Solutions to Homework 2

Math. 280, Spring 2008

Problem 1.

A cup of coffee in a room at temperature of $70^{\circ} \mathrm{F}$ is being cooled according to Newton's law of cooling:

$$
\begin{equation*}
\frac{d T}{d t}=-k(T-70), \quad T(0)=200 . \quad \text { (time is measured in minutes) } \tag{1}
\end{equation*}
$$

The solution to (1) is

$$
\begin{equation*}
T(t)=70+(200-70) \exp (-k t) \tag{2}
\end{equation*}
$$

The coefficient k can be computed from (2) using the fact that $T(3)=175$. Thus,

$$
\begin{equation*}
175=70+130 \exp (-3 k) \Longrightarrow \exp (-k)=\left(\frac{175-70}{130}\right)^{1 / 3}=\left(\frac{21}{26}\right)^{1 / 3} \tag{3}
\end{equation*}
$$

The temperature of the coffee will reach $112^{\circ} \mathrm{F}$ at $t=t_{1}$ that satisfies the equation

$$
112=T\left(t_{1}\right)=70+130 \exp \left(-k t_{1}\right)=70+130[\exp (-k)]^{t_{1}}, \quad \text { with } \exp (-k) \text { given in (3) }
$$

Thus,

$$
\frac{112-70}{130}=\left[\left(\frac{21}{26}\right)^{1 / 3}\right]^{t_{1}}, \quad \text { or } \quad t_{1}=\frac{3 \log \left(\frac{21}{65}\right)}{\log \left(\frac{21}{26}\right)} \approx 15.87 \text { minutes. }
$$

Problem 2.

Let $N(t)$ denote the amount of C-14 at time t, with time $t=0$ corresponding to the moment when the original amount N_{0} of C-14 was present. Time evolution of $N(t)$ is governed by the equation

$$
\begin{equation*}
\frac{d N}{d t}=-\lambda N, \quad N(0)=N_{0} \tag{4}
\end{equation*}
$$

The amount of C-14 decays in time, thus $\lambda>0$. From (4), $N(t)=N_{0} \exp (\lambda t)$ and, since the half-life of C-14 is approximately 5568 years, $N_{0} / 2=N_{0} \exp (5568 \lambda)$. This gives us $\lambda=-\ln 2 / 5568 \approx-0.00012448$. Therefore, the expression for $N(t)$ for all time is given by

$$
\begin{equation*}
N(t)=N_{0} \exp \left(-\frac{\ln 2}{5568} t\right)=N_{0} 2^{-\left(\frac{t}{5568}\right)} \tag{5}
\end{equation*}
$$

At present time $t, 14.5 \%$ is left, or equivalently from (5),

$$
0.145 N_{0}=N_{0} 2^{-\left(\frac{t}{5568}\right)} \quad \Longrightarrow \quad \ln 0.145=-\frac{t}{5568} \ln 2 \quad \Longrightarrow \quad t=-\frac{5568 \ln 0.145}{\ln 2} \approx 15511.753 \text { years. }
$$

Problem 3.

For the equation

$$
\begin{equation*}
\left(1+x^{2}\right) d y+\left(x y+x^{3}+x\right) d x=0 \quad \text { or } \quad \frac{d y}{d x}+\left(\frac{x}{1+x^{2}}\right) y=-x \tag{6}
\end{equation*}
$$

an integrating factor is $\exp \left(\int \frac{x}{1+x^{2}} d x\right)=\sqrt{1+x^{2}}$ so that

$$
\begin{equation*}
\frac{d}{d x}\left[y \sqrt{1+x^{2}}\right]=-x \sqrt{1+x^{2}} \Longrightarrow y=-\frac{1}{3}\left(1+x^{2}\right)+c\left(1+x^{2}\right)^{-\frac{1}{2}} \tag{7}
\end{equation*}
$$

FIGURE 1. Graphs of $y=-\frac{1}{3}\left(1+x^{2}\right)+c\left(1+x^{2}\right)^{-\frac{1}{2}}$ for various choices of c.

Problem 4.

(a) For the equation

$$
\begin{equation*}
\left(\frac{3 y^{2}-t^{2}}{y^{5}}\right) \frac{d y}{d t}+\frac{t}{2 y^{4}}=0, \quad y(1)=1 \tag{8}
\end{equation*}
$$

let $M=t /\left(2 y^{4}\right)$ and $N=\left(3 y^{2}-t^{2}\right) / y^{5}$ so that $M_{y}=-2 t / y^{5}=N_{t}$. From $\phi_{t}(t, y)=M=t /\left(2 y^{4}\right)$ we obtain $\phi(t, y)=t^{2} /\left(4 y^{4}\right)+h(y)$. Thus, using $\phi_{y}=N=\left(3 y^{2}-t^{2}\right) / y^{5}$, we have $h^{\prime}(y)=3 / y^{3}$, and $h(y)=-3 /\left(2 y^{2}\right)$. The general solution is $t^{2} /\left(4 y^{4}\right)-3 /\left(2 y^{2}\right)=c$. If $y(1)=1$ then $c=-5 / 4$ and the solution to initial-value problem (8) is

$$
\begin{equation*}
\frac{t^{2}}{4 y^{4}}-\frac{3}{2 y^{2}}=-\frac{5}{4} \tag{9}
\end{equation*}
$$

Figure 2. Graph of the integral curve (9)

Figure 3. Other integral curves of $t^{2} /\left(4 y^{4}\right)-$ $3 /\left(2 y^{2}\right)=c$

The solutions of the initial value problem (8) and some other integral (dashed) curves of the differential equation

$$
\left(\frac{3 y^{2}-t^{2}}{y^{5}}\right) \frac{d y}{d t}+\frac{t}{2 y^{4}}=0 \quad \text { are shown in Figure 3 }
$$

Remark 1. Please observe that the graph in Figure 2 does not represent a function !!! Which branch of the graph represents the solution satisfying the initial condition $y(1)=1$.
Remark 2. Note that if one multiplies both sides of equation (8) by y^{5}, the resulting equation

$$
\begin{equation*}
\left(3 y^{2}-t^{2}\right) \frac{d y}{d t}+\frac{1}{2} t y=0 \tag{10}
\end{equation*}
$$

is not exact !!! In other words $1 / y^{5}$ is an integrating factor for (10). (See also Problem 5, below)
(b) The initial-value problem

$$
\begin{equation*}
\frac{d y}{d t}=\frac{y}{2 y^{2}-t}, \quad y(1)=5, \quad \text { or } \quad \frac{d t}{d y}-\frac{t}{y}=2 y, \quad y(1)=5 \tag{11}
\end{equation*}
$$

is linear in t (as a function of y). Its integrating factor is $1 / y$, thus

$$
\frac{d}{d y}\left[\frac{t}{y}\right]=2 \quad \Longrightarrow \quad t=2 y^{2}+c y
$$

If $y(1)=5$ then $c=-49 / 5$ and $t=2 y^{2}-(49 / 5) y$.
The solutions of the initial value problem (11) and some other integral (dashed) curves of the differential equation

$$
\frac{d y}{d t}=\frac{y}{2 y^{2}-t}, \quad \text { are shown in Figure 5. } 5
$$

Remark 3. Please observe that the graph in Figure 4 does not represent a function !!! Which branch of the graph represents the solution satisfying the initial condition $y(1)=5$.

Figure 4. Graph of the integral curve $t=2 y^{2}-(49 / 5) y$

Figure 5. Other integral curves of $t=2 y^{2}+c y$

Problem 5.

Multiply the equation

$$
\begin{align*}
\left(t^{2}+t y\right) \frac{d y}{d t}-y^{2}=0 \quad \text { by } \quad \mu(t, y) & =\frac{1}{t^{2} y} . \quad \text { The result is } \tag{12}\\
\left(\frac{1}{y}+\frac{1}{t}\right) \frac{d y}{d t}-\frac{y}{t^{2}} & =0 . \tag{13}
\end{align*}
$$

With $M=-y / t^{2}$ and $N=1 / y+1 / t$ we have $M_{y}=-1 / t^{2}=N_{t}$; therefore equation (13) is exact. From $\phi_{t}=-y / t^{2}$ we obtain $\phi(t, y)=y / t+h(y)$ But $\phi_{y}=N$; thus $h^{\prime}(y)=1 / y$, and $h(y)=\log |y|$. The solution of (12) is

$$
\phi(t, y)=\frac{y}{t}+\log |y|=c, \quad \text { where } c \in \mathbb{R} \text { is a constant. }
$$

Problem 6.

Under the change of the independent variable, $t \rightarrow y$, the original equation are transformed into

$$
\begin{align*}
& m \frac{d v}{d t}=-m g-k v^{2}, \quad k>0 \quad \text { for the "up" motion } \quad \Longrightarrow \quad m v \frac{d v}{d y}=-m g-k v^{2}, \quad k>0 \quad \text { for the "up" motion } \\
& m \frac{d v}{d t}=m g-k v^{2}, \quad k>0 \text { for the "down" motion } \Longrightarrow \quad m v \frac{d v}{d y}=m g-k v^{2}, \quad k>0 \text { for the "down" motion } \tag{14}
\end{align*}
$$

Separating variables and integrating the differential equation corresponding to the "up" motion we have

$$
\begin{align*}
\int \frac{m v}{m g+k v^{2}}=-\int d y & \Longrightarrow \frac{m}{2 k} \ln \left(m g+k v^{2}\right)=-y+c_{1} \quad \Longrightarrow \quad m g+k v^{2}=c_{2} \exp \left(-\frac{2 k y}{m}\right) \tag{15}\\
& \Longrightarrow v^{2}=c_{3} \exp \left(-\frac{2 k y}{m}\right)-\frac{m g}{k}
\end{align*}
$$

Using $y(0)=0$ and $v(0)=v_{0}$ we have that $v=v_{0}$ when $y=0$ (the initial condition) so that $v_{0}^{2}=c_{3}-m g / k$ and $c_{3}=v_{0}^{2}+m g / k$. Thus,

$$
\begin{equation*}
v^{2}=\left(\frac{k v_{0}^{2}+m g}{k}\right) \exp \left(-\frac{2 k y}{m}\right)-\frac{m g}{k} \tag{16}
\end{equation*}
$$

Setting $v=0$ in the left hand side of (16) and solving for y we see that the maximum height is

$$
\begin{equation*}
h=\frac{m}{2 k} \ln \left(\frac{k v_{0}^{2}+m g}{m g}\right) \tag{17}
\end{equation*}
$$

Now, separating variables and integrating the differential equation corresponding to the "down" motion (see (14)) we have

$$
\begin{align*}
\int \frac{m v}{m g-k v^{2}}=\int d y & \Longrightarrow-\frac{m}{2 k} \ln \left|m g-k v^{2}\right|=y+d_{1} \Longrightarrow m g-k v^{2}=d_{2} \exp \left(-\frac{2 k y}{m}\right) \tag{18}\\
& \Longrightarrow v^{2}=\frac{m g}{k}\left[1-d_{3} \exp \left(-\frac{2 k y}{m}\right)\right]
\end{align*}
$$

In this case $v=0$ when $y=0$ (the initial condition) so $d_{3}=1$ and

$$
\begin{equation*}
v^{2}=\frac{m g}{k}\left[1-\exp \left(-\frac{2 k y}{m}\right)\right] \tag{19}
\end{equation*}
$$

Setting $y=h$ from (17) into (19) and solving for v we obtain that the impact velocity is

$$
\begin{equation*}
v_{i}=\frac{v_{0}}{\sqrt{1+\frac{k v_{0}^{2}}{m g}}}<v_{0} \tag{20}
\end{equation*}
$$

Remark 4.

By taking $y \rightarrow \infty$ in the right hand side of (19) one obtains the limiting velocity, $v_{\text {final }}$, for the problem $m(d v / d t)=m g-k v^{2}$

$$
v_{\text {final }}^{2}=\lim _{y \rightarrow \infty} \frac{m g}{k}\left[1-\exp \left(-\frac{2 k y}{m}\right)\right]=\frac{m g}{k} \quad \Longrightarrow \quad v_{\text {final }}=\sqrt{\frac{m g}{k}}>\sqrt{\frac{m g}{k}} \sqrt{\frac{v_{0}^{2}}{v_{0}^{2}+\frac{m g}{k}}}=v_{i} . \quad \text { (see, (20)) }
$$

See also (29), where the same result can be obtained by taking $t \rightarrow \infty$ in (29) and using $\lim _{x \rightarrow \infty} \tanh (x)=1$.
(b) It is interesting to compare the results of Problem 6 with the same problem but without air resistance. When $k=0$ the change variables from t to y is not necessary, however, for comparison with the case $k \neq 0$, I proceed in an exactly the same way as before. The corresponding equations are

$$
\begin{align*}
& m \frac{d v}{d t}=-m g, \quad \text { for the "up" motion } \quad \Longrightarrow \quad \begin{array}{r}
m v \frac{d v}{d y}=-m g, \quad \text { for the "up" motion } \\
m \frac{d v}{d t}=m g, \quad \text { for the "down" motion } \\
\frac{v^{2}}{2}=-g y \frac{d v}{d y}=m g, \quad \text { for the "down" motion }
\end{array} \quad \Longrightarrow \tag{21}\\
& \frac{v^{2}}{2}=g y+c_{2},\left.\quad v\right|_{y=0}=v_{0} \quad \text { for the "up" motion } \quad \\
& \hline y=0=0 \quad \text { for the "down" motion }
\end{aligned} \quad \begin{aligned}
& \frac{v^{2}}{2}=-g y+\frac{v_{0}^{2}}{2}, \quad \text { for the "up" motion } \tag{22}\\
& \frac{v^{2}}{2}=g y \quad \text { for the "down" motion }
\end{align*}
$$

Thus, the maximum height is $v_{0}^{2} / 2 g$. Observe that the maximum height given in (17) is less than the maximum height in the case without air resistance. Indeed,

$$
\frac{m}{2 k} \ln \left(\frac{k v_{0}^{2}+m g}{m g}\right)=\frac{m}{2 k} \ln \left(1+\frac{k v_{0}^{2}}{m g}\right)<\frac{m}{2 k}\left(\frac{k v_{0}^{2}}{m g}\right) \quad\left\{\begin{array}{c}
\text { since for } x>0 \\
\ln (1+x)<x
\end{array}\right\} \quad=\frac{v_{0}^{2}}{2 g}
$$

Also the impact velocity in the case without air resistance is equal to the initial velocity v_{0}. indeed, substituting $v_{0}^{2} / 2 g$ into $v^{2} / g=g y$ (expression for v for the "down" part of the motion, see, (22)) we obtain

$v_{i}=v_{0} \quad$ (No dissipation of the energy)

Additional remarks to Problem 6

Finally, I show how one can integrate the equations

$$
\begin{array}{llll}
m \frac{d v}{d t} & =-m g-k v^{2}, \quad v(0)=v_{0}, \quad k>0 \quad \text { for the "up" motion } \\
m \frac{d v}{d t}=m g-k v^{2}, & v(0)=0, \quad k>0 \quad \text { for the "down" motion } \tag{24}
\end{array}
$$

without changing the variable t to y. The integrations are slightly more involved. For the "up" motion we have, after separation of variables

$$
\begin{equation*}
\frac{m}{k}\left(\frac{d v}{\frac{m g}{k}+v^{2}}\right)=-d t \quad \Longrightarrow \quad \frac{1}{\sqrt{\frac{m g}{k}}} \arctan \left(v / \sqrt{\frac{m g}{k}}\right)=-\frac{k}{m} t+c \quad \Longrightarrow \quad v(t)=\sqrt{\frac{m g}{k}} \tan \left(c_{1}-\sqrt{\frac{k g}{m}} t\right) \tag{25}
\end{equation*}
$$

Applying the initial conditions $v(0)=v_{0}$ we have

$$
\begin{equation*}
v_{0}=\sqrt{\frac{m g}{k}} \tan c_{1} \quad \Longrightarrow \quad c_{1}=\arctan \left(v_{0} / \sqrt{\frac{m g}{k}}\right) \quad \Longrightarrow \quad v(t)=\sqrt{\frac{m g}{k}} \tan \left[\arctan \left(v_{0} / \sqrt{\frac{m g}{k}}\right)-\sqrt{\frac{k g}{m}} t\right] \tag{26}
\end{equation*}
$$

From (26) the time $t_{u p}$ needed for the projectile to attain its maximum height $\left(v\left(t_{u p}\right)=0\right)$ is

$$
\begin{equation*}
t_{u p}=\sqrt{\frac{m}{k g}} \arctan \left(v_{0} / \sqrt{\frac{m g}{k}}\right) \tag{27}
\end{equation*}
$$

For the "down" motion

$$
\begin{equation*}
\frac{m}{k}\left(\frac{d v}{\frac{m g}{k}-v^{2}}\right)=d t \Longrightarrow \frac{1}{\sqrt{\frac{m g}{k}}} \tanh ^{-1}\left(v / \sqrt{\frac{m g}{k}}\right)=\frac{k}{m} t+d_{1} \quad \Longrightarrow \quad v(t)=\sqrt{\frac{m g}{k}} \tanh \left(d_{1}+\sqrt{\frac{k g}{m}} t\right) \tag{28}
\end{equation*}
$$

Applying the initial condition $v(0)=0$ one obtains $d_{1}=0$ and

$$
\begin{equation*}
v(t)=\sqrt{\frac{m g}{k}} \tanh \left(\sqrt{\frac{k g}{m}} t\right) \tag{29}
\end{equation*}
$$

The time $t_{\text {down }}$ needed for the projectile to fall from the height (17) can also be computed; from (20)

$$
\begin{align*}
\frac{v_{0}}{\sqrt{1+\frac{k v_{0}^{2}}{m g}}}=\sqrt{\frac{m g}{k}} \tanh \left(\sqrt{\frac{k g}{m}} t\right) & \Longrightarrow \frac{v_{0} \sqrt{k}}{\sqrt{m g+k v_{0}^{2}}}=\tanh \left(\sqrt{\frac{k g}{m}} t\right) \tag{30}\\
& \Longrightarrow t_{\text {down }}=\sqrt{\frac{m k}{g}} \tanh ^{-1}\left(\frac{v_{0} \sqrt{k}}{\sqrt{m g+k v_{0}^{2}}}\right)
\end{align*}
$$

One can also show that

$$
\begin{equation*}
t_{u p}<t_{\text {down }} \tag{31}
\end{equation*}
$$

Furthermore, when air resistance is neglected

$$
t_{u p}=t_{\text {down }}=\frac{v_{0}}{g} . \quad(\text { No dissipation of the energy })
$$

Problem 7.

(a) The equation for velocity at any time and position y is

$$
\begin{equation*}
v^{2}=v_{0}^{2}-2 g R+\frac{2 g R^{2}}{R+y} \tag{32}
\end{equation*}
$$

where R is the radius of the earth, g is the acceleration due to gravity, and v_{0} is the initial velocity of the projectile (in our case, $\left.v_{0}<\sqrt{2 g R}\right)$. Now the maximum distance, $y=Y_{\max }$, is reached by the projectile when $v=0$. In other words, we have the following equation for $Y_{\max }$:

$$
\begin{equation*}
0=V_{0}^{2}-2 g R+\frac{2 g R^{2}}{R+Y_{\max }} \tag{33}
\end{equation*}
$$

Its solution is

$$
Y_{\max }=\frac{R v_{0}^{2}}{2 g R-v_{0}^{2}}
$$

(b) The solution to the equation $y^{\prime \prime}=-g$ with the initial conditions $y(0)=0$ and $y^{\prime}(0)=v(0)=v_{0}>0$ is $y(t)=-\frac{1}{2} g t^{2}+v_{0} t$ (with $v(t)=-g t+v_{0}$). As in part (a), the maximum distance, $y_{\max }$, is reached when $v=0$; this corresponds to $t=v_{0} / g$. Thus, the maximum distance $y_{\max }$ is

$$
y_{\max }=y\left(\frac{v_{0}}{g}\right)=-\frac{1}{2} g\left(\frac{v_{0}}{g}\right)^{2}+v_{0}\left(\frac{v_{0}}{g}\right)=\frac{v_{0}^{2}}{2 g} .
$$

Finally, since $v_{0}<\sqrt{2 g R}$, we have

$$
Y_{\max }=\frac{R v_{0}^{2}}{2 g R-v_{0}^{2}}=\frac{v_{0}^{2}}{2 g-\left(v_{0}^{2} / R\right)}>\frac{v_{0}^{2}}{2 g}=y_{\max }
$$

(c) In this case (32) becomes

$$
\begin{equation*}
v=\frac{d y}{d t}=\sqrt{\frac{2 g R^{2}}{R+y}}, \quad y(0)=0, \quad\left(\text { Note the plus sign in front of } \sqrt{\frac{2 g R^{2}}{R+y}}\right) \tag{34}
\end{equation*}
$$

which is a separable equation. The solution of (34) is

$$
\frac{2}{3}(R+y)^{3 / 2}=R t \sqrt{2 g}+c
$$

With $y(0)=0$ we have $c=(2 / 3) R^{3 / 2}$. Thus

$$
\begin{equation*}
y(t)=\left(\frac{3 \sqrt{2 g}}{2} R t+R^{3 / 2}\right)^{2 / 3}-R \tag{35}
\end{equation*}
$$

(d) Solving (35) for t we obtain

$$
\begin{equation*}
t=\frac{2}{3 \sqrt{2 g} R}\left([y(t)+R]^{3 / 2}-R^{3 / 2}\right) \tag{36}
\end{equation*}
$$

With $R=3963$ miles, $y\left(T_{M}\right)=238,855$ miles, and $g=32 / 5280=0.0061 \mathrm{mile} / \mathrm{s}^{2}$, we get from (36) $T_{M}=181853$ seconds $=50.52$ hours.

