Solutions to Homework 2

Math. 280, Spring 2008

Problem 1.
A cup of coffee in a room at temperature of 70°F is being cooled according to Newton’s law of cooling:
dT
= = —k(T — 70), T(0) = 200. (time is measured in minutes) (1)
The solution to (D) is
T(t) = 70 + (200 — 70) exp(—kt). (2)
The coefficient k can be computed from (2)) using the fact that 7'(3) = 175. Thus,
175 —70\'/*  21\"/?
175 =70 + 130 exp(—3k) = exp(—k)= (W) = <%) (3)

The temperature of the coffee will reach 112°F at ¢t = ¢, that satisfies the equation
112 = T(t1) = 70 + 130 exp(—kt1) = 70 + 130 [exp(—k)]"*, with exp(—Fk) given in
Thus,

130  |\26 ~ 15.87 minutes.

1/37t 3log 21
112 — 70 [(21) ] 65
= , or tj=—F~ "2

Problem 2.
Let N(t) denote the amount of C-14 at time ¢, with time ¢ = 0 corresponding to the moment when the original amount Ny of C-14
was present. Time evolution of N(t) is governed by the equation
dN
dt
The amount of C-14 decays in time, thus A > 0. From ), N(¢) = Noexp(At) and, since the half-life of C-14 is approximately 5568
years, No/2 = Ny exp(5568)). This gives us A = —In2/5568 ~ —0.00012448. Therefore, the expression for N(¢) for all time is given
by

= —AN, N(0)= Np. (4)

In2 t
N(t) = N, — 224 = Ny2 (). 5
®) OeXp< 5568) 0 (5)
At present time ¢, 14.5% is left, or equivalently from (&),
¢ In0.14
0.145Ny = No2 (7%) = 0145 = —— In2 —» = _2208WO0MS ooy 753 vears.
5568 In2
Problem 3.
For the equation
(1+23)dy + (zy + 23 + x)de =0 or dy + a y=-x (6)
dx 1+ 22 ’

an integrating factor is exp <f 1 f 5 dm) =1+ 22 so that
T
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FIGURE 1. Graphs of y = —5(1 + x?) + ¢ (1 +2?) ? for various choices of c.
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Problem 4.
(a) For the equation

Yo dt  2y*
let M =t/(2y*) and N = (3y* —t?)/y° so that M, = —2t/y® = N;. From ¢:(t,y) = M = t/(2y*) we obtain ¢(t,y) = t2/(4y*) + h(y).
Thus, using ¢, = N = (3y? — t?)/y°, we have h/(y) = 3/y>, and h(y) = —3/(2y*). The general solution is t2/(4y*) — 3/(2y?) = c. If
y(1) =1 then ¢ = —5/4 and the solution to initial-value problem (8] is

(M) dy + o 0, y(1)=1, (8)
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FIGURE 2. Graph of the integral FIGURE 3. Other integral curves of ¢?/(4y*) —
curve () 3/(2y%) = ¢

The solutions of the initial value problem (8) and some other integral (dashed) curves of the differential equation
3y* — 12\ d t
(yT) d_th + 27 =0 are shown in Figure[3

Remark 1. Please observe that the graph in Figure[3 does not represent a function !!! Which branch of the graph represents the
solution satisfying the initial condition y(1) = 1.

Remark 2. Note that if one multiplies both sides of equation (B) by vy°, the resulting equation

dy 1
3P — )=+ —ty =0 10
(3y )dt+2y (10)

is not exact !!! In other words 1/y° is an integrating factor for (I0). (See also Problem 5, below)

(b) The initial-value problem

dy Y dt
_— = — ]_ = _—
T y(1) =5, or

is linear in ¢ (as a function of y). Its integrating factor is 1/y, thus
d |t
— [—} =2 = t=2%+4cy.
dy Ly
If y(1) = 5 then ¢ = —49/5 and t = 2y* — (49/5)y.
The solutions of the initial value problem (11 and some other integral (dashed) curves of the differential equation

d

dit/ = ﬁ, are shown in Figure
Remark 3. Please observe that the graph in Figure[4] does not represent a function !!!" Which branch of the graph represents the
solution satisfying the initial condition y(1) = 5.
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FIGURE 4. Graph of the integral FIGURE 5. Other integral curves of
curve t = 2y% — (49/5)y t=2y%+cy

Problem 5.
Multiply the equation

d 1
(2 —l—ty)—y —y?=0 by p(t,y) = 7y The result is (12)

dt
1 1\dy vy
)2 2L . 13
<y * t> dt 2 (13)
With M = —y/t? and N = 1/y + 1/t we have M, = —1/t*> = N;; therefore equation (I3) is exact. From ¢, = —y/t* we obtain
o(t,y) = y/t + h(y) But ¢, = N; thus h'(y) = 1/y, and h(y) = log |y|. The solution of is

o(t,y) = % +log ly| = ¢, where ¢ € R is a constant.

Problem 6.
Under the change of the independent variable, ¢ — y, the original equation are transformed into
dv 2 73] : dv — 2 f Cygan?? :
m— = —mg — kv®, k>0 for the “up” motion mv— = —mg— kv, k>0 for the “up” motion
dt dy
o == ’ (14)
ma = mg—kv®>, k>0 forthe “down” motion mvd— = mg—kv?, k>0 forthe “down” motion
Y

Separating variables and integrating the differential equation corresponding to the “up” motion we have
2k
/# = —/dy = %ln(mgﬁ-k‘ﬁ) =—y+c = mg+kv®=coexp (_Wy)

(15)

2k

— fU2 = C3 exp (_—y> — @
m

k
Using 4(0) = 0 and v(0) = vy we have that v = vy when y = 0 (the initial condition) so that v3 = c3 — mg/k and c3 = v3 + mg/k.

Thus,

kv +mg 2ky mg

2 0
_ e I 1
v < k: >exp( - ) p (16)
Setting v = 0 in the left hand side of (6] and solving for y we see that the maximum height is
k 2
h="1 kv +mg ) (17)
2k mg

Now, separating variables and integrating the differential equation corresponding to the “down” motion (see (I4])) we have

2k
/&:/dy — —ﬁln\mg—kv2|:y+d1 — mg — kv? =dyexp _ 2Ny
mg — kv? 2k m

2k
— 0% = % [1 — d3zexp (—)}
m

In this case v = 0 when y = 0 (the initial condition) so d3 = 1 and

vt = % {1 —exp (-2:?)] . (19)
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Setting y = h from (I7) into (I9)) and solving for v we obtain that the impact velocity is

Vi = % < vp. (20)

Remark 4.
By taking y — oo in the right hand side of (I9) one obtains the limiting velocity, vfinai, for the problem m (dv/dt) = mg — kv?

mg 2ky mg mg mg v?2
vfmal = ylggo & {1 —exp <—W>] = E = Ufinal = {/ & >4/ % W =v;. (see, (20))
1

See also (29), where the same result can be obtained by taking t — oo in (29) and using lim tanh(x) =
r—00

(b) It is interesting to compare the results of Problem 6 with the same problem but without air resistance. When k = 0 the change
variables from ¢ to y is not necessary, however, for comparison with the case k # 0, I proceed in an exactly the same way as before.
The corresponding equations are

dv “ 7 M drU j— f th [43 k2 t'
mE = —myg, for the “up” motion mv@ = —mg, 1or the "up” motion

o = o = (21)
mo = mg, for the “down” motion my— = mg, for the “down” motion

Y

02 02 V2
5 =9 +c1, vly=0 =vo for the “up” motion 5 =9 —+ 2 for the “up” motion
02 = 2 (22)
5= W +co v|y=0 =0 for the “down” motion 5 =9 for the “down” motion

Thus, the maximum height is v3/2g. Observe that the maximum height given in (7)) is less than the maximum height in the case
without air resistance. Indeed,

m, kv +mg _my 1+/€ﬂ om kvg since for x > 0 v%
2k mg T2k 2k In(l4+2)<a 2
Also the impact velocity in the case without air resistance is equal to the 1n1t1a1 velocity vg. indeed, substituting v3/2g into v?/g = gy
(expression for v for the “down” part of the motion, see, (22)) we obtain

v; = Vg (No dissipation of the energy)
Additional remarks to Problem 6

Finally, I show how one can integrate the equations

d

md—: =—mg—kv?, v(0)=wvy, k>0 forthe “up” motion (23)
d

md—: = mg—kv*, v(0)=0, k>0 forthe “down” motion (24)

without changing the variable ¢ to y. The integrations are slightly more involved. For the “up” motion we have, after separation of

variables
m dv 1 mg k mg kg
= m = —dt = g arctan (v/,/k> :_EIH—C — v(t):1/7tan <Cl_”mt (25)
k ko
Applying the initial conditions v(0) = vy we have

Uoz\/?tancl — ¢ = arctan <v0/\/@) — o) = [arctan Uo/\/i ) \/7 ] (26)

From (26) the time t,, needed for the projectile to attain its maximum height (v =0)

tup = 4 /— arctan (vo/\/i) (27)
For the “down” motion
m dv B 1 1 mg\ k _Imyg kg
T m =dt = Wtanh <v/ﬁ/7>gt+d1 = v(t)fﬁ/Ttanh di + Et (28)
k _
k




Applying the initial condition v(0) = 0 one obtains d; = 0 and

u(t) = 4/ % tanh < %t) (29)

The time tgou, needed for the projectile to fall from the height (IT7)) can also be computed; from (20)

k k k
v e (R — YR (R
kv3 k m Vmg + kvg m

1+
mg (30)
mk 1 vO\/E
= g =/ — tanh e
One can also show that
tup < tdow'm (31)
Furthermore, when air resistance is neglected
tup = tdown = % (No dissipation of the energy)
g
Problem 7.
(a) The equation for velocity at any time and position y is
2gR?
v? = v —2gR + Rg—l— m (32)

where R is the radius of the earth, g is the acceleration due to gravity, and vg is the initial velocity of the projectile (in our case,
vg < v/2¢gR). Now the maximum distance, y = Y4z, is reached by the projectile when v = 0. In other words, we have the following
equation for Y, q,:

2gR?
2
= -2 _
0="V; gR + RivY.. (33)
Its solution is )
Yo = V0
29R — v

1
(b) The solution to the equation y”’ = —g with the initial conditions y(0) = 0 and y'(0) = v(0) = v > 0 is y(t) = —§gt2 + wvot

(with v(t) = —gt +vp). As in part (a), the maximum distance, Ymqz, is reached when v = 0; this corresponds to t = vy/g. Thus, the
maximum distance Y, qq 1S
2 2
Vo 1 Vo Vo )
ymax—y<_) =359 (_> + vo (_> :_0~
9 2"\ g g9 29

Rv? v2 V2
Ymam = 0 5 = 02 > L= Ymax-
2gR—v5 29— (vi/R) = 2g

Finally, since vy < 1/2gR, we have

(¢) In this case [32) becomes

d 2gR? 29 R?
v= d_th =4/ Rgfy7 y(0) = 0, Note the plus sign in front of Rgfy (34)

which is a separable equation. The solution of (34]) is

2
3 (R—i—y)g’/2 = Rt\/2g + c.

With y(0) = 0 we have ¢ = (2/3) R*/2. Thus

2/3
V29
y(t) = (?’2931& + R3/2) —R. (35)
(d) Solving (B3] for ¢ we obtain
2
t = ——— ([y(t) + R)>? - R*?). 36
somn (WO + R ) (36)

With R = 3963 miles, y(Ths) = 238,855 miles, and g = 32/5280 = 0.0061 mile/s?, we get from (3]
Ty = 181853 seconds = 50.52 hours.



