1. a right prism: base is a triangle with sides $12 \mathrm{~cm}, 10 \mathrm{~cm}, 10 \mathrm{~cm}$ prism height is 20 cm .

The SA of a prism is always the area of the two identical

Øocmpolygonal ends, plus the area of the lateral \square or sides.

2 - Area of one triangular End + Areas of lateral Sides

$$
+20 \mathrm{~cm}(10 \mathrm{~cm}+12 \mathrm{~cm}+10 \mathrm{~cm})
$$

$$
+20 \mathrm{~cm}(32 \mathrm{~cm})
$$

$$
=736 \mathrm{~cm}^{2}
$$

2. Find the surface area of a right pyramid, base 10 m square, height 12 m

The surface area of a pyramid or cone is always the area of its base plus the area of its triangular lateral faces.
Area of square base +4 (area of one triangular face)
 $96 \mathrm{~cm}^{2}$ $10 \mathrm{~m} \cdot 10 \mathrm{~m}+4(1 / 2)(10 \mathrm{~m})$ (height of lateral side) $100 \mathrm{~m}^{2}+4(1 / 2)(10 \mathrm{~m})(13 \mathrm{~m}[$ work y$])$
 Important! The height of the
lateral triangular FACE is slanted
(leaning in tow ards the apex),
\& is LONGER than the height of
the pyramid. Work \rightarrow
$=360 \mathrm{~m}^{2}$

$$
12^{2}+5^{2}=c^{2}
$$

$$
\begin{aligned}
144+25 & =c^{2} \\
169 & =c^{2}
\end{aligned}
$$

$$
\begin{aligned}
169 & =c^{2} \\
13 & =c
\end{aligned}
$$

12 m

Height of pyramid
3. a right prism, given the height is 20 cm , and the base has a perimeter of 78 cm , and area $26 \mathrm{~cm}^{2}$.

The surface area of a prism is the area of the two identical polygonal ends, plus the area of the lateral sides. For a right prism, the area of the lateral sides adds up to the (sum of all the base lengths)(height) = (Perimeter of base) (height) So the area of THIS prism is:

Area of top + Area of bottom + Total area of lateral sides
$26 \mathrm{~cm}^{2}+26 \mathrm{~cm}^{2}+(78 \mathrm{~cm})(10 \mathrm{~cm})$
832 cm 2

4. ...the object illustrated at right.

Assume all angles that appear to be right angles are right, all arcs that appear circular or semicircular are, all surfaces that appear flat are so, and all surfaces that appear spherical* are so.

The small circular disc at the very top has area $\Pi(10 \mathrm{~m})^{2}$
On the next level dow n is a rectangle with a circle cut out...
Area of "roof": $(35 m)(24 m)-\pi(10 m)^{2}$.
The two together total $(35 \mathrm{~m})(24 \mathrm{~m})=840 \mathrm{~m}^{2}$ (the whole "roof"!)
The bottom of the object is another $840 \mathrm{~m}^{2}$
The front and back are $12 \mathrm{~m} \cdot 35 \mathrm{~m}$ rectangles, the sides, $12 \mathrm{~m} \cdot 24 \mathrm{~m}$ rectangles .

The lateral sides of the cylindrical "dome" consist of a rectangular strip, 6 m high by $\Pi(20 \mathrm{~m})$ long.
Total surface area:
Roof\&bottom + Front \& Back + 2 Sides + Cylindrical wall
 $=[2(35)(24)+2(35)(12)+2(24)(12)+\pi(6)(20)] \mathrm{m}^{2}$
$=1680+840+576+120 \pi \mathrm{~m}^{2}$
$=\quad(3096+120 \pi) \mathrm{m}^{2}$

[^0]
VOLUME PROBLEMS

We can much MORE EASILY find the VOLUMES of these objects! They are:
(1) V of prism $\quad=$ (Area of Base) (Height)

```
= (area of prism's base [i \!])}\cdot(\mathrm{ (height of prism)
= (1/2)(12cm)(8cm) - (20cm)
= 960 cm
```

(2) V of pyramid $=$ one-third of the corresponding prism

$$
=\quad(1 / 3) \text { (area of base) } \cdot(\text { height })
$$

$$
=(1 / 3)(\text { Area of square base)(height of pyramid) }
$$

$$
=(1 / 3) \cdot(10 \mathrm{~m})(10 \mathrm{~m}) \cdot 12 \mathrm{~m}=400 \mathrm{~m}^{3}
$$

$(3) V$ of prism $\quad=\quad($ Area of Base $)($ Height $)$

$$
=\left(26 \mathrm{~cm}^{2}\right)(10 \mathrm{~cm})
$$

$$
=260 \mathrm{~cm}^{3}
$$

(4) $\mathrm{V} \quad=\quad \mathrm{V}$ of cylinder +V of box

$$
\begin{aligned}
& =(\text { Area of base of cylinder }) \cdot(\text { height of cylinder })+(\text { Area of base of box }) \cdot(\text { height of box }) \\
& =(\text { Area of cylinder's circular base }) \cdot(\text { cylinder's height })+\text { (Area of box base }) \cdot(\text { box height }) \\
& =\pi(10 \mathrm{~m})^{2} \cdot(6 \mathrm{~m})+(12 \mathrm{~m})(35 \mathrm{~m}) \cdot(24 \mathrm{~m}) \\
& =(600 \pi+10080) \mathrm{m}^{3}
\end{aligned}
$$

[^0]: * (There are no spherical surfaces in this structure.)

