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Abstract. We study the following question in this paper: If p is
a prime, m a positive integer, and S = (sm, . . . , s1) an arbitrary se-
quence consisting of “Y ”or “N”, does there exist a division algebra
of exponent pm over a valued field (F, v) such that the underlying
division algebra of the tensor power D⊗pi

has a valuation extend-
ing v if and only if sm−i = Y ? We show that if such an algebra
exists, then its index must be bounded below by a power of p

that depends on both m and S, and we then answer the question
affirmatively by constructing such an algebra of minimal index.

1. Introduction

Let (F, v) be a valued field and let D be a finite-dimensional F -

central division algebra. It is known that v may or may not extend

to D; moreover, the conditions under which v extends to D are well-

understood (see [3] and [5]). The following question however does not

seem to have been studied: Denoting by Dr the underlying division

algebra of the tensor product
⊗r

i=1D, is there any connection between

whether v extends to D and whether v extends to Dr? We may restrict

attention to division algebras whose exponent is pm for some prime p
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and positive integer m (see Remark 3.6 below), and we may further re-

strict our attention to powers Dr where r is of the form pi (see Corollary

2.2 below). Given D of exponent pm, we define the valuation sequence

of D to be the sequence (sm, . . . , s1), where sm−i = Y if Dpi
is valued,

and sm−i = N otherwise. Our question now becomes the following:

If S = (sm, . . . , s1) is an arbitrary sequence consisting of “Y ”or “N”,

does there exist a division algebra of exponent pm over a valued field

(F, v) such that the valuation sequence of D is S?

We first show in this paper that if such a D exists, then its index

must be bounded below by a power of p that depends on both m and

S, and we then answer the question affirmatively by constructing a

division algebra with valuation sequence S having this minimal index.

Similar constructions of algebras of index higher than the minimum are

then easy generalizations of this construction (Remark 3.5).

Our field F will be a rational function field over a field k containing

all pr-th roots of unity ωr (r = 1, 2, . . . ), and our division algebras will

be symbol algebras (a, b; pn, ωn, F ); this is the algebra generated by

elements i and j, and subject to the relations

ip
n

= a, jpn

= b, ji = ωnij.

2. Preliminaries

Let k be a field, let a1, . . . , an be elements of k (some or all ai possibly

equal to zero), and let x1, . . . , xn be a set of indeterminates over k.

We recall the definition of the (x1 − a1, . . . , xn − an)-adic valuation on

k(x1, . . . , xn): If n = 1, then the (x1 − a1)-adic valuation on k(x1)

is the discrete valuation corresponding to the height one prime ideal

(x1 − a1) of k[x1]. For n > 1, the (x1 − a1, . . . , xn − an)-adic valuation

on k(x1, . . . , xn) is the composite of the (xn − an)-adic valuation on

k(x1, . . . , xn−1)(xn) with the (x1 − a1, . . . , xn−1 − an−1)-adic valuation

on the residue field k(x1, . . . , xn−1). The residue field of this valuation

is k while its value group is Zn ordered anti-lexicographically.

We also recall that if (F, v) is a valued field and if x1, . . . , xn are a

set of indeterminates over F , then there is a natural extension ṽ of v to

the function field F (x1, . . . , xn), defined on polynomials f(x1, . . . , xn)

by setting ṽ(f) to be the minimum of the values of the coefficients of

f , and extended to the whole field by ṽ(f/g) = ṽ(f) − ṽ(g). We will

refer to this extension as the standard extension of v to F (x1, . . . , xn).
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The value group of ṽ is the same as that of v, while the residue field is

the function field in n variables over the residue F of F under v.

Given a field F with a fixed valuation v and given an F -central

division algebra D, we will say D is valued if v extends to D. If Fh

is a Henselization of (F, v), we recall that D is valued if and only if

Dh := D ⊗F Fh is a division algebra [3, Theorem 2] (and, although we

will not need this, if and only if v extends uniquely to every field K

with F ⊆ K ⊆ D, see [5]).

Suppose that F , v, and D are as above, and that v extends to D. We

describe two extensions of (D, v) to D ⊗F F (x). Both are well-known

and can be directly verified. First, if ṽ is the standard extension of v

to F (x), then ṽ extends to D⊗F F (x) by the formula ṽ(
∑

(di⊗ xi)) =

mini{v(di)}. The value group of (D ⊗F F (x), ṽ) equals that of (D, v),

while the residue is D ⊗F F (x), where D and F are, respectively, the

residues of (D, v) and (F, v). Next, if ṽ is the x-adic valuation on F (x)

composed with the valuation v on F , then ṽ extends to D⊗F F (x) by

the formula ṽ(
∑

(di ⊗ xi)) = mini{v(di), i}: here, the value group of

(D ⊗F F (x), ṽ) is ΓD × Z ordered anti-lexicographically, where ΓD is

the value group of (D, v). The residue is simply D.

We denote by ind(D) and exp(D) the index and exponent of a divi-

sion algebra D.

Lemma 2.1. Let (F, v) be a valued field and let D be an F -central

division algebra of exponent r. If i is an integer with gcd(i, r) = 1,

then D is valued if and only if Di is valued.

Proof. We recall that if gcd(i, r) = 1, then ind(D) = ind(Di). Fur-

thermore, (Dh)
i is the underlying division algebra of Di ⊗F Fh, and i

is also relatively prime to the exponent of Dh. Thus, if D is valued,

ind(D) = ind(Dh), so

ind(Di) = ind(D) = ind(Dh) = ind((Dh)
i) = ind(Di ⊗F Fh).

Hence Di ⊗F Fh is a division algebra, so Di is valued. The converse

is clear since D = (Di)j for some j with gcd(j, r) = 1; this is a conse-

quence of the equation gcd(i, r) = 1. �

We get the following immediately, which shows that while consider-

ing p-primary algebras, where p is a prime, we may restrict our question

to the powers Dpi
:
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Corollary 2.2. Let p be a prime, and suppose that exp(D) = pm. If

i, j are positive integers such that j is not divisible by p, then Djpi
is

valued if and only if Dpi
is valued.

From now on, p will denote a fixed prime.

We next determine the minimal index of a p-primary division algebra

having a valuation sequence S = (sm, . . . , s1). If si = N and si−1 = Y

for some i, we will refer to the pair (si, si−1) as an NY subpattern of S

(a similar definition applies to Y N subpatterns.). Recall that if D is a

p-primary division algebra which is not split, then ind(D) ≥ p ind(Dp)

([1, p.76, Lemma 7]).

Proposition 2.3. Let S = (sm, . . . , s1) be a sequence of Y ’s and N ’s,

and let δ be the number of NY subpatterns of S. If D is a p-primary

division algebra with valuation sequence S, then ind(D) ≥ pm+δ.

Proof. We prove this by induction on δ. The case δ = 0 is obvious.

Suppose the result holds for all sequences with at most δ − 1 NY

subpatterns. Since the given valuation sequence contains exactly δ NY

subpatterns, we may write the pattern in the form · · ·NY · · · = · · ·NT ,

where T is a sequence whose left-most term is Y and which has exactly

δ − 1 NY subpatterns. Let s be the length of T . Then T is the

valuation sequence of Dpm−s
, so by induction, ind(Dpm−s

) ≥ ps+δ−1.

Let E = Dpm−s−1
. Then, since E has a pattern NY · · · , the algebra E

is not valued, while Ep = Dpm−s
is valued. Thus, we see that ind(E) >

ind(Eh) while ind(Ep) = ind(Ep
h). Since ind(Eh) ≥ p ind(Ep

h), as Eh is

not split, we have

ind(E) > ind(Eh) ≥ p ind(Ep
h) = p ind(Ep) = p ind(Dpm−s

) ≥ ps+δ,

so ind(E) ≥ ps+1+δ. Finally, by repeated applications of [1, p.76,

Lemma 7], we have ind(D) ≥ pm−s−1 ind(Dpm−s−1
) = pm−s−1 ind(E)) ≥

pm−s−1ps+1+δ = pm+δ, as desired. �

We refer to pm+δ as the minimal index of an algebra with valuation

sequence S.

The following easy result will be useful in our construction.

Lemma 2.4. Let F be a field containing a primitive pn+1-th root of

unity ω, and let v be a valuation on F such that the characteristic of the

residue field F does not equal p. Let D = (α, β; pn, ωp, F ), and write
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D1/p for the algebra (α, β; pn+1, ω, F ). Suppose that D is a division

algebra.

Then,

(1) The algebra D1/p is a division algebra.

(2) If D is valued with respect to v, then D1/p is valued with respect

to v.

(3) If β = cpu for some c ∈ F ∗ and 1-unit u, then both D and D1/p

are not valued with respect to v.

Proof. Since (D1/p)p = D, we find ind(D1/p) ≥ p ind(D). Since D is

a division algebra, ind(D)) = pn and so ind(D1/p) ≥ pn+1. It follows

that D1/p is a division algebra. For (2) we work over the Henselization:

If D is valued, then Dh := D ⊗F Fh is a division algebra, so (1) shows

that (D1/p)h is a division algebra, hence D1/p is valued. To prove

(3), we note that because of the assumption about the characteristic

of F , every 1-unit is a pr-th power in Fh for any r. Hence Dh =

(α, cp; pn, ωp, Fh) ∼ (α, c; pn−1, ωp2
, Fh), so ind(Dh) ≤ pn−1 and Dh is

therefore not a division algebra. Similarly, (D1/p)h is not a division

algebra. Thus, both D and D1/p are not valued. �

3. The Construction for Minimal Index

In this section we construct, given a sequence S = (sm, . . . , s1) with δ

NY subpatterns, a valued field (F, v) and an F -central division algebra

D of exponent pm and minimal index pm+δ having valuation sequence

S. We introduce the following notation. Let k be a field containing

primitive pi-th roots of unity ωi for each i = 1, 2, . . . , chosen so that

ωp
i = ωi−1 for all i ≥ 2. For any i ≥ 1, we denote by Si the subsequence

(si, . . . , s1). Furthermore, we let δi be the number of NY subpatterns in

the subsequence Si: thus δ1 = 0 automatically, and δ = δm is the total

number of NY subpatterns in S. Set ni = i + δi, and n = nm = m + δ.

Our example will then have index pn. In addition, we let γi be the

number of Y N subpatterns in the subsequence Si: so again, γ1 = 0

automatically, and γ = γm is the total number of Y N subpatterns in

S.

We define our division algebra inductively as follows: We let F0 =

k(y), where y is an indeterminate, and let v0 be the trivial valuation

on F0. We also let D0 = F0. We let F1 = F0(x), where x is a new

indeterminate and we let v1 be the x-adic valuation on F1: note that v1
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restricts to v0 on F0. If s1 = Y we let D1 be the algebra (y, x; p, w1, F1),

and if s1 = N , we let D1 be the algebra (y, 1 + x; p, w1, F1).

It is standard that in either case D1 is a division algebra: for instance

in both cases, D1 is nicely semiramified (NSR) with respect to the y-

adic valuation on F1 (viewed as the function field in y over k(x); see

[2, Ex. 4.3] for NSR algebras). In the first case, D1 is also NSR with

respect to the x-adic valuation on F1 (so v1 extends to D1). However,

in the second case, the x-adic valuation does not extend to D1 as 1+x

is a 1-unit, by Lemma 2.4 above. Thus, D1 has the valuation sequence

S1 = (s1) with respect to the valuation v1 on F1. Finally, note that

Dp
1 = F1 = D0 ⊗F0 F1.

Now assume that for some i ≥ 2, we have inductively constructed

a valued field (Fi−1, vi−1) that is a purely transcendental extension of

Fi−2 such that vi−1 restricts to vi−2 on Fi−2. Assume, too, that we have

constructed a symbol algebra Di−1 = (y, ai−1; p
ni−1 , ωni−1

, Fi−1) with

center Fi−1 which is a division algebra (and hence of index pni−1), and

assume that if si−1 = N , the slot ai−1 is of the form a p-th power times

a 1-unit with respect to vi−1. Assume that Dp
i−1 = Di−2⊗Fi−2

Fi−1, and

finally, assume that Di−1 has the valuation sequence Si−1 with respect

to vi−1. Recalling the definition of D
1/p
i−1 from the statement of Lemma

2.4, we define Fi, vi, and Di as follows:

Case 1: (si, si−1) = (Y, Y ) or (si, si−1) = (N, N). (Note that δi =

δi−1, γi = γi−1, and ni = ni−1 +1.) We define Fi = Fi−1, vi = vi−1, and

Di = D
1/p
i−1.

Case 2: (si, si−1) = (Y,N). (Note that δi = δi−1, γi = γi−1 + 1, and

ni = ni−1 +1.) We let Zγi
= {zγi,0, zγi,1, . . . , zγi,pni−1−1} be a new set of

indeterminates, and we define Fi = Fi−1(Zγi
). We define vi to be the

standard extension of vi−1 to Fi. We let uγi
be the norm from Fi(α) to

Fi of the element zγi,0 + zγi,1α+ · · ·+ zγi,pni−1−1α
pni−1−1, where we have

written α for pni−1√y. We define Di to be D
1/p
i−1⊗Fi−1

(y, uγi
; pni , ωni

, Fi).

Case 3: (si, si−1) = (N, Y ). (Note that δi = δi−1 + 1, γi = γi−1,

and ni = ni−1 + 2.) We let Wδi
= {wδi,0, wδi,1, . . . , wδi,pni−1−1} be a

new set of indeterminates, and we define Fi = Fi−1(Wδi
). We define

vi to be the composite of the (wδi,1, . . . , wδi,pni−1−1)-adic valuation on

Fi−1(wδi,0) composed with the standard extension of vi−1 to Fi−1(wδi,0).

We let tδi
be the norm from Fi(α) to Fi of the element wδi,0 + wδi,1α +
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· · ·+wδi,pni−1−1α
pni−1−1, where we have written α for pni−1√y. We define

Di to be D
1/p
i−1 ⊗Fi−1

(y, tδi
; pni , ωni

, Fi).

We are now in a position to prove the main theorem of this paper.

Theorem 3.1. The algebra Di defined above is isomorphic to the sym-

bol algebra (y, ai; ωni
, pni , Fi) for suitable ai ∈ Fi, where ai is of the

form a p-th power times a 1-unit with respect to vi in the case where

si = N . Di is a division algebra (and is hence of index pni) and sat-

isfies Dp
i = Di−1 ⊗Fi−1

Fi. Moreover, Di has the valuation sequence Si

with respect to the valuation vi on Fi. In particular, Dm is a division

algebra with exponent pm and valuation sequence S with respect to the

valuation vm on Fm, and has (minimal) index pm+δ.

Proof. Since Di−1 is of the form (y, ai−1; p
ni−1 , ωni−1

, Fi−1), D
1/p
i−1 ⊗Fi−1

Fi is the algebra (y, ai−1; p
ni−1+1, ωni−1+1, Fi). In Case 1 above, since

ni−1 + 1 = ni we find, on taking ai = ai−1, that Di is indeed the

symbol algebra (y, ai; p
ni , ωni

, Fi). In Case 2 as well, ni−1 + 1 = ni,

so D
1/p
i−1 ⊗Fi−1

Fi is the symbol algebra (y, ai−1; p
ni , ωni

, Fi). Coupling

this with the other factor using standard symbol algebra relations, we

find Di is the symbol algebra (y, ai−1uγi
; pni , ωni

, Fi). We may hence

take ai = ai−1uγi
and Di will be in the form described in the statement

of the theorem. Finally, in Case 3, ni−1 + 2 = ni, so D
1/p
i−1 ⊗Fi−1

Fi is

the algebra (y, ai−1; p
ni−1, ωni−1, Fi). But by standard symbol algebra

relations, this is the algebra (y, ap
i−1; p

ni , ωni
, Fi). As in Case 2, coupling

this with the other factor and taking ai = ap
i−1tδi

, we find Di to be in

the form described in the statement.

In the case where (si, si−1) = (N, N), it is clear from the definition

of Di, the inductive assumption about ai−1, and the fact that vi =

vi−1, that ai is a p-th power times a 1-unit with respect to vi. In

the case (si, si−1) = (N, Y ), note that ai = ap
i−1tδi

. The element tδi

can be factored as wpni−1

δi,0
times something of the form 1 plus terms

involving (wδi,1/wδi,0), . . . , (wδi,pni−1−1/wδi,0). Since vi in this case has

been chosen so that wδi,0 has value 0 while all of wδi,1, . . . , wδi,pni−1−1

have positive value, ai is indeed a p-th power times a 1-unit with respect

to vi.

It is clear that Dp
i = Di−1⊗Fi−1

Fi in Case 1. Note that the new fac-

tors (y, uγi
; pni , ωni

, Fi) in Case 2 and (y, tδi
; pni , ωni

, Fi) in Case 3 both

have exponent p, since their p-th powers are (y, uγi
; pni−1, ωni−1, Fi)

and (y, tδi
; pni−1, ωni−1, Fi) respectively, and since both uγi

and tδi
have
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been chosen to be norms from the field Fi( pni−1√y) to Fi. Since the p-th

power of these factors are split, it is clear in both these cases as well

that Dp
i = Di−1 ⊗Fi−1

Fi.

We now wish to prove that Di is a division algebra. By Lemma 2.4

above, we only need to consider Cases 2 and 3 above. Let K be the

function field of the Severi-Brauer variety of D
1/p
i−1, which is a generic

splitting field of D
1/p
i−1. Then K is a regular extension of Fi−1, and

K · Fi = K(Zγi
) in Case 2 and K · Fi = K(Wδi

) in Case 3. Writing L

for K · Fi, it is sufficient to prove that Di ⊗Fi
L is a division algebra.

Observe that Di⊗Fi
L is isomorphic to (y, uγi

; pni , ωni
, L) in Case 2 and

to (y, tδi
; pni , ωni

, L) in Case 3. Note that since K is a regular extension

of Fi−1, y will not be a p-th power in K and the extension L( pm√y)/L

has degree pm for all m. The proof Di is a division algebra in both

Case 2 and Case 3 now follows from:

Proposition 3.2. Let L be a field containing a primitive pm-th root of

unity ωm for all m, and let y ∈ L be such that y is not a p-th power

in L. For a fixed m, let L(U) be the field obtained by adjoining the

new indeterminates U = {u0, u1, . . . , upm−1−1} to L. Let u be the norm

from L(U)(α) to L(U) of the element u0 +u1α + · · ·+upm−1−1α
pm−1−1,

where we have written α for pm−1√y. Then the symbol algebra A =

(y, u; pm, ωm, L(U)) is a division algebra of index pm and exponent p.

Proof. It is known that there exist division algebras of index pm and

exponent p of the form E = (y, b; pm, ωm, L′) with center some field L′

that is purely transcendental over L and linearly disjoint over L from

L(U). (For instance, one may add a new set of indeterminates over L

and consider the algebras in [4]. Note that while y was assumed in [4]

to be transcendental over a subfield of L that contains sufficient roots of

unity, this was not really necessary–the proofs in that paper go through

as long as y is not assumed to be a p-th power, so that the extension

L( pm√y)/L has degree pm for all m.) It is sufficient to prove that

A′ = A⊗L(U)L
′(U) = (y, u; pm, ωm, L′(U)) is a division algebra. Since E

is of exponent p, Ep ∼ (y, b; pm−1, ωm−1, L
′) is split, so b is a norm from

L′(α) to L′ of some element b0+b1α+· · ·+bpm−1−1α
pm−1−1, where α is as

in the statement of the theorem, and the bi are in L′. We now consider

the (u0 − b0, u1 − b1, . . . , upm−1−1 − bpm−1−1)-adic valuation on L′(U),

with valuation ring, say, W . With respect to this valuation, y and u

are units and u = b, so the W -order (y, u; pm, ωm, W ) is an Azumaya
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algebra with residue (y, b; pm, ωm, L′), which is a division algebra by

assumption. By [2, Ex. 2.4(i), Prop. 2.5], A′ is a division algebra, and

hence of index pm. Since Ap = (y, u; pm−1, ωm−1, L(U)) and since u is

a norm from L( pm−1√y) to L(y), Ap is split, so A is of exponent p. �

Continuing with the proof of Theorem 3.1, it remains to be shown

that Di has the valuation sequence Si with respect to the valuation

vi. We first show that Di is valued with respect to vi iff si = Y . For,

if si = N , then we have already seen that the slot ai must be a p-th

power times a 1-unit, and Lemma 2.4 then shows that Di is not valued.

For the other direction, if si = Y and si−1 = Y , then Lemma 2.4 shows

that Di is indeed valued. We are thus left with the (si, si−1) = (Y,N)

situation. We have the following:

Lemma 3.3. Let z = x if s1 = Y and z = 1 + x if s1 = N . Then,

each ai is a product of suitable p-primary powers of the polynomials z,

u1, . . . , uγi
, and t1, . . . , tδi

. In particular, ai can be written as β times a

1-unit with respect to the valuation vi, where β is a product of suitable

p-primary powers of the polynomials z, u1, . . . , uγi
and the monomials

w1,0, . . . , wδi,0 (with the understanding that if s1 = N , then β does not

contain z as a factor.) In the case (si, si−1) = (Y,N), the extension

(Fi)h( pn√ai−1) of the Henselization (Fi)h with respect to vi has residue

which is contained in the field E( pn√u1, . . . , pn√uγi−1
, pn√w1,0, . . . , pn√wδi−1,0),

where E = k(y)(Z1, . . . , Zγi
)(w1,0, . . . , wδi−1,0).

Proof. That ai is a product of suitable p-primary powers of the polyno-

mials z, u1, . . . , uγi
, and t1, . . . , tδi

is clear from the recursive definition

of the algebras Di. (It may be helpful to observe that for a given k ≥ 0,

the factor uk appears in a if there exists a j ≤ i for which γj = k. Sim-

ilar considerations apply for the factors tk.) As noted above, each tδj

can be rewritten as wpnj−1

δj ,0 times a 1-unit, and collecting all such 1-units

together, we find that ai can indeed be factored as β times a 1-unit with

β as described. (Note that if s1 = N , then z = 1 + x, which is a 1-unit

and can be coupled with the other 1-units, so β does not contain z as

a factor if s1 = N .)

To determine the residue of the field (Fi)h( pn√ai−1) in the case (si, si−1) =

(Y, N), note that Fi = k(y)(x)(Z1, . . . , Zγi
)(W1, . . . ,Wδi−1

). The valua-

tion vi may be described as the (x, w1,1, . . . , wδi−1,pni−1−1−1)-adic valua-

tion on F ′
i = k(y)(x)(w1,0, . . . , wδi−1,0) extended in the standard manner

to the purely transcendental extension Fi/F
′
i . The factor β in ai−1 is
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a product of p-primary powers of z, u1, . . . , uγi−1
, and the monomials

w1,0, . . . , wδi−1,0 (with the understanding that z does not appear in β if

s1 = N). Also note that (Fi)h( pn√ai−1) = (Fi)h(
pn√

β) as every 1-unit

is a p-th power. The factors of β described above show that

(Fi)h(
pn
√

β) ⊆ (Fi)h(
pn√

x, pn√
u1, . . . , pn√uγi−1

, pn√wδ1,0, . . . , pn√wδi−1,0)

if s1 = Y , and

(Fi)h(
pn
√

β) ⊆ (Fi)h( pn√
u1, . . . , pn√uγi−1

, pn√wδ1,0, . . . , pn√wδi−1,0)

if s1 = N . The extension (Fi)h( pn√
x)/(Fi)h is totally ramified in the

s1 = Y case, while all other pn-th root extensions are merely lifts of the

corresponding pn-th root extensions over the residue. It follows that

the residue of (Fi)h is contained in the field described in the statement

of the lemma. �

To show that Di is valued, it is sufficient to show that Di remains a

division algebra over (Fi)h( pn√ai−1). But over that field, Di is just the

symbol algebra (y, uγi
; pni , ωni

, (Fi)h( pn√ai−1)). If W is the valuation

ring of (Fi)h( pn√ai−1), then Di contains the W order (y, uγi
; pni , ωni

, W ),

which is an Azumaya algebra with residue (y, uγi
; pni , ωni

, W ), where

we have written W for the residue of (Fi)h( pn√ai−1). If this residue

algebra is a division algebra, then [2, Ex. 2.4(i), Prop. 2.5] would

show that (y, uγi
; pni , ωni

, (Fi)h( pn√ai−1)) is a division algebra. Since

W ⊆ L = E( pn√u1, . . . , pn√uγi−1
, pn√wδ1,0, . . . , pn√wδi−1,0) by Lemma 3.3

above, it is sufficient to show that (y, uγi
; pni , ωni

, L) remains a division

algebra.

Recall that E = k(y)(Z1, . . . , Zγi
)(w1,0, . . . , wδi−1,0) = E ′(Zγi

), where

E ′ = k(y)(Z1, . . . , Zγi−1
)(w1,0, . . . , wδi−1,0). Note that each uj (j ≤ i−1)

is irreducible in the polynomial ring k[y, Z1, . . . , Zγi−1
, w1,0, . . . , wδi−1,0];

this can be seen, for example, by the fact that after adjoining p
nj−1√

y,

the polynomial uj factors into polynomials that are linear in the Z

variables, and that the Galois group of the extension acts transitively

on these linear factors (permuting them cyclically). It now follows from

Kummer theory that y is not a p-th power in L′ = E ′( pn√u1, . . . , pn√uγi−1
,

pn√wδ1,0, . . . , pn√wδi−1,0). Since L = L′(Zγi
), Proposition 3.2 now shows

that (y, uγi
; pni , ωni

, L) is a division algebra, and tracing our arguments

back, we find that Di remains a division algebra over (Fi)h( pn√ai−1),

and hence that Di is valued with respect to vi.
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To show that Di has the valuation sequence Si, now that we have

shown that Di is valued iff si = Y , we use the fact that Dp
i = Di−1⊗Fi−1

Fi. By induction, Di−1 has the valuation sequence Si−1 with respect

to the valuation vi−1 on Fi−1. We wish to show that Di−1⊗Fi−1
Fi also

has the valuation sequence Si−1 with respect to the valuation vi on Fi.

In Case 1 above this is clear since Fi−1 = Fi and vi−1 = vi. For the

other two cases, the result follows from:

Lemma 3.4. Let Fi−1 be as in Cases 2 or 3 above, and let E be any

division algebra with center Fi−1. Then E is valued with respect to vi−1

if and only if Ẽ = E ⊗Fi−1
Fi is valued with respect to vi.

Proof. Note that Fi is a transcendental extension of Fi−1, so Ẽ will

be a division algebra. Note too that vi restricts to vi−1 on Fi−1. If

Ẽ is valued with respect to vi, then the valuation on Ẽ restricts to a

valuation on the subalgebra E, and then this valuation on E restricted

to Fi−1 must be the same as the valuation vi on Fi restricted to Fi−1.

By hypothesis, this is just vi−1, so indeed E is valued with respect to

vi−1.

The other direction follows from the remarks preceding Lemma 2.1.

�

The last statement of the theorem is now clear, and Dm is our desired

algebra, with center the valued field (Fm, vm). �

Remark 3.5. To get an algebra of index higher than the minimum

but exhibiting the same valuation sequence, we may simply tensor

the algebra Dm defined above over Fm with as many degree p sym-

bols of the form (ξi, ηi; p, ω1, Fm({ξi, ηi})) as necessary to increase the

final index—here, the ξi and ηi are new indeterminates. The final

valuation vm would be defined as the (. . . , ξi, ηi, . . . )-adic valuation

on Fm({ξi, ηi}) composed with the valuation vm above on Fm. The

proof that this new algebra has the valuation sequence S is easy,

and follows from the fact that the algebra Dm above has this prop-

erty and that the (. . . , ξi, ηi, . . . )-adic valuation on Fm({ξi, ηi}) extends

to a totally ramified valuation on the tensor product of the symbols

(ξi, ηi; p, ω1, Fm({ξi, ηi})), along with an application of [3, Theorem 1].

Remark 3.6. We consider the situation for index not a prime power.

Suppose that D has index pn1
1 · · · pnr

r , and that D = D1 ⊗F · · · ⊗F Dr

with ind(Di) = pni
i . It is an easy consequence of [3, Cor. 4] that D is
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valued if and only if each Di is valued. Furthermore, for any s, we have

Ds = Ds
1 ⊗F · · · ⊗F Ds

r. We may thus restrict ourselves to algebras of

prime power index.
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