Migration, drift, and non-random mating

Hardy-Weinberg conditions

- No mutation
- No selection
- No migration
- No genetic drift
- No non-random mating

If Hardy-Weinberg holds, then...

No allele frequency change

p = frequency of allele A

q = frequency of allele a

• Genotype frequencies follow from

$$p^2 + 2pq + q^2$$

Migration

- Not seasonal movement
 - E.g. birds
- Movement of alleles form one population to another
 - Called 'gene flow'
- Makes populations more similar to each other

Migration

Nerodia sipedon

Selection on banding pattern

- Mainland
 - Banded snakes favored (dappled light)
- Islands
 - Unbanded snakes favored
 - Barren limestone basking surfaces
- Banded alleles on island persist due to migration from mainland

Migration of alleles

- Changes allele frequencies
- Can alter genotype frequencies
- Makes populations more similar

Measuring genetic similarity of populations

- Fst statistic ranges from 0 to 1
- Measures variation among subpopulations relative to the total variation (s and t)
- Fst high, then subpopulations pretty distinct
- Fst low, subpopulations homogenous

Silene dioica Swedish islands

- Colonize young island
 - Genes that get to any specific island mostly a matter of chance
- Pollination by insects
 - Over time, genes get spread from island to island (migration of alleles)
- Die off through ecological succession
 - Old populations survivors stochastic

Giles and Goulet, 1997

Genetic drift

- In Giles and Goulet's study, what accounts for the high Fst values for young populations?
- Chance founder events
 - Populations drawn from small potential pool

Population size and genetic drift

- Flip a coin, odds are even (50:50) heads or tails
- If you flip the coin 10, 000, 000 times
 - You'd better get really close to 50:50
- If you flip the coin only 4 times, you have a good chance of getting either all heads or all tails
 - 12.5% chance, even if the coin is a fair coin

Sampling error in small populations

Chance of random allele frequency change, N = 10 zygotes

Drift versus sample size

- 3 runs of a simulation model
- True allele frequency 60:40

Drift as an evolutionary force

- Drift not an important evolutionary force in large populations
- Can be important in small populations
 - Founding of new populations
 - Fixation of alleles, loss of heterozygosity

Founder effect

- High Fst in Silene dioica young populations
- In humans,
 - Ellis-van-Creveld syndrome
 - Rare form of Dwarfism
 - Allele frequency around 0.001 in most populations
 - But found at 0.07 in Pennsylvania Amish descended from 200 founding individuals

Drift and allele frequency change

- small populations over many generations
- Fixation: an allele is *fixe* at a locus if it is at a frequency of 100%
- Heterozygosity decrease as alleles becomes rarer

Note: 2(p)*(1-p)= 2pq

Fixation of alleles

- If allele frequency goes to 1 it is fixed
- If it goes to 0 the allele is lost, and the alternative allele is fixed (if there are only two alleles)
- Probability that an allele goes to fixation equal to its initial frequency
 - With drift alone that is (no mutation, no selection, etc.)

Loss of heterozygosity

- Heterozygote frequency = 2 pq
 - Alternatively 2p(1-p)
 - At a maximum when p = 0.5
- Buri *Drosophila* experiment
- 107 lines of 8 females 8 males
- Start p = q = 0.5
- Qualitative: heterozygosity decrease
- Quantitative: for population with size 16, heterozygosity should follow dashed line; instead followed solid gray line the prediction for n = 9

Effective population size

- Buri's fly populations lost heterozygosity as predicted IF the population size was 9 not 16
- If some died, or failed to reproduce, then the **effective population size** can be smaller than the actual population size
- Ne = (4 NmNf)/(Nm + Nf)
 Nm = number of sexually reproductive males
 Nf = number of sexually reproducing females
- 5 males 5 females, Ne = 10
- 1 male 9 females, Ne = 3.6

Drift and the neutral theory

- Alleles that have no fitness effect called neutral
- Allelic substitution can be by drift or selection
- If most mutations produce selectively neutral alleles, the fate of those alleles will be governed mostly by drift
 - Basis of idea behind molecular clock

Genetic drift summary

- Random effects
- Importance highly dependent on population size
 - Effective population size even smaller
- Can allow a neutral allele to replace another simply by chance
- Decreases allelic diversity and heterozygosity

Non-random mating

- Obviously individuals do not mate randomly
 - Really, would you want to mate randomly?
- We are talking about random mating with respect to particular alleles
- Not non-random mating with respect to money, sexiness, or ability to make your heart go pitterpatter
 - That is sexual selection, a form of natural selection

Non-random mating with respect to alleles

- Positive assortative mating
 - Like mates with like
- Mating among genetic relatives called *Inbreeding*

Inbreeding and heterozygosity

- Imagine extreme inbreeding
- Self fertilization
- Homozygotes produce all homozygotes
- Heterozygotes produce 1/2 homozygotes and 1/2 heterozygotes
- Proportion of heterozygotes decreases by 1/2 each generation

Selfing and heterozygosity

Table 6.1 Changes in genotype frequencies with successive generations of selfing

The frequency of allele A_1 is p and the frequency of allele A_2 is q. Note that allele frequencies do not change from generation to generation—only the genotype frequencies. After Crow (1983).

Generation	$A_{I}A_{I}$	Frequency of A_1A_2	A_2A_2	
0	p^2	2pq	q^2	
1	$p^2 + (pq/2)$	pq	$q^2 + (pq/2)$	
2	$p^2 + (3 pq/4)$	pq/2	$q^2 + (3 pq/4)$	
3	$p^2 + (7 pq/8)$	pq/4	$q^2 + (7 pq/8)$	
4	$p^2 + (15 pq/16)$	pq/8	$q^2 + (15 pq/16)$	

Inbreeding produces excess homozygotes

 More homozygotes than predicted by Hardy-Weinberg suggests something, perhaps inbreeding is going on

 One generation of random mating reestablishes Hardy-Weinberg genotype frequencies

Inbreeding depression

- Does not mean you are sad you kissed your cousin
- Inbreeding produces a deficit of heterozygotes and a surplus of homozygotes
- What if those homozygotes are of deleterious recessive alleles?

Inbreeding reduces fitness: humans

Also, plants, non-human animals

Conservation Genetics: the case of the greater prairie chicken in Illinois

Movie time

Decline

- Millions pre-1837 steel plow
- 25000 in 1933
- 2000 in 1962
- 500 in 1972
- 76 in 1990
- 50 or less 1994

Habitat loss: steel plow 1837

Two remaining habitats protected in 1962 and 1967

Protection and population decline

Why the post mid 1970's decline?

- Migration
- Drift
- Inbreeding

Allelic diversity

Table 6.4 Number of alleles per locus found in each of the current populations of Illinois, Kansas, Minnesota, and Nebraska and estimated for the Illinois prebottleneck population

Locus	Illinois	Kansas	Minnesota	Nebraska	Illinois prebottleneck*
ADL42	3	4	4	4	3
ADL23	4	5	4	5	5
ADL44	4	7	8	8	4
ADL146	3	5	4	4	4
ADL162	2	5	4	4	6
ADL230	6	9	8	10	9
Mean	3.67	5.83	5.33	5.83	5.12
SE	0.56	0.75	0.84	1.05	0.87
Sample size	32	37	38	20	15

Note: SE indicates standard error of mean number of alleles per locus. The Illinois population in column 1 shows signficantly less allelic diversity than the rest of the populations (P < 0.05).

Source: From Bouzat et al. (1998).

^{*}Number of alleles in the Illinois prebottleneck population include both extant alleles that are shared with the other populations and alleles detected in the museum collection.

Egg viability

Evolutionary forces

- Drift
 - Small population
 - Even smaller effective population size
 - Lek mating system
- Low allelic diversity, low heterozygosity
- Migration reintroduces new alleles
 - Gene flow