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Abstract—We study fast decodability for general rate space-
time block codes. We derive bounds on the number of generators
that can be in mutually orthogonal groups and use these to show
that that the ML decoding complexity of a full-rate n×n space-
time block code is unfortunately quite high: at least of the order
of ∣S∣n2

+1, where S is the effective real constellation. We also
show that g-group decodability is not possible for full-rate codes.

Index Terms—Fast-decodability, space-time block codes, skew-
Hermitian matrices.

I. INTRODUCTION

The transmission of a space-time block code consisting
of elements of n × n matrices in Mn×n(C) is modelled by
considering points on a lattice inside R2n2

. When 2l is the
real dimension of the lattice, the complexity of Maximum
Likelihood (ML) decoding by brute force checking of all 2l-
tuples is ∣S∣2l, where S is the effective real alphabet in use.
Efforts to improve on this decoding complexity have initiated
a search for codes with reduced decoding complexity [1],
which have been a subject of research since, for instance
[2]–[9]. Roughly speaking, the improvement on the decoding
complexity is achieved when for given values in a (possibly
empty) subset of information symbols, the complement can
be partitioned into groups which are decoded independently
of one another. The authors of [3] give a sufficient condition,
which we refer to as mutual orthogonality, on the generating
matrices of the code, which guarantees the existence of such a
partitioning into independently decodable symbols regardless
of the channel matrix H . In this paper we prove that this
mutual orthogonality condition is not only sufficient but indeed
necessary, in the sense that it must be satisfied if the partitions
of the information symbols are to be decoded independently
for any matrix H (see also Remark 1 ahead). This leads
us to formulate a new definition of fast decodability which
is intrinsic to the code as it involves solely the (mutual
orthogonality) properties of the generating matrices of the
code, and does not depend on the channel matrix H . We then
prove the equivalence of this new definition to the current
definition [3], which does depend implicitly on the channel
matrix H .

The necessity of the mutual orthogonality criterion for
fast decodability allows us to analyze lower bounds on ML
decoding complexity of full-rate (l = n2, l as above) space-
time block codes (Section IV). Using only the elementary
fact that the dimension of the R-space of skew-Hermitian

matrices is n2, we find that the lower bound on ML decoding
complexity is of the order ∣S∣n

2+1, which is unfortunately quite
high. Further, we show that in fact g-group decodability (where
the information symbols are completely partitioned into proper
independently decodable groups) is not possible for full-rate
codes.

This paper is organized as follows. We give the system
model and the background on decoding in Section II. We prove
the necessity of the mutual orthogonality condition for fast-
decodability in Section III, and then propose a new definition
of fast (lattice) decodability independent of the channel matrix;
we also demonstrate its equivalence to the current definition.
Finally, we establish our results on lower bounds on ML
decoding complexity and impossibility of g-group decodability
for full-rate codes in Section IV

II. SYSTEM MODEL AND MAXIMUM LIKELIHOOD
DECODING

We consider transmission over a quasi-static Rayleigh fad-
ing channel with perfect channel state information at the
receiver. We assume that the number of receive antennas and
the number of transmit antennas are the same, namely n.

The received codeword Y is given by

Y =HX +N (1)

where the codeword X , the channel matrix H and the noise
matrix N are all n×n complex valued matrices, i.e., elements
of Mn×n(C), with the assumption that the entries of H
are i.i.d. circularly symmetric complex Gaussian with zero
mean and variance 1, and the entries of N are i.i.d. complex
Gaussian with zero mean and variance N0.

Each codeword X is represented as X = ∑
2l
i=1 siAi, in terms

of generating matrices Ai weighted by information symbols
si which arise from the effective real alphabet S obtained
by splitting each complex symbol into its real and imaginary
parts. The generating matrices Ai, also referred to as a
basis of the code, are fixed R-linearly independent complex
valued matrices. We assume that the generating matrices are
all invertible, which is not a significant constraint from the
viewpoint of diversity. Maximum-likelihood (ML) decoding
amounts to finding the information symbols s1, . . . , s2l that
result in a codeword X = ∑

2l
i=1 siAi which minimizes the

squared Frobenius norm

∣∣Y −HX ∣∣2F . (2)



The matrices appearing in Equation 1 are first converted to
vectors in real space via the map

VecR ∶ Mn×n → Cn
2

→ R2n2

which first stacks the columns of a matrix to obtain a vector
in Cn

2

and then separates each complex entry into its real and
imaginary parts to obtain a vector in R2n2

. We have

VecR(Y ) =
2l

∑
j=1

sjVecR(HAj) +VecR(N).

Given a channel matrix H , we define the matrix T =

T (H) ∈ M2n2×2l(R) to be the real matrix whose j-th column
is VecR(HAj). Then we have

VecR(
2l

∑
j=1

sjHAj) = T
⎛
⎜
⎝

s1
⋮

s2l

⎞
⎟
⎠
.

We can view T as the basis matrix for the 2l-dimensional
lattice in R2n2

from which points are transmitted. Letting s
denote the transpose of (s1, . . . , s2l), the decoding problem
now becomes to find an information vector s which minimizes
the Euclidean distance

∣VecR(Y ) − T s∣ (3)

of vectors in R2n2

.

III. FAST LATTICE DECODABILITY

When a code has no special structure, the number of
computations needed in order to minimize the distance in
Equation (3) above is ∣S∣2l. Several authors [1], [3] studied
improved lattice decodability of space-time block codes by
considering a QR decomposition of the transmitted lattice
matrix T in Equation 3 above, and rewriting Equation 3 as

Q∗VecR(Y ) = R ⋅ s +Q∗VecR(N). (4)

Since Q∗ is unitary, the new noise vector Q∗VecR(N) is still
i.i.d. real Gaussian, so the maximum likelihood estimate for s
is given by minimizing ∣Q∗VecR(Y ) −R ⋅ s∣. The location of
zero blocks in the R matrix indicates which symbols si can
be decoded independently of one another. Producing a fast
decodable code was accomplished [2], [3] by choosing the
basis matrices Ai satisfying a mutual orthogonality condition
(see Definition 1 below), which suffices to guarantee that the
matrix R has a certain zero block structure, regardless of
the channel matrix H on which T and hence R depend. We
start by showing the necessity of the aforementioned mutual
orthogonality condition on Ai. This leads us to an alternative
definition of fast decodability which depends only on mutual
orthogonality properties of the generating matrices of the code,
and does not depend on channel matrix H .

Definition 1. We say that two complex matrices, A,B are
mutually orthogonal if AB∗ +BA∗ = 0.

The reason for the choice of this term is because, as we
show in the following theorem, two basis matrices Ai and

Aj satisfy AiA
∗
j + AjA

∗
i = 0 if and only if the i-th and j-

th columns of T (H) for any H are mutually orthogonal as
vectors in R2n2

. Although our proof is new, see Remark 1
ahead.

Theorem 1. The i-th and j-th columns of T = T (H) are
orthogonal as vectors in R2n2

for all channel matrices H if
and only if the basis matrices Ai satisfy AiA∗

j +AjA
∗
i = 0.

Proof. It is elementary that the dot product VecR(A)⋅VecR(B)
equals Re (Tr(AB∗)) for any matrices A,B. It follows that
orthogonality of the i-th and j-th columns of T is equivalent
to the condition Re (Tr((HAi)(HAj)∗)) = 0. Also, note that
Tr((HAi)(HAj)∗) = Tr(HAiA∗

jH
∗) = Tr((AiA∗

j )(H
∗H)),

where the second equality is because Tr(XY ) = Tr(Y X) for
two matrices X and Y .

Assume that AiA
∗
j + AjA

∗
i = 0 for i ≠ j. Then

AiA
∗
j is skew Hermitian, while H∗H is of course Hermi-

tian. If M is skew Hermitian and N is Hermitian, then
note that (MN)∗ = N∗M∗ = −NM . Since for any
matrix X we have Re(Tr(X)) = Re(Tr(X∗)), we find
that for X = MN , Re(Tr(MN)) = Re(Tr((MN)∗)) =

Re(Tr(−NM)) = −Re(Tr(NM)) = −Re(Tr(MN)). It fol-
lows that Re(Tr(MN)) = 0. In particular, for M = AiA

∗
j

and N = H∗H , we find 0 = Re (Tr((AiA∗
j )(H

∗H))) =

Re (Tr((HAi)(A∗
jH

∗))) = Re (Tr((HAi)(HAj)∗)).
Now assume that the trace condition holds. We write this

as Re (Tr((AiA∗
j )(H

∗H))) = 0 for all matrices H . Write M
for AiA∗

j . We wish to show that M is skew Hermitian. The
matrix Ek,k that has 1 in the (k, k) slot and zeros elsewhere
satisfies E∗

k,kEk,k = Ek,k. Choosing H = Ek,k, we find that
the matrix MH∗H =MEk,k will have the k-th column of M
in the k-th column, and zeros elsewhere. The trace condition
now shows that the (k, k) element of M is purely imaginary.
We next need to show that ml,k = −mk,l for k ≠ l, where
we have written mi,j for the (i, j)-th entry of M . Computing
directly, we find the following relations hold (where Ei,j has
1 in the (i, j) slot and zeros everywhere else):

Ek,k +Ek,l +El,k +El,l = (Ek,k +El,k) ⋅ (Ek,k +Ek,l)

Ek,k − ıEk,l + ıEl,k +El,l = (Ek,k + ıEl,k) ⋅ (Ek,k − ıEk,l)

Thus, each of the matrices on the left sides of the two
equations above can be written as H∗H , where H is the
second factor on the right. Again computing directly, we find
that M ⋅(Ek,k+Ek,l+El,k+El,l) has mk,k+mk,l in the (k, k)
slot and ml,k +ml,l in the (l, l) slot, and zeros elsewhere in
the diagonal. Hence, Re(Tr(M ⋅ (Ek,k +Ek,l +El,k +El,l))) =
Re(mk,k+mk,l+ml,k+ml,l). Since we have already seen that
the diagonal elements of M are purely imaginary, we find
Re(mk,l +ml,k) = 0. Similarly, we find Re(Tr(M ⋅ (Ek,k −
ıEk,l + ıEl,k + El,l))) = Re(mk,k + ımk,l − ıml,k + ml,l).
Once again, because the diagonal elements of M are purely
imaginary, we find Im(mk,l −ml,k) = 0. These two together
show that ml,k = −mk,l for k ≠ l. Together with the fact that



the diagonal elements of M are purely imaginary, we find
M = AiA

∗
j is skew Hermitian, as desired.

Remark 1. As mentioned in Section I, the sufficiency of the
condition AiA∗

j +AjA
∗
i = 0 for orthogonality of the columns

of T , and hence for fast decodability, was already considered
before ( [7, Theorem 2], [2, Theorem 1]). What is new here
is the necessity of the condition. It is the consequences of
the necessity that enables us to analyze lower bounds on
fast decodability in the section ahead. We should point out
however, that we noticed after we proved our results that the
authors of [2] also mention the necessity of this condition.
However, they do not give a proof of the necessity in that
paper. Tracking this further, we discovered that the authors
of [10] have actually provided a proof of this result. Their
proof is by an explicit computation. Indeed, they write down
the entries of T (H), blockwise, in terms of the matrices H
and Ai, and compute T (H)∗T (H). From the derived block
structure of T (H)∗T (H) they read off the necessity of the
mutual orthogonality. This is of course very different from our
approach.

The theorem above allows us to rephrase orthogonality
properties among columns of the matrix T (H) in terms
of mutual orthogonality of generating matrices of the code,
independently of H . Thanks to that, we can now define fast
decodability using only the properties of generating matrices
of the code, independent of the channel matrix H .

Definition 2. [cf. [3, Definition 4]] We will say that the space-
time block code defined by the matrices X = ∑

2l
i=1 siAi admits

fast (lattice) decodability if for g ≥ 2 there exist disjoint subsets
Γ1, . . . , Γg,Γg+1, with Γg+1 possibly empty, of cardinalities
n1, . . . , ng , ng+1 respectively, whose union is {1, . . . ,2l}, such
that for all u ∈ Γi and v ∈ Γj (1 ≤ i < j ≤ g), the generating
matrices Au,Av are mutually orthogonal.

Remark 2. Given a code that admits fast (lattice) decodability,
we can define a permutation π ∶ {1, . . . ,2l} → Γ1 ∪ . . . ∪ Γg ∪
Γg+1, which sends the first n1 elements {1, . . . , n1} to Γ1, the
next n2 elements {n1+1, . . . , n1+n2} to Γ2 and so on, where
ni = ∣Γi∣ for i = 1, . . . , g + 1. Given such a permutation π,
we write Tπ for the matrix whose i-th column is the π(i)-th
column of T , namely, VecR(HAπ(i)); note that Tπ = Tπ(H)
depends on H .

Current definition of fast decodability given in [3, Definition
4] depends on the structure of the matrix R arising from the
QR decomposition of T , which invokes the channel matrix H ,
and implicitly requires that matrix R has the block structure
given below in (5). We show below that the two definitions
are equivalent:

Proposition 1. The space-time block code X = ∑
2l
i=1 siAi

admits fast (lattice) decodability as per Definition 2 if and only
if for all channel matrices H , there exists a permutation π of
the index set {1, . . . ,2l}, integers g ≥ 2, ni ≥ 1 (i = 1, . . . , g),
and ng+1 ≥ 0, with n1 + ⋯ + ng+1 = 2l, such that the matrix

R obtained by doing a QR decomposition on Tπ = Tπ(H)
by doing a Gram-Schmidt orthogonalization in the order first
column, then second column, and so on, has the special block
form below:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B1 N1

B2 N2

⋱ N3

Bg Ng
Ng+1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

for some matrices B1, . . . , Bg , and N1, . . . , Ng+1. Here, all
empty spaces are filled by zeros, the Bi are of size ni×ni and
Ng+1 is of size ng+1 × ng+1.

Before we prove this, we remark in more detail why
previous authors have been interested in the special form
of R above: On applying the permutation π to Equation
(3), we get VecR(Y ) = Tπ ⋅ sπ + VecR(N), and then, as in
the beginning of this section, premultiplying by Q∗ we find
Q∗VecR(Y ) = R ⋅ sπ +Q

∗VecR(N). It is clear from the block
structure of the matrix R that after fixing the values of the last
ng+1 variables in sπ , the remaining variables can be decoded
in g parallel steps, the i-th step involving ni variables. The
worst-case decoding complexity for this system is then of the
order ∣S∣ng+1+maxni . This is in contrast to the complexity of
∣S∣2l if the matrix R has no special structure.

Proof. If X is fast decodable as per Definition 2, then as
described in Remark 2, the subsets Γ1, . . . ,Γg,Γg+1 provide
a permutation π of {1, . . . ,2l}, and integers g ≥ 2, n1,
. . . , ng, ng+1 with the properties described.

Definition 2 together with Theorem 1 tell us that every
column of Tπ indexed by elements of π−1(Γi) is orthogonal
to every column indexed by π−1(Γj) (1 ≤ i < j ≤ g). It follows
immediately that on applying a QR decomposition to Tπ in the
order first column, then second column, etc., that the R matrix,
which results from the Gram-Schmidt orthogonalizations of
the columns of Tπ in this order, will have the property that
the columns indexed by π−1(Γi) will be perpendicular to those
indexed by π−1(Γj). (This can be seen easily from how the
Gram-Schmidt process works, but this can also be checked
from the explicit form of the matrix R obtained from this
Gram-Schmidt orthogonalization, described for instance in [1,
Section III] or [7, Section VI].)

As for the other direction, assume that for all channel
matrices H there is a permutation π of {1, . . . ,2l} and integers
g ≥ 2, and ni (i = 1, . . . , g + 1) with n1 +⋯ + ng+1 = 2l, such
that Tπ = QR, where Q is unitary and R has the form as in
Equation (5) above. Define the sets Γi in terms of the integers
ni so that Γ1 = π({1, . . . , n1}) is the image under π of the
first n1 elements {1, . . . , n1}, Γ2 is the image of the next n2
elements, and so on. It is clear from the block form of R that
if π(u) ∈ Γi and π(v) ∈ Γj (1 ≤ i < j ≤ 2l), then u-th and
v-th columns of R are orthogonal as vectors in R2n2

. Since
Q is unitary, the same holds for the matrix Tπ . Equivalently,



the π(u)-th and π(v)-th columns of T are orthogonal for all
H . Thus, by Theorem 1, Aπ(u) and Aπ(v) are mutually
orthogonal, so X is fast decodable as per Definition 2.

We summarize what we have shown in the next corollary:

Corollary 2. The following are equivalent for disjoint subsets
Γi,Γj ⊂ {1, . . . ,2l}:

● for all u ∈ Γi and v ∈ Γj AuA
∗
v +AvA

∗
u = 0.

● for all u ∈ Γi and v ∈ Γj , the u-th and v-th columns of
T = T (H) are orthogonal as real vectors for any H .

● there exists a permutation on the index set {1, . . . ,2l}
so that such that the matrix R arising as in the state-
ment of Proposition 1 has a zero block in the entries
(π−1(Γi), π−1(Γj)) and (π−1(Γj), π−1(Γi)).

Corollary 3. The Definition 2 is equivalent to one given in
[3, Definition 4].

Definition 3. We say that the code X = ∑
2l
i=1 siAi is g-group

decodable (g ≥ 2) if it is fast decodable for this g (Definition
2) and if the set Γg+1 in Definition 2 is empty, so the matrix
R of Proposition 1 has a block-diagonal form.

IV. BOUNDS ON DECODING COMPLEXITY FOR FULL-RATE
CODES

In this section, we will analyze the mutual orthogonality
condition AiA∗

j +AjA
∗
i = 0 of Theorem 1 and show that for

full-rate codes, the best possible decoding complexity is not
better than ∣S∣n

2+1, and that g-group decoding is in fact not
possible for full-rate codes.

Theorem 2. There can be at most n2 − 1 R-linearly indepen-
dent matrices inMn×n(C) that are both skew-Hermitian and
pairwise mutually orthogonal.

Proof. For, suppose to the contrary that A1, . . . ,An2 were R-
linearly independent, skew-Hermitian, and mutually orthog-
onal. The matrix ıIn is skew-Hermitian. Suppose first that
one of these Ai, say A1, is an R-multiple of ıIn. This is
already a contradiction, since A1A

∗
2 is skew-Hermitian by the

mutual orthogonality condition, but A1A
∗
2 is a real multiple

of ıA∗
2 and is therefore Hermitian. Now suppose that no Ai is

an R-multiple of ıIn. The matrix ıIn, being skew-Hermitian,
can be written as a linear combination of these matrices Ai
since they form a basis for the skew-Hermitian matrices, so
ıIn = ∑ajAj for real aj . Now A1 is not a real multiple
of ıIn by assumption. Consider ıA∗

1 . This is Hermitian. On
the other hand, (∑ajAj)A∗

1 = a1A1A
∗
1 +(∑ajAj)A

∗
1 , where

this second sum runs from j = 2 onwards. But for j = 2
onwards, AjA∗

1 is skew-Hermitian by the mutual orthogonality
condition, while both ıA∗

1 and a1A1A
∗
1 are Hermitian. For this

to happen, (∑ajAj)A∗
1 , where the sum is over j ≥ 2, must be

zero, and ıA∗
1 must equal a1A1A

∗
1 . On canceling A∗

1 (recall
our assumption that the basis matrices are invertible), we find
that A1 is a multiple of ıIn, contradiction.

Example 1. In the 2 × 2 matrices M2(C) over the complex

numbers C, consider the three matrices A1 = (
ı 0
0 −ı

),

A2 = (
0 −1
1 0

), and A3 = (
0 −ı
−ı 0

). These three matrices

are R-linearly independent, skew-Hermitian, and pairwise mu-
tually orthogonal matrices. Together with the identity matrix

I = (
1 0
0 1

), they form a C-basis for M2(C), and as can

be checked, no C-linear combination of I , A1, A2, and A3 is
both skew-Hermitian and mutually orthogonal to A1, A2, and
A3. Thus, the 22 − 1 matrices A1, A2, and A3 exemplify the
contention of this theorem.

We get a quick corollary:

Corollary 4. For a space-time block code generated by
invertible n × n matrices, the maximum number of groups g
in the notation of Definition 2 is n2.

Proof. If the number of groups is more than n2, then we can
find n2 + 1 matrices that are R-linearly independent and mu-
tually orthogonal. Note that if matrices X and Y are mutually
orthogonal, then so are MX and MY for any matrix M , as
can be easily seen. Thus, if A is one of the n2 + 1 matrices,
and C and D are any two of the remaining n2 matrices,
then taking M = A−1, we find In and A−1C are mutually
orthogonal, which is to say that A−1C is skew-Hermitian.
Moreover, A−1C and A−1D are mutually orthogonal. Thus, we
find n2 skew-Hermitian and mutually orthogonal R-linearly
independent matrices. But this contradicts Theorem 2.

Theorem 3. If any g − 1 of the groups Γ1, . . . ,Γg from
Definition 2 together have at least n2 matrices in them, then
the remaining group can only have one matrix in it and those
g − 1 groups must then have exactly n2 elements in them.

Proof. Say the last g − 1 groups, for simplicity, have at least
n2 matrices, and suppose that the first group Γ1 has at least
two elements, call them A and B. By multiplying throughout
by A−1, we can assume that the two elements are In and
B, without destroying the mutual orthogonality, as in the
proof of Corollary 4 above. Note that after multiplying by
A−1, the matrices in the remaining groups all become skew-
Hermitian, also as in the proof above. Because there are at least
n2 skew-Hermitian (R-linearly independent) matrices, we find
that there must be exactly n2 of them because the dimension
of the skew-Hermitian matrices is n2. Call these n2 matrices
C1, . . . ,Cn2 . We must have ıIn in the linear span of these Ci
because ıIn is also skew-Hermitian. Thus, ıIn = ∑aiCi. Now
multiply on the right by B∗, where B is as above. Each of
the products CiB∗ is skew-Hermitian because of the mutual
orthogonality condition that requires CiB∗ +BC∗

i = 0. Thus,
ıB∗ is also skew-Hermitian. It follows from this that B∗ is
Hermitian, i.e., B is Hermitian. But now, we consider CiB∗

for any i. The mutual orthogonality condition says that this is
skew-Hermitian, so it equals −(BC∗

i ), and since C∗
i is skew-

Hermitian, this equals BCi. On the other hand, we just saw
that B is Hermitian, so CiB

∗ = CiB. Thus, B commutes
with all Ci, i.e, with all skew-Hermitian matrices. But this
means B commutes with all the Hermitian matrices as well,
because every Hermitian matrix is of the form ı times a skew-



Hermitian matrix. Since every matrix is a sum of a Hermitian
and a skew-Hermitian matrix, B commutes with all matrices,
and is Hermitian, so it must be real scalar. But this violates
the R-linear independence of In and B.

Corollary 5. If, as in the notation of Definition 2, ni ≥ 2 for
any i, then the total number of matrices in the g groups is at
most n2+ni−1. In particular, if k = minni ≥ 2, then the total
number is at most n2 − 1 + k.

Proof. Since the i-th group has size ni ≥ 2, the remaining
groups must have less than n2 matrices in them, or else, the
lemma above will be violated. It follows that there at most
n2 + ni − 1 matrices in the g groups.

We now come to our main result on decoding complexity.

Theorem 4. The decoding complexity of a full-rate space-time
block code X = ∑

2n2

i=1 siAi is not better than ∣S∣n
2+1, where

∣S∣ is the size of the effective real constellation.

Proof. Consider the basis matrices Ai: if there are at least two
mutually orthogonal groups, then, then code is fast decodable,
and Proposition 1 tells us the R matrix that comes from T =

T (H) will have the form as in Equation (5). Consider the
integers ni = ∣Γi∣. If any ni ≥ 2, then by Corollary 5, the total
number of matrices in the g groups is at most n2 + ni − 1.
Thus, the subset Γg+1 will be of size at least (n2 − ni + 1).
Having conditioned the last group of symbols, decoding the
first g groups of symbols has a decoding complexity at least
∣S∣ni , so we find that the decoding complexity must be at least
∣S∣n

2−ni+1 ⋅ ∣S∣ni = ∣S∣n
2+1. If on the other hand all ni = 1, then

we have g groups of size 1 each. By Corollary 4, g ≤ n2, so
Γg+1 is of size at least n2. Thus the decoding complexity is
at least ∣S∣n

2

⋅ ∣S∣ = ∣S∣n
2+1.

Example 2. Silver Code: This 2 × 2 code for four com-
plex signal elements s1, s2, s3, s4 is given by X(s1, s2) +

TX(z1, z2), where for any a and b, X(a, b) = (
a −b∗

b a∗ ),

and T = (
1 0
0 −1

). The signal elements s3 and s4 are

related to z1 and z2 by (z1, z2)T = M(s3, s4)
T , where

M =
1
√

7
(

1 + ı −1 + 2ı
1 + 2ı 1 − ı

). This code has a decoding

complexity of at most ∣S∣5 (see [3] for instance). This example
thus shows that our bound n2+1 is strict. Moreover, Theorem 4
shows that the Silver code cannot have a lower lattice decoding
complexity than the known ∣S∣5.

Theorem 5. It is not possible to arrange for the full-rate
space-time block code X = ∑

2n2

i=1 siAi to have g-group decod-
ability for any g.

Proof. Assume the code is g-group decodable. First suppose
some ni ≥ 2. Then by Corollary 5, the total number of matrices
in the g groups, namely 2n2, is bounded above by n2+ni−1.
Thus, ni ≥ n2 + 1. But this violates Theorem 3, since the
total number in any g − 1 groups can at most be n2. Thus, all

groups must have just one matrix each. But by Corollary 4,
the total number of groups is at most n2, so we find 2n2 ≤ n2,
a contradiction. Hence g-group decodability is not possible for
full-rate codes.

V. CONCLUSION

We first give a proof in this paper of the necessity of the
mutual orthogonality condition AiA∗

j +AjA
∗
i = 0 of generators

of a space-time block code for fast decoding, which allows
us to propose a more intrinsic definition of fast decodability
based on the generators alone. We then use this necessary
orthogonality to provide strict lower bounds on the decoding
complexity of space-time block codes. Indeed we prove that
full-rate linear codes subject only to the constraint that their
generators are invertible will unfortunately suffer from high
ML decoding complexity. We also show that full-rate codes
cannot be g-group decodable. This work is part of results to
appear in a full length paper, which contains sharper bounds
on the maximum number of groups g in codes admitting fast
lattice decodability.
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