Batteries (cells with spontaneous redox reactions)

Dry Cell

anode:	$Zn(s) \times Zn^{2+}(aq) + 2e^{-}$
cathode:	$2MnO_2(s) + 2NH_4^+(aq) + 2e^- \times Mn_2O_3(s) + 2NH_3(aq) + H_2O(l)$
$E_{cell} = 1.5 V$	(Indep. of cell size. Current output depends on cell size. As cell vol. increases, R_{int} decreases and I_{cell} increases; V=IR)
Problems:	Can't recharge because Zn ²⁺ diffuses away. Acidic NH ₄ ⁺ corrodes Zn, leading to poor shelf life.

Alkaline Battery

uses KOH instead of NH₄⁺ and ZnCl₂

anode: $Zn(s) + 2OH(aq) \times ZnO(s) + H_2O(l) + 2e^{-1}$

cathode: $2MnO_2(s) + H_2O(l) + 2e^{-1} \times Mn_2O_3(s) + 2OH^{-}(aq)$

 $E_{cell} = 1.54 \text{ V}$

lasts longer, but slightly more expensive because of the construction

Mercury Battery

anode: $Zn(s) + 2OH(aq) \times ZnO(s) + H_2O(l) + 2e^{-1}$

cathode: HgO(s) + $H_2O(l)$ + $2e^- \times Hg(l)$ + $2OH^-(aq)$

 $E_{cell} = 1.34 \text{ V}$

More current for a given size (used for calculators, watches, hearing aids, cameras). More expensive because of the Hg.

 $\mathsf{E}_{\mbox{\tiny cell}}$ constant during discharge because cell reaction doesn't change cell electrolyte composition.

Not rechargeable. Disposal of Hg is also a problem.

Nickel-Cadmium (nicad) & Nickel-Metal Hydride (NiMH) Batteries

anode (nicad): $Cd(s) + 2OH^{-}(aq) \times Cd(OH)_{2}(s) + 2e^{-}$ (NiMH) $MH(s) + OH^{-}(aq) \times M(s) + H_{2}O(l) + e^{-}$ cathode: $NiO(OH)(s) + H_{2}O(l) + e^{-} \times Ni(OH)_{2}(l) + OH^{-}(aq)$ Ecell = 1.2-1.4 V (fairly constant during discharge) Products adhere to electrodes - reactions can be reversed by charging. Disposal of cadmium a problem (nicad). Used in calculators, cordless appliances and portable power tools.

Lithium Ion Battery

anode: Li(in polymer) \times Li⁺ (in polymer) + e⁻ cathode: Li⁺ (in CoO₂) + e⁻ + CoO₂ \times LiCoO₂ Rechargeable, long life, higher voltage (E_{cell} = 3.4 V). Used in portable computers, cellular phones, cameras.

Lead Storage Battery

anode (porous Pb): $Pb(s) + HSO_4^{-}(aq) \times PbSO_4(s) + H^+ + 2e^$ cathode (PbO₂): $PbO_2(s) + 3H^+(aq) + HSO_4^{-}(aq) + 2e^- \times PbSO_4(s) + 2H_2O(l)$ $E_{cell} = 2.0 V$

Car battery has six cells in series to provide 12 V.

Rechargeable, since PbSO₄ sticks to electrodes.

Fuel Cells

Involve the direct conversion of chemical energy \forall electrical energy (~70% efficiency) (otherwise, chemical \forall heat \forall electrical energy is only ~ 30% efficient)

Reactants are continuously supplied.

Example:

 $\begin{array}{rll} {\sf H}_2 \mbox{ fuel} & \mbox{anode:} & {\sf H}_2(g) \ + \ 2 {\sf OH}^{-}({\sf aq}) \ \times \ 2 {\sf H}_2 {\sf O}({\sf I}) \ + \ 2 {\sf e}^{-} \\ & \mbox{cathode:} & {\sf O}_2(g) \ + \ 2 {\sf H}_2 {\sf O}({\sf I}) \ + \ 4 {\sf e}^{-} \ \times \ 4 {\sf OH}^{-} \\ & {\sf E}^0_{\ \mbox{cell}} = 1.23 \ {\sf V} \ ({\sf E}_{\mbox{cell}} \sim 0.7 \ {\sf V}) \end{array}$

The Direct Fuel Cell installation on campus works in the following way.

Electrolysis - reactant-favored reactions

H_2O (acidic solution)					
anode:	2H ₂ O(I) X	$O_2(g)$ + $4H^+(aq)$ + $4e^-$	$E^{0}_{ox} = -1.23 V$		
cathode:	2H ⁺ (aq) +	2e ⁻ X H ₂ (g)	$E^{0}_{red} = 0.00 V$		
overall:	$\overline{2H_2O(I)}$ X	$O_2(g) + 2H_2(g)$	E ⁰ = -1.23 V		

H₂O (basic/neutral solution)

anode: $4OH^{-} \times O_2(g) + 2H_2O(I) + 4e^{-} = E^{0}_{ox} = -0.40 \text{ V}$ cathode: $2H_2O(I) + 2e^{-} \times H_2(g) + OH^{-}(aq) = -0.83 \text{ V}$ overall: $2H_2O \times O_2(g) + 2H_2(g) = -1.23 \text{ V}$

Must have mobile ions in solution so that charge balance can be maintained.

Electrolysis of 1.0 M CuSO₄ at pH = 5.0, P_{H2} =1 atm, P_{O2} = 1 atm

possible cathode reactions

 $Cu^{2+}(aq) + 2e^{-} \times Cu(s)$ $E_{red} = 0.34 \text{ V} - (0.0592/2)\log 1/[Cu^{2+}] = 0.34 \text{ V}$ $2H^{+}(aq) + 2e^{-} \times H_2(g)$ $E_{red} = 0.00 \text{ V} - (0.0592/2)\log P_{H2}/[H^+]^2 = -0.296 \text{ V}$ Cu^{2+} is reduced (Cu will plate out on cathode) because it has the more favorable E_{red} .

possible anode reactions

 $2SO_4^{2-} \times S_2O_8^{2-}(aq) + 2e^- = E_{ox}^0 = -2.00 V$ $2H_2O(I) \times O_2(g) + 4H^+(aq) + 4e^- = -1.23 V - (0.0592/4)logP_{O2}[H^+]^4 = -0.93 V$ O_2 is produced at the anode because it has the more favorable E_{ox} .

Electrolysis of 1.0 M ZnSO₄ at pH = 5.0, P_{H2} =1 atm, P_{O2} = 1 atm

possible cathode reactions

 $Zn^{2+}(aq) + 2e^{-} X Zn(s) \qquad E_{red} = -0.76 V - (0.0592/2) log 1/[Zn^{2+}] = -0.76 V$ $2H^{+}(aq) + 2e^{-} X H_{2}(g) \qquad E_{red} = 0.00 V - (0.0592/2) log P_{H2}/[H^{+}]^{2} = -0.296 V$

 H_2 should form (it has the more favorable E_{red}), but Zn plates out due to **overvoltage**.

For Zn: $E_{red} = -0.76 \text{ V} - \text{overvoltage}(\text{Zn})$

For H_2 : $E_{red} = -0.296 \text{ V} - \text{overvoltage}(H_2)$

Overvoltage is a kinetic effect. Electron transfer is inhibited at the electrode. It is usually small for the deposition of metals, but often large (~1 V) for the evolution of gases. This explains why you can plate out Cr^{3+} and Ni^{2+} , and produce $Cl_2(g)$ in the electrolysis of NaCl(aq), even though they have unfavorable half-cell potentials.