uniformly

in R. Finally, the estimation (4.2) implies

sup
n

sup
0≤t≤T

∫∫

Ω×R3

fn
i χ{s≥R} dvdx −−−−→

R→∞
0, i = 1, 2, 3, 4, (4.33)

thus completing the proof of (4.28) and the lemma itself. �

Remark 7. In fact, using again (4.2), the convergence in (4.27) holds for φ with
(
1 + |x|k + |v|k

)−1
φ ∈

L∞((0, T ) × Ω × R
3) and 0 ≤ k < 2.

The strong convergence in (4.27) is fundamental in proving that a sequence of smooth solutions converges

weakly to a renormalized solution.

I consider now the approximate problem,

∂fn
i

∂t
+ v

∂fn
i

∂x
= JE

in + JR
in, fn

i (0, x, v) = fn
i0(x, v), i = 1, . . . , 4, (x, v) ∈ Ω × R

3, (4.34)
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where



1 +
1

n

4∑

m=1

∫

R3

fn
m dv



 JE
in (4.35)

=

4∑

s=1

{

σ2
is

∫∫

R3×S2

[

fn
i (t, x, v′)fn

s (t, x, w′) − fn
i (t, x, v)fn

s (t, x, w)

]

Θ (〈ε, v − w〉) BE
n (v, w, ε) dεdw

}

− βijσ
2
ij

∫∫

R3×S2

[

fn
i (t, x, v′)fn

s (t, x, w′) − fn
i (t, x, v)fn

s (t, x, w)

]

Θ (〈ε, v − w〉 − Γij) BE
n (v, w, ε) dεdw,

and



1 +
1

n

4∑

m=1

∫

R3

fn
m dv



 JR
in (4.36)

= βijσ
2
ij

∫∫

R3×S2

[

fn
k (t, x, v�ij )f

n
l (t, x, w�

ij) − fn
i (t, x, v)fn

j (t, x, w)

]

Θ (〈ε, v − w〉 − Γij) B(ij)
n (v, w, ε) dεdw,

with

BE
n (v, w, ε) =







〈ε, v − w〉, if v2 + w2 ≤ n;

0, otherwise,

(4.37)

and

B(ij)
n (v, w, ε) =







BE
n (v, w, ε), if (i, j) ∈ {(1, 2), (2, 1)};

〈ε, v − w〉
√

(〈ε, v − w〉)2 + 2Eabs/µ34

BE
n (v†, w†, ε), if (i, j) ∈ {(3, 4), (4, 3)}.

(4.38)

As before, the pair of velocities (v�
i , v�j ) refers to post-reactive velocities described either in (2.3) or (2.5),

i.e., (v�ij , w
�
ij) = (v‡, w‡) for i, j = 1, 2, and (v�

ij , w
�
ij) = (v†, w†) for i, j = 3, 4. Also, the index pairs (i, j) and

(k, l) appearing in (4.35)-(4.36) are associated with the set of indices (i, j, k, l) specified in (2.9).

The initial distributions fn
i0 are given by

fn
i0 = max

{

min{fi0, n},
ρ

n
exp(−x2 − v2)

}

, (4.39)

where fi0 ≥ 0 satisfy (4.1) and ρ > 0 is sufficiently small.

Observe that for n ≥ 1, the approximate scattering kernels BE
n , B

(ij)
n ∈ L∞(R3 × R

3 × S
2); they are also

symmetric with respect to the change of variables (v, w, ε) 7→ (w, v,−ε). In addition, Lemma 3.1 implies that

they converge pointwise (and in L1
loc(R

3 × R
3 × S

2) to 〈ε, v − w〉 as n → ∞. Furthermore, fn
i0 → fi0 in

L1(Ω × R
3) and, for each n ≥ 1, fn

i0 ∈ L∞(Ω × R
3), i = 1, 2, 3, 4.
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Remark 8. The important property of the approximate collision integrals defined in (4.35)-(4.36) is that

they possess properties listed in Proposition 3.1. Indeed, using Lemma 3.1, is easy to see that the corre-

sponding identities (3.4)–(3.6) hold with the expressions 〈ε, v−w〉 replaced by BE
n (v, w, ε), B

(12)
n (v, w, ε), and

B
(34)
n (v, w, ε), respectively.

Next, I set up problem (4.34) in the framework of a semilinear evolution equation in the Banach space

X =
∏4

i=1 L1(Ω × R
3) with the norm ‖f‖X = sup

i

∫∫

Ω×R3

|f | dvdx. Consider the operator in X ,

Af ≡ (v∇xf1, v∇xf2, v∇xf3, v∇xf4), (4.40)

with f = (f1, f2, f3, f4). Then, A generates a strongly continuous contraction semigroup U(t) in X . Next, for

f0 = (fn
10, f

n
20, f

n
30, f

n
40), I rewrite (4.34) as a semilinear evolution equation on the closed set DM ⊂ X , M > 0,

DM =






(f1, f2, f3, f4) ∈ X : fi ≥ 0,

4∑

i=1

∫∫

Ω×R3

(
miv

2

2
+ Ei

)

fi dvdx ≤ M






, (4.41)

in the form

d

dt
fn(t) + Afn = Fn(fn), fn(0) = f0, 0 ≤ t ≤ T, (4.42)

where

Fn(fn) =
(
JE

1n({fn
i }) + JR

1n({fn
i }), JE

2n({fn
i }) + JR

2n({fn
i }), JE

3n({fn
i }) + JR

3n({fn
i }), JE

4n({fn
i }) + JR

4n({fn
i })
)
,

(4.43)

with fn = (fn
1 , fn

2 , fn
3 , fn

4 ). A continuous function f from [0, T ] into DM ⊂ X is a weak solution of (4.42) if

it satisfies

f(t) = U(t)f0 +

∫ t

0

U(t − s)F (f(s) ds (4.44)

for t ∈ [0, T ]. In (4.44), the integral is the Riemann integral in X , where for clarity, I suppressed the subscript

n from f , f0, and F . Among many theorems that guarantee the existence of weak solutions to semilinear

evolution equations (4.44), the one below is suitable for our case (see, for example, Theorem 2.1, pp. 335 of

[17]).

Theorem 4.1. Assume that:

(1) U(t) : DM 7→ DM is a strongly continuous semigroup in X generated by A,
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(2) F : DM 7→ X and there exists K > 0 such that

‖F (f) − F (g)‖X ≤ K‖f − g‖X , f, g ∈ DM

(3) For f ∈ DM

lim inf
h→0+

dist(f + hF (f); DM ) = 0,

where

dist(f ; DM ) = inf
g∈DM

‖f − g‖X

is the distance function from f to DM .

Then there exists a unique weak solution f on [0, T ], for any T > 0.

Condition (3) of Theorem 4.1, known often as the Nagumo boundary condition for the set DM , guarantees

invariance of DM under the time evolution.

Next, I check that the conditions of Theorem 4.1 are satisfied for A in (4.40) and F in (4.43). The action of

U(t) on f = (f1, f2, f3, f4) is given by

(U(t)f)(x, v) = (f1(x − tv, v), f2(x − tv, v), f3(x − tv, v), f4(x − tv, v)), (4.45)

thus, (1) is satisfied. For (2) it is enough to notice that since f ∈ DM , fi ≥ 0, and the multiplication

factor (1 + 1
n

∑4
i=1

∫

R3

fn
i dv)−1 appearing in front the approximate collision integrals (4.35)–(4.36) makes the

operator F Lipschitz continuous with constant K dependent on n. Finally, by splitting JE
in = JE+

in −JE−
in and

JR
in = JR+

in − JR−
in in an analogical way as for the original collision integrals (4.13)–(4.16), one notes that for

f ∈ DM , fi + hJE
in({fi}) ≥ 0, i = 1, 2, 3, 4, for small enough h > 0; therefore the analog of Proposition 3.1 for

the approximate collision integrals (4.35)–(4.36) (see Remark 8) with φi = miv
2/2 + Ei yields the Nagumo

boundary condition (3).

In the last step before stating the main existence result, I recall two additional (equivalent) notions of solutions

used in the original work of DiPerna-Lions [8].

Definition 4.2. A nonnegative fi ∈ L1
loc((0, T )×Ω× R

3), i = 1, 2, 3, 4, is a mild solution of (3.1) if for each

0 < T < ∞, JE±
i ({fi}), JR±

i ({fi}) ∈ L1(0, T ), a.e. (almost everywhere) in (x, v) ∈ Ω × R
3 and satisfies

f#
i (t, x, v) − f#

i (s, x, v) =

∫ t

s

[
JE

i ({fi})
#(τ, x, v) + JR

i ({fi})
#(τ, x, v)

]
dτ, 0 < s < t ≤ T, (4.46)
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where f#
i (t, x, v) = f(t, x + tv, v) and similarly for JE#

i and JR#
i .

Following [8], one can show that fi is mild solution if and only if fi is a renormalized solution (Definition 4.1).

Finally, let F#
i (t, x, v) =

∫ t

0 Li({fi})
#(τ, x, v) dτ , where fiLi({fi}) = JE−

i ({fi}) + JR−
i ({fi}), with JE−

i and

JR−
i given in (4.14) and (4.16), respectively. If for i = 1, 2, 3, 4, T > 0 Li({fi}) ∈ L1

loc((0, T )×Ω× R
3), then

fi is a mild solution of (3.1) if and only if fi satisfies

f#
i (t, x, v) − f#

i (s, x, v) exp
{

−
[

F#
i (t) −F#

i (s)
]}

=

∫ t

s

[
JE+

i ({fi}) + JR+
i ({fi})

]#
(τ, x, v) exp

{

−
[

F#
i (t) −F#

i (τ)
]}

dτ,

(4.47)

for any 0 < s < t ≤ T and a.e. in (x, v) ∈ Ω × R
3, i = 1, 2, 3, 4. Here, JE+

i and JR+
i are given in (4.13) and

(4.15), respectively.

Theorem 4.2 (Global existence result). If for i = 1, 2, 3, 4, fi0 ≥ 0 satisfies condition (4.1) then there

exists a nonnegative mild solution fi of (3.1), with fi ∈ C([0, T ]; L1(Ω × R
3)) satisfying (4.3), and such that

fi(t)
∣
∣
t=0

= fi0, for i = 1, 2, 3, 4.

Proof. I will sketch the proof in several steps. For brevity, I will skip details of proofs that are very similar to

the case of a single specie Boltzmann equation ([8]).

Step 1

From the identity (fn)#(t, x, v) = (U(−t)fn)(t, x, v) it follows that the weak solutions fn
i obtained in Theorem

4.1 are also mild solutions. Now, we observe that
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
(

1 + 1
n

4∑

m=1

∫

R3

fn
m dv

)JE±
in ({fn

i })

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

L∞(Ω×R3)

≤ Cn sup
i

‖fn
i ‖L∞(Ω×R3), (4.48)

and

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
(

1 + 1
n

4∑

m=1

∫

R3

fn
m dv

)JR±
in ({fn

i })

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

L∞(Ω×R3)

≤ Cn sup
i

‖fn
i ‖L∞(Ω×R3). (4.49)

The proof of the above estimates in the cases of JE+
in and JR+

in requires the change of integration from w to

V ′ = v′ − w′ and V ‡ = v‡ − w‡ (or V † = v† − w†), respectively. Thus, since fn
i0 ∈ L∞((0, T ) × Ω × R

3),
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Gronwall’s lemma applied to (4.44) gives L∞-bound of approximate solutions. This bound depends on n and

becomes arbitrary large as n → ∞.

Now, combining fn
i0(x, v) ≥ (ρ/n) exp(−v2−x2), JE−

in ({fn
i })+JR−

in ({fn
i }) = fn

i Lin({fn
i }), with Lin satisfying

‖Lin({fn
i })‖L∞(Ω×R3) ≤ Cn, one shows, similarly to the single specie case (see, [8], or [14]) that the approximate

solution fn
i satisfies, i = 1, 2, 3, 4,

fn
i (t, x, v) ≥

ρ

n
exp(−Cnt − |x − tv|2 − v2), a.e in (x, v) ∈ Ω × R

3. (4.50)

The bound (4.50) together with the absolute continuity of mild solutions fn
i in t, a.e. in (x, v) ∈ Ω × R

3,

implies that (fn
i log fn

i )#(t, x, v) are absolutely continuous in t, a.e. in (x, v) ∈ Ω × R
3, i = 1, 2, 3, 4. This

means that the indentity

∫ T

0

d

dt
(fn

i log fn
i )# (t) dt = (fn

i log fn
i )# (T ) − fn

i0 log fn
i0, a.e. in (x, v) ∈ Ω × R

3. (4.51)

is true. The mild solution fn
i satisfies for i = 1, 2, 3, 4 and a.e. in (x, v) ∈ Ω × R

3

d

dt
(fn

i )# = JE
in({fn

i })
# − JR

in({fn
i })

#, a.e. in t. (4.52)

After multiplying (4.52) by 1 + (log fn
i )#, summing over i and integrating over Ω × R

3, and finally using

(4.51) together with Remark 8, one obtains the corresponding H-theorem (3.27) for the approximate problem

(4.34). Thus, we have shown that the approximate solutions fn
i ≥ 0 satisfy (4.2), uniformly in n.

Step 2

Velocity averaging Lemma 4.1 applied to fnδ
i = (1/δ) log(1 + δfN

i ), together with Lemmas 4.2–4.3, implies

that, after passing to a subsequence, if necessary,

∫

R3

φfn
i dv −−−−→

n→∞

∫

R3

φfi dv strongly in L1((0, T ) × Ω), i = 1, 2, 3, 4, (4.53)

where fi is a weak limit of {fn
i }

∞
n=1 in L1((0, T ) × Ω × R

3).

Step3

Following very similar steps as for the original single specie Boltzmann equation (see, [8], or [14]), one shows,

with the help of (4.53), the following averaged continuity of collision integrals that hold for all φ ∈ L∞((0, T )×
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Ω × R
3) and i = 1, 2, 3, 4,

1
(

1 +
4∑

m=1

∫

R3

fn
m dv

)

∫

R3

φJE±
in ({fn

i }) dv −−−−→
n→∞

1
(

1 +
4∑

m=1

∫

R3

fm dv

)

∫

R3

φJE±
i ({fi}) dv in L1((0, T )× Ω)

(4.54)

and

1
(

1 +
4∑

m=1

∫

R3

fn
m dv

)

∫

R3

φJR±
in ({fn

i }) dv −−−−→
n→∞

1
(

1 +
4∑

m=1

∫

R3

fm dv

)

∫

R3

φJR±
i ({fi}) dv in L1((0, T ) × Ω).

(4.55)

Remark 9. The averaged continuity (4.54)–(4.55) is also true for the original collision integrals JE±
i and JR±

i ,

and for a sequence of renormalized solutions to (3.1), {fn
i }, satisfying (4.2), uniformly in n.

The convergence in (4.54)–(4.55) together with the nonnegativity of fn
i also implies for φ ∈ L∞((0, T )×Ω×R

3)

and any r > 0,

Lin({fn
i }) −−−−→n→∞

Li({fi}) in L1(0, T ) × Ω), i = 1, 2, 3, 4, (4.56)

∫

R3

φJE+
in ({fn

i }) dv −−−−→
n→∞

∫

R3

φJE+
i ({fi}) dv in measure on (0, T )× Ωr, i = 1, 2, 3, 4, (4.57)

∫

R3

φJR+
in ({fn

i }) dv −−−−→
n→∞

∫

R3

φJR+
i ({fi}) dv in measure on (0, T )× Ωr, i = 1, 2, 3, 4, (4.58)

where

Ωr =







Br, if Ω = R
3;

Ω, if Ω = [0, L]3.

The passage to the limit is obtained in two steps. First, using similar techniques as in the proofs of (4.54)–

(4.55) (see, [8] or [14]) together with the monotonicity property of JE±
in and JR±

in one shows that the function

{fi} satisfies the inequality (super-solution property of {fi})

f#
i (t, x, v) − f#

i (s, x, v) exp
{

−
[

F#
i (t) −F#

i (s)
]}

≥

∫ t

s

[
JE+

i ({fi}) + JR+
i ({fi})

]#
(τ, x, v) exp

{

−
[

F#
i (t) −F#

i (τ)
]}

dτ,

(4.59)
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for any 0 < s < t ≤ T and a.e. in (x, v) ∈ Ω × R
3, i = 1, 2, 3, 4. Finally, by observing that for i = 1, 2, 3, 4,

δ > 0, n ≥ 1

(fnδ
i )#(t, x, v) − (fnδ

i )#(s, x, v) =

∫ t

s





[

JE+
in ({fn

i })

1 + δfn
i

]#

−

[
fn

i

1 + δfn
i

]#

Lin({fn
i })

#



 dτ, (4.60)

and using (4.56), the weak convergence of fnδ
i to f δ

i , the weak convergence of [JE+
in ({fn

i })]/(1 + δfn
i ) and

hnδ
i = fn

i /(1+δfn
i ) to some Jδ

i and hδ
i , respectively, we obtain, after taking the weak limit in (4.60) as n → ∞,

(f δ
i )#(t, x, v)− (f δ

i )#(s, x, v) =

∫ t

s

[(Jδ
i )#− (hδ

i )
#Li({fi})

# dτ, a.e. in (x, v) ∈ Ω×R
3, i = 1, 2, 3, 4. (4.61)

From (4.29), (f δ
i )# −−−−→

δ→0+
(fi)

# in L1(Ω × R
3), uniformly in t ∈ [0, T ]. Furthermore, since for R > 0,

0 ≤ z −
z

1 + δz
≤ δzR + zχz≥R (4.62)

and {fn
i } is weakly relatively compact, one has

sup
0≤t≤T

‖fi − hδ
i ‖L1(Ω×R3) ≤ sup

0≤t≤T
lim inf
n→∞

‖fn
i − hnδ

i ‖L1(Ω×R3) −−−−→
δ→0+

0. (4.63)

Finally, since hδ
i ↑ fi as δ ↓ 0+, the monotone convergence theorem implies (sub-solution property of {fi})

f#
i (t, x, v) − f#

i (s, x, v) ≤

∫ t

s

[JE
i ({fi})

#(τ, x, v) + JR
i ({fi})

#(τ, x, v)] dτ, (4.64)

for 0 ≤ s ≤ t ≤ T , i = 1, 2, 3, 4, and a.e in (x, v) ∈ Ω × R
3, if one can show that

Jδ
i ≤ JE+

i ({fi}) + JR+
i ({fi}) a.e. in (t, x, v) ∈ (0, T ) × Ω × R

3. (4.65)

Proof of (4.65) follows from the nonnegativity of JE+
in and JR+

in , and the application of the averaged continuity

property (4.54)–(4.55). (see [8] or [14])

Remark 10. Super-solution property (4.59) of {fi} together with monotonicity in t of Fi(t) implies that for

each T > 0 and a.e. in (x, v) ∈ Ω × R
3, JE+

i ({fi}), JR+
i ({fi}) ∈ L1(0, T ). The last fact combined with the

sub-solution property (4.64) of {fi} shows that JE−
i ({fi}), JR−

i ({fi}) ∈ L1(0, T ).

Step 4

The functions F#
i (t) defined in (4.47) is absolutely continuous in t for almost all (x, v) ∈ Ω×R

3 and dF#
i /dt =

Li{fi})
#, a.e. in t. The sub-solution property (4.64) of {fi} yields absolute continuity of f#

i in t, for almost
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all (x, v) ∈ Ω × R
3. Thus, f#

i expF#
i is also absolutely continuous in t, for almost all (x, v)Ω × R

3 and from

super-solution property (4.59) we obtain for i = 1, 2, 3, 4,

d

dt

(

f#
i expF#

i

)

≥
[
JE+

i ({fi})
# + JR+

i ({fi})
#
]
expF#

i a.e. in t, for almost all (x, v) ∈ Ω × R
3, (4.66)

or, for i = 1, 2, 3, 4,

d

dt
f#

i ≥ JE
i ({fi})

# + JR
i ({fi})

# a.e. in t, for almost all (x, v) ∈ Ω × R
3. (4.67)

For i = 1, 2, 3, 4, the inequality (4.67) is equivalent to

f#
i (t) − f#

i (s) ≥

∫ t

s

[JE
i ({fi})

# + JR
i ({fi})

#] dτ for 0 ≤ s ≤ t and for almost all (x, v)Ω × R
3. (4.68)

Combination of (4.68) and (4.64) shows that {fi} is a mild solution of (3.1).

For the continuity property of {fi} we notice that (4.60) yields for i = 1, 2, 3, 4, 0 ≤ s ≤ t ≤ T and δ > 0

‖(fnδ
i )#(t) − (fnδ

i )#(s)‖L1(Ω×R3) ≤

∫ t

s

∥
∥
∥
∥
∥

JE+
in ({fn

i })

1 + δfn
i

∥
∥
∥
∥
∥

L1(Ω×R3)

dτ. (4.69)

Now, application of (4.69) together with (4.28) shows that for each ν > 0 there exists τ > 0 such that for

|t − s| ≤ τ , and uniformly in n, one has

‖fn#
i (t) − fn#

i (s)‖L1(Ω×R3) ≤ ν. (4.70)

After passing to the limit in (4.70) and observing that a norm is lower semicontinuous, one has f#
i ∈

C([0, T ]; L1(Ω × R
3)), i = 1, 2, 3, 4. Since the strongly continuous semigroup U(t) is jointly continuous,

one also has that fi ∈ C([0, T ]; L1(Ω × R
3)), i = 1, 2, 3, 4. Note that for f = (f1, f2, f3, f4), f#(t, x, v) =

(U(−t)f)(t, x, v). �

Remark 11. The mild solution obtained in Theorem 4.2 obeys the conservation of mass and momentum

(3.20)–(3.21). Instead of the conservation of energy property (3.22), one obtains

4∑

i=1

∫∫

Ω×R3

(
miv

2

2
+ Ei

)

fi(t, x, v) dvdx ≤

4∑

i=1

∫∫

Ω×R3

(
miv

2

2
+ Ei

)

fi0(x, v) dvdx. (4.71)

This is due to lack of higher moments estimations for JE
i and JR

i , and the fact the basic estimation (4.2) (see

also Remark 7) guarantees weak compactness of the sequence {(1 + |x|k + |v|k)fn
i } in L1((0, T )×Ω×R

3) for

0 ≤ k < 2, not including k = 2.
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I note that when the steric factors βij = 0 for i, j = 1, 2, 3, 4, system (3.1) reduces itself to the hard-sphere

Boltzmann equation for non-reacting mixtures. Thus, we also have

Corollary 4.1. Assume that the assumptions of Theorem 4.2 are satisfied and, in addition, βij = 0 for

i, j = 1, 2, 3, 4. Then there exists a nonnegative mild solution fi to the hard-sphere Boltzmann equation for

non-reacting mixtures, with fi ∈ C([0, T ]; L1(Ω × R
3)) satisfying (4.3), and such that fi(t)

∣
∣
t=0

= fi0, for

i = 1, 2, 3, 4.
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