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Abstract: We present some general techniques for constructing full-rank, minimal-delay, rate
at least one Space-Time Block Codes (STBCs) over a variety of signal sets for arbitrary number
of transmit antennas using commutative division algebras (field extensions) as well as using non-
commutative division algebras of the rational field QQ embedded in matrix rings. The first half
of the paper deals with constructions using field extensions of Q. Working with cyclotomic field
extensions, we construct several families of STBCs over a wide range of signal sets that are of
full-rank, minimal-delay and rate at least one appropriate for any number of transmit antennas.
We study the coding gain and capacity of these codes. Using transcendental extensions we
construct arbitrary rate codes that are full-rank for arbitrary number of antennas. Also we
present a method of constructing STBCs using non-cyclotomic field extensions. In the later
half of the paper, we discuss two ways of embedding non-commutative division algebras into
matrices: the left regular representation, and representation over maximal cyclic subfields. The
4 x 4 real orthogonal design is obtained by the left regular representation of Quaternions. The
Alamouti’s code is just a special case of the construction using representation over maximal cyclic
subfields and we observe certain algebraic uniqueness characteristics of it. Also, we discuss a
general principle for constructing cyclic division algebras using the n-th root of a transcendental
element and study the capacity of the STBCs obtained from this construction. Another family
of cyclic division algebras discovered by Brauer is discussed and several examples of STBCs

derived from each of these constructions are presented.

!B.A.Sethuraman is with Dept. of Mathematics, California State University Northridge, CA
91330, U.S.A. and AUKBC Research Center, Anna University—M.I.T. Campus, Chennai 600044, India,
email:al.sethuraman@csun.edu.

?B.S.Rajan and V.Shashidhar are with the Department of Electrical Communication Engineering, Indian Insti-
tute of Science, Bangalore- 560 012, India, emails:bsrajan@ece.iisc.ernet.in, Shashidhar@protocol.ece.iisc.ernet.in.

3This work was partly supported by a generous grant from K.B.Chandrashekhar Family Foundation to
B.A.Sethuraman and by the IISc-DRDO Program on Advanced Research in Mathematical Engineering to
B.S.Rajan.

“The material in this paper was presented in part at International Conference on Communications, New York,
April 2002, IEEE International Symposium on Information Theory, Lausanne, June 2002, IEEE Information
Theory Workshop, Bangalore, India, Oct.2002, IEEE GLOBECOM, Taipei, Nov. 2002, IEEE International
Symposium on Information Theory, Yokohama, Japan June/July 2003 and to be presented in IEEE GLOBECOM,
San Francisco, Dec. 2003.



1 Introduction and Preliminaries

It is well known that multiple-antenna wireless communication promises very high data rates,
especially when the channel is known at the receiver [1-3]. The design criterion for such systems
were developed in [4] and in [5] a constructive approach to design Space-Time Trellis Codes
(STTC) suitable for such systems was given. Another major class of codes for multiple antenna,

systems is Space-Time Block Codes (STBC).

An n x [ (I > n) space time block code (STBC) C is a finite number of n x [ matrices with

complex entries. By STBCs over complex signal sets we mean those covered by

Definition 1. If the entries of all the codeword matrices of a STBC C are complex linear
combinations of the elements of a signal set S, then C is said to be over S. If all the entries of

all the codeword matrices are from S, then C is said to be completely over S.

To  T1
]

For instance, if zg and z; in the Alamouti code [ ] take values from a symmetric

3-PSK signal set S then the code is over S but not completely over S. It is completely over
S’ where S’ denotes the symmetric 6-PSK signal that is the union of S and —S. For quasi-
static, flat fading channels a primary performance index of C is the minimum of the rank of the
difference of any two codeword matrices, called the rank of the code. C is of full-rank if its rank is

n and is of minimal-delay if [ = n. The rate of the code R in symbols per channel use is given by

% log|g/(IC[). If the rank of an n x I STBC that is completely over S is r then transmission rate of

this code in bits per seconds per Hertz is bounded above by %logQ {A|S‘z(n, 7')}, where A, (y, z)

denotes the maximum size of a code of length y and minimum Hamming distance z defined over
an alphabet of size = [5]. From this it follows that for full-rank codes completely over S the rate
R in symbols per channel use is upper bounded by 1. Notice that when the codeword matrices
are allowed to have entries which are complex linear combinations of elements of S, as in [6],

then the rate of a full-rank, minimal-delay code can be more than 1 symbol per channel use.

Definition 2. A code completely over S with rate meeting the upper bound above is called a full-
rate code. A minimal-delay full-rank, full-rate STBC completely over S is said to be rate-optimal

over S.

We use the term "rate-optimal” to highlight the fact that these codes need not be of largest

coding gain among such codes.



STBCs have been studied by several authors: STBCs that admit a simple decoding for
arbitrary complex constellations have been studied using the theory of orthogonal designs in
[7, 8]. A similar treatment of STBCs using orthogonal designs, based on optimal SNR, was also
carried out by Ganesan and Stoica in [9, 10]. STBCs specific to PSK and QAM modulation have
been studied in [11] and [12] respectively. Design of STBCs using groups and representation
theory of groups have been reported in [13-16] and using unitary matrices STBCs have been
studied in [17-20]. Hassibi and Hochwald [6] introduced codes that are linear in space and time
called “Linear Dispersion Codes” which absorb STBCs from orthogonal designs as a special case.
The ML decoding complexity of these codes is exponential but due to their linear structure, linear
complexity decoding algorithms like ‘successive nulling and canceling’, ‘square-root’ and ‘sphere
decoding’ can be used [6, 21, 22]. A scheme that trades diversity for simpler ML decoding
(double-symbol decoding) is presented in [23] for four and eight antennas and with certain
restrictions on the signal constellation that the variables take values from it has been shown by
several authors [24-29] that rate and/or diversity can be improved from those of [23]. In [30],
Damen et al. constructed Diagonal Algebraic STBCs (DAST) which have rate one symbol per
channel use and full rank if the signal set is a subset of integer lattice. These codes were extended
to give rates upto n symbols per channel use, where n is the number of transmit antennas in [31],
using the concept of layering. In [32], a space-time code for 2 transmit antennas was constructed
which maximizes the mutual information for any number of receive antennas. However, it is not
full rank for singal sets other than QAM constellations. Galliou et al. in [33] have used Galois
theory to construct full-rate, fully diverse STBCs over QAM signals and claim to maximize the

mutual information.

In this paper, we present some general techniques for constructing rate-optimal as well as
rate greater than 1 (in some cases arbitrary rate), full-rank, minimal-delay STBCs over a variety
of signal sets (all finite subsets of certain subfields of C) for arbitrary number of antennas from
field extensions (commutative division algebras) of the rational field Q embedded in matrix rings
as well as from non-commutative division algebras embedded in matrix rings. The minimal-delay
STBCs obtained earlier in [8] by orthogonal designs are single-symbol decodable, rate 1, full-
rank but unfortunately, exists for only 2,4 and 8 antennas for real signal constellations and only
for 2 antennas for complex constellations. The constructions of STBCs presented in this paper,
on the other hand, are for a very wide range of signal sets and a very wide range of the number
of antennas. The classes of codes reported in [34] are proper subclass of those obtained in the

first half of this paper. In the second half of the paper, we show that we can create codes of both



2 x n? and of size n x n using embeddings of division algebras into matrix rings where n is

size n
the index of the division algebra. We focus primarily on cyclic division algebras, and show that
Alamouti’s code and real orthogonal designs of size 2 and 4 are special cases of our construction.
We also point out an algebraic uniqueness property of Alamouti’s code. A difference between our
approach and the approach of Tarokh et.al. using orthogonal designs [8], is that these authors
come up with codes that will work with any signal set that is an arbitrary subset of the complex
field, whereas we come up with codes that will work with any signal set that is a subset of
certain subfields of the complex field—in the process, however, we get enormous flexibility in
terms of rate and the number of antennas. Moreover, while we do not have simple decoding
algorithms for our codes, all the codes we obtain in this paper constitute subclasses of Linear
Dispersion codes [6], and hence the decoding algorithms that apply to Linear Dispersion codes
will also apply to the codes of this paper. In Section 9 we show that high rate STBCs obtained
in this paper perform better than LD codes at high SNRs.

The organization of the paper is as follows: In Section 2 we present the main principle
underlying the code construction using embeddings of division algebras in matrix rings. The
application of this principle to the case of commutative division algebras (or field extensions) is
also discussed. A general technique for constructing STBCs from field extensions is presented
in Section 3, for various rates and signal sets. We discuss the coding gain and capacity of the
resulting STBCs in Section 4. In Section 5 we begin the application of the main principle given
in Section 2 to the case of non-commutative division algebras by way of brief introduction to the
basic structural properties of division algebras and a discussion on left regular representations
of division algebras. In Section 6 we discuss cyclic division algebras and the representation of
a cyclic division algebra in matrices over its maximal cyclic subfield and show that Alamouti’s
code is a special case of this construction. In Section 7 we describe a technique for constructing
cyclic division algebras using transcendental elements, and we describe some STBCs derived from
this construction and also study their mutual information. In Section 8 we describe Brauer’s
division algebras and outline some explicit STBCs obtained from such algebras. Section 9 briefly
describes the decoding aspects of these codes and presents simulation results. Several directions

for further research and concluding remarks constitute Section 10.

2 The Main Principle

In this section we first present the basic principle used to construct STBCs throughout the paper

and in the Subsection 2.1 describe the embedding of field extensions into matrices. All rings in



this paper will be associative, and will possess a unit element 1. Recall that a division algebra
is simply a ring in which every nonzero element has a multiplicative inverse. A commutative
division algebra, of course, is just a field, but non-commutative division algebras exist in profu-
sion, the first such discovered was Hamilton’s quaternions [35]. The word “algebra” refers to the
fact that such a ring is naturally a vector space over its center; this will not concern us in the
first half of the paper and hence elaborated in Section 5 for use in the later half. Basic results

concerning the structure of division algebras are given in Section 5.

The following proposition gives a very broad principle that is used to construct full-rank

minimal-delay codes from division algebras in this paper:

Proposition 1. Let f: D — M, (F) be a ring homomorphism from a division algebra D to the
set of m X n matrices over some field F. If E is any finite subset of the image of D under
this map, then E will have the property that the difference of any two elements in it will be of
full-rank.

Proof. Since every element in D is invertible, D has no nontrivial two-sided ideals, so the kernel
of f is either all of D or else, f is an injection. Since f does not map the unit element of D to
zero, [ must necessarily be an injection, and therefore, the image f(D) (which is a subring of
M,,(F)) must be isomorphic to D, i.e., f(D) is an embedding of D in M, (F'). Now let E C f(D)
be any subset of the image of f. If My = f(dy) and My = f(ds) are two distinct elements in E,
then My — My = f(dy) — f(d2) = f(dy — d2). Since My and M, are distinct and f is injective,
dy — dy # 0, so it has a multiplicative inverse in D. Since D is isomorphic to its image f(D),
f(dy —de) = My — My must also be invertible in f(D) C M,(F). Hence, M; — M5 must be
of full-rank, and our subset E must therefore have the property that the difference of any two

elements in F will be of full-rank. O

The rest of the paper essentially consists of constructing several such embeddings, first
arising from field extensions of Q, (i.e., D will be a commutative division algebra)(Sections 2.1
and Section 3) and then from non-commutative division algebras (Sections 5 through Section 8)

and obtaining STBCs over a wide variety of signal sets using these embeddings.

2.1 Embedding Field Extensions into Matrices

We will recall some well-known facts (see (§7.3, [35]) for instance) about embedding field exten-

sions into matrix algebras in this section. Let K and F be fields, with ' C K, and [K : F| = n,



i.e., K is of dimension n over F'. In our application to space-time codes, F' will be a suitable
extension field of (Q determined by the signal set S over which we want to construct the code
and K a subfield of C, (i.e., Q C FF C K C C) but in this section, F' can be arbitrary. Recall
that K can be viewed as an n-dimensional vector space over F', and that we have a natural map
L from K to Endp(K), which is the set of F-linear transforms of the vector space K. This
map is given by k — Mg, where A is the map on the F-vector space K that sends any u € K
to the element ku. (That is, Ag is simply left multiplication by k.) As in the discussions in the
previous section 2, L maps K isomorphically into Endp(K), that is, K embeds in M, (F'). This
particular method of embedding K into M, (F') is known as the regular representation of K in

M, (F).

For a given choice of F basis B = {uy,us,...,u,} of K, one can write down the matrix
corresponding to A, for any k as follows: for any given basis element u; (1 < i < n), and for any
j (1 <j<mn),let ujuj = >, ¢ijyu;. Then, the j-th column of X, is simply the coefficients
cijy above, 1 <1 < n. Here, we use the convention that the vectors on which a matrix acts
are written on the right of the matrix as a column vector. Once the matrix corresponding
to each Ay, call it M;, is obtained in this manner, the matrix corresponding to a general A,
with & = Y | fiu; is just the linear combination . ;| fiM;. When K is generated over F' by
a primitive element « (this is always the case in characteristic zero, the case we will consider

2 ...,a" 1} are easier to

throughout the paper), the matrices in the particular basis B = {1, o, «
write down. Suppose that the minimal polynomial of o over F is 2" 4+ ap_12" ' +- - - + a1z + ao.

Then the matrix corresponding to A, is simply its companion matrix M given by

0 0 0 —ap
1 0 0 —ai
M=100 0 —as , (1)
: 0 :
00 0 1 —ap—

and the matrices corresponding to the other powers o can be computed directly as the i-th
power of M and the general element k = fo + fiae + ... fo_1a” ! will be mapped to the matrix
folny + fiM + foM? 4 ...+ f,_i1M"'. We thus have:

Proposition 2. Let K = F(«) be an extension of the field F' of degree n, and suppose that the
minimal polynomial of o over F is 2" +ap_12™ '+ -+a1x+ag. Let M be the matriz in M, (F)
defined in (1). Then the set of all matrices of the form fol,, + fiM + foM? + ...+ fn 1 M™1,

with fo, f1, ..., fn—1 coming from F is an embedding of K into M, (F'). In particular, any finite



subset E of such matrices will have the property that the difference of any two matrices in it will

have full-rank.

Proof. The last statement follows from Proposition 1 above. O

When the minimal polynomial of « has the special form z" — « for some v € F* (non-zero
elements of F'), the form of the matrices simplify considerably. The matrix corresponding to «
is then same as (1) with —ag =7, a1 =ay =-+- = ap—1 = 0 and the matrix corresponding to

>‘k7 where k£ = f() + flOé + ...+ fnflan_la is

fo Yfn1 Y2 ... vfe Y1

fi fo o Yfam1 oo Yf3 fe

fo fi Jo oo fr f3

s f i s vfa | (2)
L fn‘fl fn;Z fn;S . . j:1 f:[]

These observations essentially prove the following special case of Proposition 2 above:

Proposition 3. Let F be o field, and let v be a nonzero element of F. Suppose that the
polynomial =™ — v (n > 2) is irreducible in F[z]. Then, the set of all matrices of the form (2)
above, with fo, f1, ..., fn_1 coming from F, forms a field, isomorphic to F({/y). In particular,

any finite set of such matrices will have the property that the difference of any two in it will have

full-rank.

Proof. Let a be some n-th root of v in some algebraic closure of F'. Then the field K = F(«)
has degree n over F', since the polynomial " — « is irreducible in F[z]. The discussions above
then shows that the set of matrices of the form (2) above is isomorphic to K under the map L.

The last statement follows from Proposition 1 above. O

Remark 1. It is essential in the proposition above that the elements f; all come from F. For

instance, with ' = Q and v = n = 2, we find from the proposition that the set of matrices of
a 2b . . . . = .
the form b a with @ and b coming from Q is isomorphic to Q(v/2). However, if a and b

are allowed to be arbitrary complex numbers, the set of such matrices is no longer a field. For

instance, taking a = v/2 and b = 1, we get a nonzero matrix that is not invertible, so the set of

all such matrices with arbitrary complex (or even real) entries cannot be a field.



3 Construction of STBCs using Field Extensions

In this section we will outline a simple technique to construct STBCs of various rates over a given
finite set of nonzero complex numbers, using Propositions 2 and 3. Let S be the finite subset
of the nonzero complex numbers that we wish to use as our signal set, and say |S| = m. Write
F for the field generated by all the elements of S over Q. For instance, if S = {1,7,—1,—j},
then F is just the field obtained by adjoining the elements 1, 7, —1, and —j to Q or in other
words, F' is just Q(j). Let n be the number of transmit antennas to be used (n > 2). Let K
be a field extension of F' of degree n. Then, by the primitive element theorem, K = F(«), for
some element o € K whose minimal polynomial is 2" 4+ a,_12" "' + - -+ + a1z + ag for suitable

a; € F'. We have the following sequence of field extensions:

QCQS)=FcCcQ(S,a) =F(a) =K.

Consider all matrices of the form fol,, + fiM + foM? 4 ... 4+ fu_1M™ ', where the fy, fi,
..y fn—1 come from the signal set S, and where M is the matrix in M, (F) defined in (1). This
is a finite set of matrices of cardinality m"™, which, by Proposition 2 is a full-rank minimal-delay
code over S. This construction becomes simpler if we know that there is an element v € F*
that has the property that the polynomial ™ — « is irreducible in F[z]. (Note that - need
not be in S.) This time, we consider matrices of the form (2), with the f; constrained to be
in S. We get a finite set of matrices of size m™, which, by Proposition 3 is again a full-rank
minimal-delay code, and this code is over S and the entries of the codeword matrices are from
the set SU~.S. However, suppose that the set .S and the element v have the property that ys € S
for all elements s € S. Then, all elements of the transmitted matrices will actually have their
entries in S. Then S is invariant under multiplication by v and the resulting code is completely
over S. In many of our examples below, we will choose S and « so that S is invariant under
multiplication by «. It is easily verified that a property that the element v must have if our

signal set S is to be invariant under multiplication by 7 is:

Lemma 4. Let S be a finite subset of the nonzero complex numbers, and let v be some nonzero

complex number. If S is invariant under multiplication by v, then v must be a root of unity.

3.1 Construction of STBCs using cyclotomic field extensions

In this section we construct STBCs using cyclotomic field extensions over different classes of

signal sets of various rates and number of antennas.



3.1.1 Rate-optimal Codes over Rotationally Invariant Signal Sets

We will construct rate-optimal STBCs over rotational invariant signal sets. But first, we will
look at the construction of rate-optimal STBCs over m-PSK signal set. The number of transmit
antennas n is allowed to be any integer that has the property that the primes that appear in
the factorization of n is some subset of the primes that appear in the factorization of m. For
example, with 6-PSK signal set one can use 2¢ antennas, or 3/ antennas, or 2°3/ antennas, with

1 and j being arbitrary.

Given the integer m > 2 for which an m-PSK code has to be constructed, let wy,, denote
e?™1/™ which is a primitive m-th root of unity. Recall that the m-th cyclotomic field is the
field generated by wy, over Q; Q(wy,) is of degree ¢(m) over QQ, where ¢(m) is the Euler totient
function of m, that is, ¢(m) is the number of integers ¢ with 1 <4 < m that are relatively prime
to m. We denote the m-PSK signal set by S,,, that is, S;, = {w’,, 0 <i < m}. Now let n be
any integer such that the primes that appear in the prime factorization of n is some subset of

{p1,...,pr}, which is the set of primes that appear in the factorization of m. We first prove:

Proposition 5. Let n and m be as above and let | be any integer such that I and m are relatively

l

prime. Then, any of the polynomials =" — w;,,,

with wy, as in the discussion above, is irreducible

Proof. Let wyy, = e2™/™"  This is a primitive mn-th root of unity. The element wh . is a

l l

root of 2" — w!,. The minimal polynomial of w!,, over Q(wy,) therefore divides 2" — w!, in

Q(wm )[x]. Tt is therefore sufficient to show that the minimal polynomial of w! . over Q(wy,) is

l

of degree n: this will show that z" — w,,

must be the minimal polynomial of w! = over Q(w,,),

and this will then force " — w! to be irreducible in Q(wy, )[z]. Note that w!  is also a primitive

l
m

l

m» We have the natural containment of cyclotomic fields

nm-th root of unity. Since (w;,,,)" = w
Q Cc Q') c Qwh,,). Since w', is a primitive I-th root of unity, Q(w!,) = Q(wy,). Similarly,
Q(wl,,) = QWmn), so our containment of fields reads Q C Q(wy,) € Q(wWymn). The degree of
Q(wimn ) over Q is ¢p(mn), while the degree of Q(w,, ) over Q is ¢(m), so because degrees multiply

in towers of field extensions, we find that the degree of Q(wy,y, ) over Q(wy,) is ¢p(mn)/d(m).

It is therefore sufficient to prove that ¢(mn) = ng(m). This will show that the degree of
Q(wimn ) over Q(wyy, ) is 7, and since Q(wimn ) (= Q(wl,,,)) is generated over Q(wyy, ) by w! ., this will

show that the minimal polynomial of wf,m over Q(wy, ) is of degree n, as desired. We once again



invoke the hypothesis that the primes belonging to the factorization of n appear from the set

{p1,...,pk} (the result ¢(mn) = np(m) would be false without this hypothesis). Suppose that

n = pfl . -p,[j’“ (some of the 3; could possibly be zero). Then ¢(mn) = (;S(p?ﬁﬂl . -pz”ﬁ’“) =
-1 1 _ _
PP = 1) P e = 1) = P g T o = 1) pgt T (ke — 1) = ng(m), as

desired. 0

Now we construct the code on the signal set S,, = {w!,, 0 <i < m} using matrices of the

form (2) with the elements of S,, substituted for the f; and with v = w!,. This is our m-PSK
code for n antennas. We get one such code for each [, 1 <[ < n, for which [ and n are relatively
prime. Note that under this construction, since multiplication by w!, takes an m-th root of
unity to another m-th root of unity, the entries of the matrices transmitted will all be in S,
|TL

i.e., the code is completely over S;,. Moreover, the number of such matrices is |S,,|” and hence

the rate is 1 symbol per channel use, resulting in rate-optimal codes.

Example 1. Let us consider the 4 element set Sy = {1,7,—1,—j}. (This set is invariant under
multiplication by j.) Note that j is a primitive 4-th root of unity. By Proposition 5 above, the
polynomial x? — j is irreducible over Q(j). We thus get the following set of 16 2 x 2 matrices

with entries from Sy for our code:

The Alamouti code, which is a 2 x 2 complex orthogonal design of size 2 over Sy, Example
1 gives a code with identical parameters. In the following two examples we obtain codes with

parameters that are not obtainable by orthogonal designs.

3 ,,4

Example 2. Let us consider the 6-PSK signal set Sg = {1, w,w?, w3, w*,wd} where w = s

18
a primitive 6-th root of unity. (This set is invariant under multiplication by w.) By Proposition

5 above, the polynomial 2% — w and z3 — w are irreducible over Q(w). With 2% — w we get 36

_ b .
2 x 2 codewords given by [ @ u; ] where a,b € Sg, and with x* —w we get 216 3 x 3 codewords

b

a wb wc
given by | b a wb | where a,b,c € Sg.
c b a



Instead of codes from m-PSK signal sets, which are invariant under rotation by wy,, we will
now consider the codes over any signal set invariant under rotation of 27 /k, that is, invariant

27/k - One would start from a set that is a subset of Q(wy,) and

under multiplication by wy = e
then construct codes for n antennas using the extension given by the n-th root of wg. (Of course,
n has to satisfy the condition that the prime factorization of n should only involve primes that
appear in the prime factorization of k.) For instance, when & = 3 (so our angle of rotation is
120°), we can let S7 be any finite set of nonzero complex numbers contained in the cyclotomic
extension Q(ws3), and let S = S; Uw3S; Uw2S;. Then S is invariant under multiplication by
w3, and we can construct a code on S for n transmit antennas, where n is any power of 3,

using matrices of the form (2) with v = w3. The following example gives a code over signal sets

invariant under 90° rotation.

Example 3. Let a > b > 2 be odd integers, and let S consist of the union of the two sets
Si={(a—=2k)+jb-20)0<k<a, 0<I<b} and Sy = jS1 ={—(b—2) + j(a — 2k)|0 <
k <a, 0 <1 <2b}. Note that both S1 and Sy are invariant under multiplication by —1. When
n = m, we have a square constellation. When m > n, S is a cross constellation. In both cases,
can create our codes from this signal set S for any n a power of 2 by taking matrices of the form
(2) with v = j, and with the elements f; chosen from S. Of course, we can construct our codes

on just the set S1 using this same procedure. The entries of the matrices will then come from

S1US,.

As an another specific example, let us take S = {1, w3, w3, —1, —w3, —w?, w3 — w3, —1 +
w?,1— w3}, which is shown in Fig. 2. Note that S = w3S = w3S, so S is already invariant under

rotation by 120°. We can use this set to construct codes for transmission on n = 3! antennas

for arbitrary [ as described above.

3.1.2 Rate 1 codes over arbitrary finite subsets of Q(w,,) for arbitrary number of

antennas

In the previous subsubsection for a given m the number of antennas n is restricted to have only
those primes that are in m also only if we need rate-optimal codes. If rate-optimality is not a
constraint then over any finite subset (including Sy,) of subfields of the form Q(w,) (cyclotomic

subfields) of C full-rank STBCs can be constructed for arbitrary number of antennas, as follows:

Suppose we need to construct codes over symmetric M-PSK for n antennas then choose

m such that it contains all the primes of both M and n. Now Q(wp,) contains Sj; and the



conditions of Proposition 5 are satisfied. Hence we obtain the code

fo a1 - i
Jil f:o 7{2 | fi € Snr € Qwim),i =0,1,...,n—1 (3)

fn‘—l fn.—2 fo

l

m With (m,l) = 1, which is a full-rank rate-one code over Sj; and not completely

where v = w

over S)s if m contains a prime that is not in M, in which case the code is not rate-optimal.

It is important to notice that for S any finite subset of Q(w,,) the code given by (3) with
S replaced by S is a full-rank, rate-one code over S. In particular, if m is a multiple of 4 then
Q(wyy, ) contains the entire lattice Q(j) and by choosing S to be any lattice constellation we get
full-rank rate-one code over that lattice constellation. The following example illustrates these

observations.

Example 4. Suppose we need STBCs over the 6-PSK signal set Sg = {1,w,w? w3, wt w®}

izr
where w = €6

is a primitive 6-th root of unity for five antennas (n=5). Now we can choose
m = 30, then we get the code given by (3) where n =5, v is a primitive 30-th root of unity and
fi,1=0,1,2,3,4 € Sg. Notice that this code is not rate optimal since 7y is not in Sg. Now, we
wish to have code over a lattice constellation, say 16-QAM, then our choice of m = 30 is not
sufficient since it is not a multiple of 4 and hence Q(w,,) does not contain the 16-QAM. The
choice m = 60 will include the entire lattice in Q(wy,) (where now 7y is a 60-th primitive root

of unity) and hence this code is of full-rank rate-one STBC over any lattice constellations from

which f;,1=0,1,2,3,4 come from.

Another general mathematical basis for construction of full-rank STBCs for arbitrary number

of antennas is the following:

Proposition 6. Let F' be a field of characteristic zero, and let z be an indeterminate. Also, let
F(z) is the rational function field over F' in the indeterminate z, that is, it is the set of quotients
of polynomials in z with entries from F. Then, for any integer n > 1, the polynomial ™ — z is

irreducible in the ring F(z)[z].

Proof. 1t is sufficient to prove that ™ — z is irreducible in F(w,, z)[z], where w,, is a primitive
n-th root of unity. (Note that the assumption about the characteristic guarantees the existence

of a primitive n-th root of unity.) If we let { denote an n-th root of z (in some algebraic closure

of F(wp,z)), then o — z factors as I/} (v — wi () over the field F(wy,2,() = F(wy, (). So, if



f is some irreducible factor of z" — z in F(wy, z)[z], say of degree k < n, then over F(wy,(),
f must equal the product of some k of these linear factors (z — w’(). Studying the constant
term of this product, we find that ¢¥ is in F(wy, 2), or, taking n-th powers, that z* is an n-th
power in F(wy,z). But it is easy to see that when k < n, this is impossible: if we were to
write z¥ = (g(2)/h(z))", where g and h are polynomials in z with coefficients in F(w,), then,
h(z)"z* should equal g(z)". Comparing the highest degree (in z) on both sides gives us the

contradiction. Hence, k must equal n, that is, " — z must be irreducible in F'(wy,, 2)[z]. O

We will use this proposition as follows. Let Sy, be the set of m-th roots of unity, and let us
pretend that we are working over the field Q(wy,, z), where z is any transcendental number, for
instance, e, or m, or e/*, for any algebraic real number u, even v = 1. (The transcendentality of
numbers of the form e/*, where u is any algebraic real number, is guaranteed by the Lindemann-
Weierstrass theorem, see §4.12, [35]; see Section 8 below for the statement of this theorem.).
Then over that field, the polynomial 2" — z is irreducible, since the transcendental element
z acts just as an indeterminate over Q(wy,). (It follows from the well known fact that if z
is transcendental over QQ, it remains transcendental over an algebraic extension of Q such as

Q(wp,).) We may then consider the various n x n matrices of the form (2), with v = z.

Note that there is no limitation under this scheme on n: the number of antennas can therefore
be arbitrary. Also note that if we take z to be of the form e/* = cos(u) + j sin(u) for some real
algebraic number, for example, u = 1, then the entries will consist of the original m equally
spaced points on the unit circle, and a copy of these points multiplied by e/, that is, rotated

counter clockwise by u radians.
In the following example we construct a code over such a signal set with 8 elements shown

in Fig. 1.

Jfo vf1
fi fo

sponding to the irreducible polynomial x> — j and fo,f1 € S = {1,—1,5,—5}. Now for some 6

Example 5. In Example 1 the codewords are [ ] where v was chosen to be j corre-

that is a real algebraic number we can take the irreducible polynomial z3 — €77, use the same
S, and construct code for 3 antennas (note that 3 is a prime not appearing in the prime power

factorization of 4). We obtain the full-rank code over the asymmetric 8-PSK signal set shown in

a cel? pel?
Fig. 1, for 3 antennas containing the 64 codewords given by | b a  ce’’ | wherea,b,c € S,
c b a



using Proposition 6.

On the other hand, when the transcendental element z is real, the entries will be the original
m equally spaced points on the unit circle, and these same points shifted radially to the circle
at radius |z|. Note too that by choosing different real transcendentals (for example, ae for any

nonzero rational number o), we can get different radius for the second circle.

3.1.3 High-rate (> 1) codes from cyclotomic field extensions

Consider a rate-one code for n antennas over Q(w,, ) and let Q(w;) C Q(wyy, ), where I divides m.

Then, every element of Q(w,,) can be written as Z Iyb, where B is the basis of the field Q(w,, )
beB

seen as vector space over Q(w;) and Iy € Q(w;). In (3), replacing f; with Z fipb, we have
beB

>ven fo,bb YXben fa-1,00 0 Y Xpen f1,60
Sven f1,6b >ves fo,bb s Y e fa,ub .
C: . . X |fi,bEQ(wl)a7*€[07n_l] (4)
Toen fac1bb  Tiep fa—2pb 0 Tiep foub

Clearly, C is a rate |B| code over any finite subset of Q(w;). For example if m = 8 and | = 4, we
get 2 x 2, rate 2, full rank STBC’s over any finite subset of Q(wy), i.e., over lattice constellations.
Thus, if we want a rate R > 1, (R-an integer) n x n, full rank STBC over a signal set Sys, then

we do the following:
e Choose m such that it has all primes of R. Then, using the irreducible polynomial 2% —w,,,

extend the field Q(wy,) to the field Q(wm,r)-

e Construct the n x n full rank STBC over Q(wy,,r) using the constructions given in the

previous section, i.e., construct a n x n full rank rate-one STBC over S,,g.

e Replace each entry of the codeword matrices with a linear combination of the basis of

Q(wmr) over Q(wyy, ). Thus, we have a rate R, full rank code over Sy/i, as follows:

S foiwhr ASiG faorivihe o SRS frivhae
"1 o R—1 i o1 ot
Yizo friwmr Yi=o fo,iwmr Y Xm0 f2,iwmR
C= : : - : | fk,i € Q(wl) (5)
E?;Ol fr—1,iwh g Ef;ol frnooiwh g Sven foiwh g

where k € [0,n — 1], 7 € [0, R — 1] and 7 is an mpg-th primitive root of unity, where mp is

a positive integer such that it has all the primes of n.



Clearly, with the above constructions, the rate is upper bounded by the degree of the polynomial

z — w,, and also the value of v depends on the value of R. In the rest of this subsection, we

give another method of constructing STBC’s with arbitrary rate, where «y is independent of the

rate R and hence, as will be seen in the sequel, we can have better coding gain.

Consider the rational function field Q(wp,, 2) over Q(wy,) in the indeterminate z. The el-
ements of Q(wy,,z) are of the form a(z)/b(z), where a(z) and b(z) # 0 are polynomials over
Q(wm,). Then, from Theorem 6 we have that 2™ — z is irreducible over Q(wy,, z). Hence we have
the STBC obtained by using the polynomial z" — z as

folz)  zfpa(z) -+ 2fi(2)
c= flfz) fO:(Z) Zfﬁ(z) | fi(2) € Qem)[yi=0,1,.,n—1%  (6)

fact(2)  faa(2) o fol2)

Note that, in the above STBC the entries in the matrices are polynomials instead of the rational
functions of polynomials. Now each of f;(z) = ZkR;OI fi,kzk, where f;r € Q(wy,). Here, R
can be any integer and hence the rate which is equal to R is arbitrary (this is because we can
have polynomials with any degree as the extension of Q to Q(z) is infinite dimensional). z can
be any transcendental number. If § is an algebraic number, then from [35] (§4.12), /% is a

transcendental number. Thus, we can take e/’ as z in the above construction. The following
example shows that we can achieve better performance in terms of coding gain with codes with

rate larger than one.

Example 6. Consider a rate 2, 2 x 2 full rank STBC C over /-PSK signal set.

C— {L ( foo+ foaz froz+ f112°

i 4—-PSK,i,k=0,1
\/ﬁ f1,0+f1,12 f0,0 +f0,lz > |fZ,k: S 32y ) }

The size of the code is 256 and hence the bit rate is 4 bits per channel use. The scaling factor
1/\/5 is used to make the average power per antenna per channel use equal to one. Coding gain
of this code is at least equal to 0.136 (z ~ €792, coding gain might be more than this for some
other z). Now consider a rate 1, 2 X 2 full rank STBC C' over M-PSK signal set. Then, to
obtain bit rate 4 bits per channel use, M should be equal to 16. Coding gain of this rate-one code
s 0.052 approximately. Clearly, the coding gain of the rate 2 code is about 2.5 times the coding

gain of rate-one code.

Consider the rate 2 STBC over 4-PSK for 2 antennas, obtained from algebraic extensions.
We have m = 4 and R = 2. So, v = ws. By manually computing the coding gain, it is found



that coding gain of this code is at most 0.13, which is lesser than the coding gain obtained from

transcendental extensions.

The above example motivates not only the use of high rate codes to improve the coding gain

but also high rate codes obtained from transcendental extensions.

3.2 Construction of STBCs using non-cyclotomic field extensions

All our examples in the previous three subsections have arisen from application of Proposition
3, where the minimal polynomial of the element « was of the form z" — . For the sake
of completeness, we will give an example in this section of a code constructed by applying
Proposition 2, that is, where the minimal polynomial has other terms besides the constant term
and the highest degree term. Of course, the entries of the matrices involved, in this general

situation, will be linear combinations of the elements of the signal set.

First, a well-known result that will help us construct irreducible polynomials over fields other

than the rationals:

Lemma 7. Let f(x) be an irreducible polynomial over Q of degree m. Suppose that F is an
extension field of Q of degree m, and suppose that n and m are relatively prime. Then, f(x)

remains irreducible over F'.

Proof. This is standard. If « is a root of f(z), then Q(«) is an extension of QQ of degree n. The
field F'(«) contains Q(«), so [F(«) : Q] is divisible by [Q(«) : Q] = n. Similarly, F(«) contains
F, so [F(«a) : Q] is divisible by [F' : Q] = m. Since n and m are relatively prime, F[(«) : Q]
is divisible by nm, and hence, F[(«) : F| = [F(«) : Q|/[F : Q] is divisible by nm/m = n. On
the other hand, the minimal polynomial of « over F' divides f(x), so the degree of this minimal
polynomial is at most n. It follows that F[(«) : F] is exactly n, and that f(z) is the minimal

polynomial of o over F', and in particular, that f(x) remains irreducible over F'. O

We now give a class of codes constructed from minimal polynomials that are one step more
complicated than those of the form z" —+: Let f(z) be of the form 2" — pz — p, for some prime
p. By Eisenstein’s Criterion (§2.16, [35]), f(z) is irreducible over the rationals. Let m be any
integer such that ¢(m) and n are relatively prime. Let w,, be a primitive m-th root of unity,
and consider Q(wy, ), the m-th cyclotomic field. This is of degree ¢(m) over the rationals, so, by

the lemma above and the assumption about n and ¢(m), f(z) remains irreducible over Q(w, ).



Hence, if M is the matrix (1) (with ap = a; =p, and ag = --- = a,—1 = 0), then, for S equal to
the m-th roots of unity, the set of all matrices of the form sy + s1M + soM? + -+ 4 s, M™ 1,

where the s; are allowed to be arbitrary members of S, is an rate-optimal code of size m™.

Example 7. Consider f(z) = 2% — 2z — 2. This is irreducible over Q by Fisenstein’s Criterion.

Let us work over Q(j), a field extension of Q of degree 2 (note that 2 and 3 are relatively prime).

S0 282 281
Then, our code consists of all 3 x 3 matrices of the form | s1 so+ 2sy 281 + 28y | where the
S9 S1 So + 259

s; are arbitrary members of the set {1,4,—1,—j}. Of course, the same set of matrices above also
forms a code if the s; are allowed to come from the set of 2"-th roots of unity, for any r > 2,

since the 27 -th cyclotomic field has degree 27", which is relatively prime to 3.

4 Coding gain and capacity of STBCs from Field Extensions

In this section we discuss the coding gain of STBCs obtained from both the cyclotomic and

noncyclotomic field extensions and present capacity of STBCs from cyclotomic extensions.

4.1 Coding gain

Let A(c,e) be the difference of the two codeword matrices ¢, e in a STBC C and let B(c,e) =
A(c,e)*A(c,e). Let ag,k =0,1,..., K denote the K non-zero eigen values of B(c,e), where K

is the rank of A(c,e). In our case B(c,e) have full rank, K = n. Then, the coding gain of a

-1 |1/n

STBC C is given by the minimum of | [Tz a for all possible pairs ¢ and e of codeword

matrices of the code. That is,
G = min | det(B(c,c')) |V (7)
c,c/e

Theorem 8. If C = {fol + fiM + foM? + .-+ fo, 1M"7L|f; € S C F}, where M is an (1),

then coding gain is
2/n

G = min
c,c/eC

n—1
Nk (Z(fz - z’l)ai>

1=0

where N p(x) denotes the norm of the element x from K to F, ¢ = Z?;ol M' and ¢ =

Sy fIME.



Proof. Let f(z) = 2" + a, 12" ' +--- 4+ a7 + ag be the minimal polynomial of o over F. Let
L be a normal closure of K/F and o0;, i = 0,1,...,n — 1 be the distinct F'— homomorphisms
from K to L. Let p(x) be the minimal polynomial of k£ = Z?;Ol( fi — fhat over F of degree
m < n. Then, it is easy to see that m divides n and that every root of p(z) is of the form o;(k)
for some 0 < ¢ < n. Thus, the polynomial g(z) = H?:_OI (x —oj(a)) and the polynomial p(z) have
same roots. Since, g(x) € F[z], the only irreducible factor of ¢g(z) is p(z) and hence we have
g(x) = p(z)"/™. Now, since the minimal polynomial of k divides the characteristic polynomial
x(@) of M = (fo— FOT+ (f1 = fOM + (f — fYM? + - + (far — fo_)M", and share
the same irreducible factors over F', x(z) must have p(z) as the only irreducible factor. Thus,
x(z) = p(z)"™ = g(x) (since degree of x(z) is n). And since determinant of A, is the coefficient

of the constant term in the characteristic polynomial, we get
n—1
det \p = [[ oi(k) = N/ (k).
i=0

Thus, the coding gain is G = ming crec | Ngjp(k) R O

The above theorem gives coding gain expression for STBCs obtained using arbitrary field
extensions. When, the field extension is a cyclotomic extension, we have the following corollary

to the above theorem.

Corollary 9. If the code C is as in the (3), then

2/n
n—1 /n—1 )
6 = min 1T (S0 1)
c,c’eC |- N
7=0 \:=0
where y; fori = 0,1,...,n — 1 are the n'* roots of v, ¢ = c([fo, f1,---» fn_1],Y) (the codeword
matriz with (i,1)-th component as fi_1) and ¢’ = c([fy, f1,---, [h_1],7) (the codeword matriz

with (i,1)-th component as f! ).

Proof. The F-homomorphisms of K into the normal closure of K/F are given as o; : ¥y — 7;

forall4 =0,1,2,...,n — 1, where ; are the n-th roots of 7. Thus, from Theorem 8, we have

. n—1 N 2/n . n—1 n—1 ! iZ/n
G =minceec |Nr/r(Xoisg (fi — fw)|  =mineeee \[1750 22i0 (fi — f)j] - O



From the above theorem, if ¢ and ¢’ have f; = f; for all k except for some k' € [0,n — 1]

then we have the coding gain as

n—1 2/n

[T = ¥

1=0

G <

<| fir — fio |* (since 7; are roots of unity).

Thus, the main factor which dominates the coding gain is the selection of S. From the above

theorem the coding gain for the STBC in Example 1 is

2/n

G = min = 2.

c,c’eC

n—1 /n—1
T (zm . f;é)vé“)

1=0 \k=0

Now, let us see the how the coding gain depends on 7. Let mgy be the smallest m such that
the prime factors of n are a subset of the prime factors of m and the signal set, Sjs is subset
of Q(wm,,, ). Therefore, moy; = xM for some integer z. Now let m' # m,y; be another integer
such that the prime factors of n are subset of the prime factors of m’ and the signal set is subset
of Q(wpy). Clearly, mgy < m'. The codeword matrices have the entries of the form f; and v f;,
where f; € S. If z is not equal to one, then it is easy to see that the minimum distance (which
happens to be the distance between any f; € S and vf;) of the resulting signal set decreases
if we add the points S to the signal set. Now, if we let v to be wp,,,, the we claim that the
decrease in the minimum distance is minimum possible. This can be seen in the following way
: as m increases from mgy, the point wy, f; gets closer to the point f; and hence the minimum
distance decreases more as m increases. Though, the minimum distance is not the coding gain
of the STBC, it is intuitive enough to choose v which keeps the minimum distance of the SU~S
as maximum as possible. For instance, in Example 1 we have m,,; = 4 and the corresponding
coding gain is 2. However, if we let m = 8 (or 12), the coding gain falls down to 1.53 (or 1.0).

The same holds true for QAM constellations too.

In codes with rate larger than one obtained from transcendental extensions, the degree n
of the irreducible polynomial z™ — 2 is independent of the signal set we choose and hence m
should be chosen such that the signal set is invariant under the multiplication of w,, so that
the minimum distance of the signal set remains same. However, the entries of the codeword
matrices are polynomials in z (any transcendental number), and hence, the coding gain depends
on z also. It is very difficult to see how the coding gain and z are related. In example 6, the

coding gains as a function of z are as follows : G(e/%1) = 0.001, G(e/°3) = 0.027, G(¢/°®) =

0.121, G(e7%%2) = 0.136, G(e/%7) = 0.019, G(e/%?) = 0.116, G(e/1!) = 0.093, G(e/13) =



0.073, G(e/1%) = 0.005, G(e/17) = 0.017, G(e’*?) = 0.107, G(e/?1) = 0.01, G(e/>3) = 0.014,
G(e7%7) = 0.084, G(e/29) = 0.015 and G(e’*!) = 0.0001.

It is shown in [36] that the coding gain of the STBCS constructed in the previous sections,
is equal to the minimum squared Euclidean distance for QAM and some other specific signal

sets when the minimal polynomial is over the set of integers.

4.2 Capacity of STBC’s from cyclotomic extensions

One says that a design is information lossless or achieves capacity if the capacity of the new
equivalent channel obtained by considering the design as part of the channel, has the same
capacity of the original channel [32]. Notice that our constructions basically give a design and
along with a signal set for the variables we obtain a STBC. However, the information losslessness
or capacity of the design will be referred to as that of the associated STBC also. In this subsection

we study the capacity of the STBCs obtained from cyclotomic field extensions.

Let r be the number of receive antennas. Then, the received signal x, when the transmitted

x:\/gHtW—v (8)

where x € C", f € C*, H € C"*" is the channel matrix, v € C" is the additive white Gaussian

signal is f, is given by

noise and p is the signal to noise ratio at each receive antenna. The entries in the channel matrix

and the transmitted vector are assumed to have unit variance, i.e.,
Etr(HH*) = nr and Ef*f =n

When the channel is known at the receiver, the resulting channel capacity is [1]
C(p,n,r) = Elogdet (Ir + BHH*) (9)
n

If F is the transmitted codeword matrix, then

X:\/EFHwLV
n

The transmitted signal matrix in our STBC constructions is as in (3). And if H = (h; j)ic[0,n—1],j€[0,r—1]>

we have

X:\/gﬁ[fo fio faaT 4V



P

where X = vec(X), V = vec(V) and

co = c([ho,0,h1,05--- s hn-10],7)
A ci = c(lho1, higs- -y hn—1],7)

cr—1 = c([hop—1,h1p—1,. s hp—1,-1],7)

In the above equation, recall that ¢; are n x n matrices as in (3), with f; = h;;. It can be

checked easily that eigen values a;; of ¢; are given by

n—1
aip =3 g, for k=0,1,2,...,n—1
=0

Then, the ¢; can be written as PZ-AiPifl, where P; is the eigenvector matrix and A; is the
eigenvalue matrix. It can be easily seen that,

P = diag(1,7%0,%5,-- -, )DFT, (10)

Now, the capacity, denoted by C.(p,n,r), of these codes is given by replacing H with H and
Ry = I, in (9), which is

| -
Cy(pynyr) = Elog det (Im + %HH) (11)

where the normalizing factor 1/n in front of the expectation is for the n channels uses we have

in our STBC. The term HH* in the capacity expression is equal to (cicj) E Computing

1,j€[0,r—1
the determinant of I,,, + \/%I-if H* is very difficult for any r number of receive antennas. So,

let us see the case when we have only one receive antenna. Then, removing the subscript
corresponding to the receive antennas in H, we have HH* = PAP~'P~'"A*P*. From (10), we

have HH* = (1/n)P|A|?P*. Thus,

det (In + \/EHH> = det (P 1) det (In + \/EHH> det (P) = det (In + \ﬁw?)
n n n

Thus, the capacity is
1 2\ \ /n
Cy(p,n,r=1) = Elog 1+
=0

S

n—1 -
hivk (12)
=0

ol

S

-1 n—1 1/n
< Elog <1+Z|hi|2>> =C(p,n,mr=1)

k=0 1=0



Now, let us see what the capacity is for rate more than one codes. In this case the transmitted
signal matrix F is given as in either (5) or (6). Thus, assuming the signal points the constellation

to be independent and to ensure unit power transmitted per antenna per channel use, we have
R; = %InR. Let f = [fo(2)f1(2) ... fa_1(2)]T. Then, R; = Iy. Since, the covariance matrix

is same in both the cases (rate-one and rate more than one), the capacity remains unchanged.
Indeed, the capacity remains unchanged, as we have computed it for the input distribution to
have R; = I, and in both the cases the codeword matrices remain same in the sense of their
structure. However, we have already seen in Example 6 that by going to higher rates, we achieve

more coding gain.

We have plotted the capacity for the 2 x 2 code from cyclotomic extensions and the capacity
for Alamouti’s code as a function of SNR in Fig. 3. From this plot it can be seen that the
Alamouti code has more capacity (by about 1/2 a bit at 30dB SNR with one receive antenna).
However, as number of receive antennas increase, one sees that the difference is coming down

from the Fig. 4.

5 STBCs from non-commutative division algebras

In this section we begin the STBC construction using embeddings of non-commutative division
algebras in matrix rings. First we present the basic structural properties of division algebras
in the following subsection. Then we discuss the left regular representation of division algebras

which is the counterpart of Section 2.1 for the case of field extensions.

5.1 Division Algebras: An Introduction

Given a division algebra D, its center Z(D) is the set {z € D|zd = dazV¥d € D}. It is easy to see
that Z(D) is a field; D therefore has a natural structure as a Z (D) vector space. In this paper,
we will only consider division algebras that are finite dimensional as a vector space over their
center. (Such algebras are referred to as finite dimensional division algebras.) Good references

for division algebras are [37-40].

If F' is any field, by an F' division algebra, or a division algebra over F, we will mean a
division algebra D whose center is precisely F. It is well known that the dimension [D : F] is
always a perfect square. If [D : F] = n?, the square root of the dimension, n, is known as the

degree or the index of the division algebra.



The Hamilton’s Quaternions denoted by H is the four dimensional vector space over the field
of real numbers R with basis {1,7, 7, k}, with multiplication given by 12 = j2 = —1 and ] = k =
—7i. That is, H is the set of all expressions of the form {a(= a-1) +bi+c¢j +dk | a,b,c,d € R}.
The real numbers are identified with quaternions in which the coefficients of 7, j, and k are all
zero. One can check that the multiplicative inverse of the nonzero quaternion z = a—i—bﬂ—cﬁ' +dk
is the quaternion (a/z) — (b/2)i — (¢/2)] — (d/2)k, where z = a2 + b2 + ¢? + k2. Thus, as every
nonzero element has a multiplicative inverse, H is indeed a division algebra. Clearly, the center
of Hl is just the set {a(=a-1)+0i 405 + Ol;;}, that is, under the identification described above,
the center of H is just R. Notice that H is four (= 22) dimensional over its center R, that is, H

is of degree (or “index”) 2.

By a subfield of a division algebra, we will mean a field K, such that /' C K C D. Note that
D can have other subfields K such that F' ¢ K, but we will not consider such subfields. If K is
a subfield of D, then K is a subspace of the F-vector space D, and [K : F] divides [D : F] = n?.
It is known that the maximum possible value of [K : F] is n; such a subfield is called a maximal
subfield of D. It is known that maximal subfields exist in profusion. If E is any subfield of
D, then viewing D as an E-space, we can obtain an embedding of D into M, (E) where n, is
[D : E]. In particular, we give, in the following subsections embeddings of D into M, (F') and

5.2 Codes From The Left Regular Representation of Division Algebras

The material in this section parallels the material in Section 2.1. Given an F' division algebra
D of degree n, D is naturally an F-vector space of dimension n?. We thus have a map L: D —
Endp(D), where Endp(D) is the set of F' linear transforms of the vector space D. This map is
given by left multiplication: it takes any d € D to A4, where A4 is left multiplication by d, that
is, Ag(e) = de for all e € D. It is easy to check that Ay is indeed an F-linear transform of D,
that is, Ag(fie1 + faea) = fidg(er) + faAq(e2). (Notice that it is crucial that F' be the center
of D, otherwise, the map Ay will not be F' linear, that is, A\s(fe) will not equal fAs(e)!) One
also checks that L is a ring homomorphism from D to Endp(D), that is, Mg, 14, = Agy + Aay,
Adidy = Ady Ady> and A; = 1. Since D has no two sided ideals, L is an injection, and on choosing
a basis for D as an F vector space, we will get an embedding of D in M,2(F'). Notice that the

size of the matrices involved is n? and not n. (An analogous game can be played with right



multiplication maps pg4, but there we would have pg, 4, = pa,pa,, and thus we would have a ring

anti-homomorphism from D to Endpr (D). We will not pursue this further here.)

Exactly as in the field case in Section 2.1, we write down the matrix corresponding to A4
with respect to a given basis B = {ui,ug,...,u,2} as follows: For any given basis element w;
(1 <i < n?),and for any j (1 < j < n?), let uju; = 2?221 cijyur. Then, the j-th column of
Ay; is simply the coefficients ¢;;; above, 1 < [ < n?. (Here, we use the convention that the
vectors on which a matrix acts are written on the right of the matrix as a column vector, so

the j-th column of the matrix just represents the image of the j-th standard basis vector under

the action of the matrix.) Once the matrix corresponding to each A, call it M;, is obtained
2
in this manner, the matrix corresponding to a general \g, with d = .| fiu; is just the linear
2
combination Y 1, fiM;.

Example 8. Let us consider the left reqular representation of H with respect to the basis

{1,2,5,]%}. The defining relations 12 = 72 = —1, 1) = k = —ij, etc. show that for z =
a —b —c —d
5 ~ » . . . b a d —c . . .
a+ bt + cj + dk, the matriz corresponding to Ay is c —-d a b which is precisely the

d c —b a

4 dimensional orthogonal real design of the paper [8, §III-A] of Tarokh, et. al.

In the sections ahead, we will construct other division algebras besides the quaternions, and

we can apply the left regular representation to these algebras to get codes of size m”2, where m

is the size of the signal set, and n is the index of the division algebra.

6 Cyclic Division Algebras

We describe in this section a fundamental class of division algebras, the class of cyclic division
algebras. All our examples of codes will be constructed from cyclic division algebras (although,
our machinery for constructing codes can certainly be extended, with appropriate modifications,

for other division algebras as well).

A cyclic division algebra D over the field F' is a division algebra that has a maximal subfield

K that is Galois over F', with Gal(K/F) being cyclic.

Example 9. Hamilton’s quaternions H is a cyclic division algebra! For, notice that the subset

{a+0i+cj +0k | a,b € R} is isomorphic to the complex numbers C. Let us identify the complex



numbers with this subset and write (by abuse of notation) C for this subset. Notice that C is of
dimension 2 over the center R, that is, C is a mazimal subfield of H. Now notice that C/R is
indeed a Galois extension, whose Galois group is {1,0}, where o stands for complex conjugation.

This is of course a cyclic group! Thus, H is a cyclic division algebra.

Now, given a cyclic division algebra D with center F', of index n, and with maximal cyclic
subfield K/F, let Gal(K/F') be generated by . Then o™ = 1, of course. D is naturally a right
vector space over K, with the product of the (scalar) k& € K on the vector d € D defined to be

dk. Tt is well known that we have the following decomposition of D as right K spaces:
D=K®:K32’K®---&2" 'K, (13)

where z is some element of D that satisfies the relations

kz =zo(k) Vk e K (14)

Z" =4, for some § € F* (15)

where F* is the set F' excluding the zero element and z'K stands for the set of all elements of

the form z'k for k € K. (Note that the element § above is actually in F, the center.)

Equations (13) and (14) above provide a very convenient handle into the division algebra:
all the non-commutativity is concentrated just in the way in which the element z interacts with
elements of K: pulling z from the right of k¥ € K to the left just induces o on k. Also, the field
generated by the element z over F' is of a particularly nice kind: it is given by just adjoining an
n-th root of the element . It is the existence of such a decomposition that makes cyclic division

algebras a very manageable class of division algebras.

The division algebra D, with its decomposition above, is often written as (K/F, o, ).

Example 10. One sees easily that in the case of H, one can regroup the R space decomposition
H = {a+bi+cj+ dk: | a,b,c,d € R} as H=Ca®iC, where, as in Example 9, we have identified
C with the subset {a +07+cj +01§:} of H. This gives the decomposition of H as a right C vector

“,,
4

space, with the element 1 playing the role of above. Moreover, since i2 = —1, the element 0

above is —1 in this example.



6.1 Embedding Cyclic Division Algebras Into Matrices Over the Maximal
Cyclic Subfield

Let D be a cyclic division algebra over F' of index n, with maximal cyclic subfield K. As
we have seen above, D is a right K space, of dimension n (each summand 2*K in (13) above
is a one-dimensional K space, and there are n such). To emphasize the right K structure,
let us write Dy for D viewed as a right K vector space. Now note that D acts on Dg by
multiplication on the left as follows: given d € D, it sends an arbitrary e € Dk to de. Since
this action is from the left, while the scalar action of K on Dy is from the right, these two
actions commute. That is, d(ek) = (de)k, something that is, of course obvious, but crucial. Let
us write A\g for the map from Dk to Dk that sends e € D to de. Then, the fact that the action
of \g and that of the scalars commute means that \; is a K-linear transform of Dg. We thus
have an embedding of D into Endg (D), which, once one chooses a K basis for D, translates
into the embedding of D into M, (K) that is needed for Proposition 1. A natural basis, of
course, is given by the decomposition in (13) above: we choose the basis {1,z,2%,...,2" 1}.
A typical element d = kg + zky 4+ ... + 2" 'k,_1 sends 1 to d = ko + zk1 + ... 2" Ykp_1, SO
the first column of the matrix corresponding to A4 in this basis reads kg, k1, ..., kn—1. For
the second column, note that dz = (ko + zky +...2" ky_1)z = koz + zk1z + ... 2" Yky_12 =
zo(ko) + 220(ky) +...2" 'o(kn o) + 60(ky,_1), where we’ve used the relations in (14) to pull
z from the right to the left. So, the second column reads do(kn_1),0(ko),o(k1),...,0(kn_2).
Similarly, dz? = (ko +zk1 +... 2" Yk, 1)2% = 2202 (ko) + 2302 (k1) + - - 602 (kn_2) + 20602 (ky_1).

Proceeding thus, we find that the matrix corresponding to Ay is the following:

[ ko (50(kn_1) 502(kn_2) c (50”72(1@ (50”71(161) i

k1 O'(k‘()) (50’2(14271,1) ... 50n_2(k3) 50’n_1(k‘2)

ko U(kl) UZ(kO) (50”72(k4) (50”71(163)

ks o(k) o2(ky) 50" 2(ks) S0 (ky) (16)
kot olkns)  02(knos) ... 0" 2(k) 0" L(ko) |

Notice that K does not embed as scalar matrices under this map, since, for any k € K, A\
represents multiplication by k& on the left, whereas, the scalar matrix with £ on the diagonal
represents multiplication by k on the right. In fact, Ay is the matrix with k, o(k), ..., 0" 1(k)
along the diagonal. Also, notice that the matrices (16) above are very similar to the matrices

(2); the difference is in the twist by powers of the automorphism o.

Now, we highlight an algebraic uniqueness property of the Alamouti code [7]. In Example 9



we have seen that H is cyclic: the subfield C (under the identification described in that example)
is a cyclic extension of R, with Galois group generated by complex conjugation. Let us write

k* for the complex conjugate of k € C. Thus, the STBC obtained using the division algebra H

is given by (16) with § = —1, o as the complex conjugation, i.e., the codeword matrices are of
ko —ki - . . . -
the form Bk | But this is precisely the Alamouti code [7]. And in fact this is the only
1 0

rate-1 STBC which is full rank over any finite set of C. This uniqueness of Alamouti is due to
the fact that set of quaernions H is the only division algebra which has the entire complexes as

its maximal subfield [41, Theorem 11.14].

Now, considering the fact that the field K is a cyclic extension of the field F', every k; in

the above matrix can be written as a F-linear combination of the basis of K seen as a F-vector

space. Thus, if K = F(t) for some ¢t € K, then the matrix (16) can be written as

r n—1 n—1 n—1
> foit do ( fn—l,iti> 2 (Z fn—?,iti> o™t Z frit )
i—0 i—0 i—0
n—1 n—1 n—1
Y At o (Z fO,iti> 2 (Z fnl,iti> o1 Zsz )
i=0 i=0 i=0
n—1 n—1 n—1
Z fait' o ( fl,iti> 2 (Z fo,z'ti> So! Z I3 th> (17)
i=0 i=0 =0

n—1 )
Z Jn—1,it"

L =0

n—1 :
2 (Z fn—3,iti>
i=0

We thus have the following corollary to Proposition 1:

n—1 .
o (Z fn—2,iti>
i=0

()

Corollary 10. Let F be a subfield of the complex numbers, and let D be a cyclic division
algebra over F of index n. Let K be a mazimal cyclic subfield of D. Let 6 be defined by the
cyclic decomposition given in (13) and (14). Then, any finite subset E of matrices of the form
(16) and (17) above, with the k; coming from K, will have the property that the difference of

any two elements in E will be of full-rank.

7 A Principle for Constructing Cyclic Division Algebras Using

n-th Roots of Transcendental Elements

To apply the general machinery of Corollary 10 above for constructing space time codes, we
need to generate concrete division algebras over suitable subfields of C. A natural candidate for

this is the following technique: Let us take a known cyclic Galois extension K/F, whose Galois



group is generated by some o. Suppose that [K : F] = n, so that ¢™ = 1. Let us pick a nonzero

element § € F*, and let us construct abstractly the algebra
(K/F,0,0) = K ® 2K + ®2°K + --- + ®2""'K,

where z is some symbol that satisfies the two relations given in (14), namely, kz = zo (k) for all
k € K, and 2" = §. It would be tempting to assume that this technique would automatically
give us a division algebra, but unfortunately, this is not true. What is known is that we get an
algebra whose center is F', and which is simple, that is, it has no nontrivial two sided ideals.
Not every nonzero element in this algebra need be invertible, however. Fortunately, we have the

following sufficient criterion to help us ([40, Chapter 15, Corollary d], or [41, Theorem 8.14]):

Proposition 11. In the construction above, A = (K/F,0,0) is a division algebra if the smallest
positive integer t such that &' is the norm of some element in K* is n. (The norm of an element
k € K* is the product ko(k)o?(k)...o" Y(k); this is clearly invariant under o and is hence in
F. Note that for any a € F*, the norm of a is just a™, and hence, 0™ is the norm of . Thus, n
s an upper bound for the integer t of the proposition above, and the content of the proposition

is that if t is the mazimum it can be, then A is definitely a division algebra.)

We can use Proposition 11 to construct cyclic division algebras very easily over fields of the
form F'(§), where F' is a suitable algebraic number field (for instance, when F is a finite extension
of Q), and where § is some transcendental number, for example, e, or 7, or e/* = cos(u)+j sin(u)
for any real algebraic number u. (The fact that e/* is transcendental for any real algebraic
number u follows from the Lindemann-Weierstrass Theorem ([35, pp. 277, Vol. 1]); see Section
8 below for the statement of this theorem.) Suppose that F' has a cyclic extension K of degree

n, whose Galois group is generated by some 0. We have the following:

Proposition 12. With F, K, n, z, and o as above, the algebra (K(8)/F(6),0,d) is a division

algebra.

(Here, ¢ remains transcendental over K as K is also algebraic over Q. Hence, in the field
K (0), 6 simply behaves as an indeterminate. We extend the action of o on K to the field K(4)
by defining () = 1. Thus, o acts on any quotient of polynomials in ¢ by acting only on the

coefficients and leaving all powers of ¢ fixed. We continue to use o for this extended action on

K(9).)

Proof. Suppose that 6¢ is the norm from K to F of some f/g, where f and g are polynomials



in § with coefficients in K. We rewrite this as
5tNK/F(g) = NK/F(f)a

where we have written Ng/p for the norm of an element from K to F. It is clear from the
action of o on K (§) that the degree of o(f) is the same as the degree of f (as polynomials in
8). Since N p(f) = fo(f)--- o™ 1(f), it follows that the degrees of N /p(f) and Ng,p(g) are
multiples of n, so ¢ must also be a multiple of n. The smallest possible positive ¢ is therefore n

(and as discussed before, 0™ is already a norm, so the smallest positive ¢ is exactly n). It follows

from Proposition 11 that (K (d)/(F(0),0,0) is a division algebra. O

A detailed version of the contents of the rest of this section can be found in [42, 43]. We will
always assume that 0 lies on unit circle and since there are infinite transcendental numbers on
unit circle (e/* lies on unit circle and is transcendental for any algebraic u), we always have at
least one such §. So, the task now is to construct the field F(§) and its cyclic extension K(J),

where § is a transcendental over K. To do this, we use the following theorem from [44].

Theorem 13. Let F be a field containing a primitive n'* root of unity. Then, K/F is cyclic of

degree n if and only if K is the splitting field over F' of an irreducible polynomial ™ —a € Fx].

In the following two subsections, we use some algebraic extensions of the field of rational

numbers, (Q to construct designs and in then we show that these designs achieve capacity.

7.1 F/Q is finite

Let S be the signal set of interest, i.e., we want STBCs over S. Let F' = Q(S, w, ), where m is

h root of

a multiple of n, in such a way that 2" — wy, is irreducible in F[z]. Clearly, F has a n'
unity. Let K = F(wmyn). To be able to use Theorem 13 it is sufficient to show that K is the
splitting field of " — w,,. The roots of this polynomial are w,,,w}, for i =0,1,...,n — 1. Since
K contains wy,, all these roots also lie in K. Thus, K contains the splitting field of " — wy,.
Since K is the smallest subfield containing F' and wy,,, K itself is the splitting field of " — wy,.

Thus, by Theorem 13 K/F is a cyclic extension. We give some examples to illustrate the above

construction.

Example 11. Let n = 2 and F = Q(j), K = F(\/j). Clearly, K is the splitting field of the

polynomial x> — j € Flz] and hence K/F is cyclic of degree 2. Note that x> — j is irreducible



over F, since its only roots are ++/7 and none of them is in F. The generator of the Galois
group is given by o : \/j7 — —+/7. Now, let 6 be any transcendental element over K. Then,
(K(0)/F(9),0,0) is a cyclic division algebra. Thus, we have the STBC C given by

e {[ly 5y Jmnen)

However, viewing K as a vector space over F, with the basis {1,1/j}, we have a STBC over any

finite subset of F with codewords as follows

V2 | fio+ fiivi o o(foo+ foaivi)

V2

L[| foo+ foivi 50(f1,0+f1,1\ﬁ)]_ 1 [fo,o-i-fo,n/j 5(f1,0 — f1,1V9)
fro+ fiivi  (foo— fo1vi)

where fij € S CF fori,j =0,1 and the scaling factor 1/+/2 is to ensure that the average power

transmitted by each antenna per channel use is one.

In the above example S can be any finite subset of F' and hence, we have an STBC over
any QAM constellation (since F' = Q(j)). From the structure of this STBC, we can see that it
has a structure similar to the STBC proposed in [32]. Indeed, these two are similar in the sense
of their capability of achieving the capacity, which will be shown in the next section. The code
presented in [32] is full rank for QAM constellations, as is the case with our code. However, we
get STBC’s for 2 antennas over any signal set, by choosing appropriate m. Say for instance, we
want codes over 8PSK. In this case, we can take m = 8. However, the restriction on the choice
of m affects the coding gain. This restriction on m is due to the signal set and n. And moreover,
finding m such that the polynomial z" — w,, is irreducible over F' depends on S, which might
turn out to be involved sometimes. So, in the next subsection, we give constructions which do

not depend on the signal set and n.

Example 12. Let n = 3 and suppose, we want S to be a QAM signal constellation. So, let
F =Q(j,ws) and K = F(wy). Clearly, K is the splitting field of the polynomial x® — w3 € F[x].
The polynomial x3 — ws is irreducible in F[x] because, otherwise, it would have linear factor
in Flz], which would correspond to a root of 3 — ws, but this polynomial has no roots in F.
Thus, K/F is cyclic and o : wg — wows is a generator of the Galois group. Now, let § be any
transcendental over K. Then, (K(§)/F(d),0,0) is a cyclic division algebra. Thus, we have the

STBC C with codewords as follows (obtained in a similar way as in the previous example)

1 go,0 591,2 592,1
—= | 901 G10 0922
\/5 go2 9d11 g2,0



. W ..
where g; j = 212:0 fj,l(wéwg)l = 212:0 fj,lwégﬂ) and f;; € S CF fori,j=0,1,2.

7.2 F/Q is infinite

In the last subsection, we have seen that the constructions depend on the signal set and the
number of antennas, which affects the coding gain of the STBC’s. In this subsection, we use
transcendental extensions of Q to overcome this restriction. First, we have the following corollary

to Theorem 13.

Corollary 14. Let F = Q(S,t,wy), where t is a transcendental element over Q(S). Then,

K=F(t, = tl/”) is a cyclic extension of F', and the degree of extension is n.

The above corollary gives us a cyclic extension for any n and signal set S. The irreducible
polynomial used to obtain the extension in the above corollary is ™ — ¢ and that this is a
irreducible polynomial over F' is easy to prove. So, the difficulty of finding an irreducible

polynomial over F' of degree n is overcome. Using the above corollary, we give some examples.

Example 13. Let n = 2 and F = Q(S,t), where t is transcendental over Q(S). Then, K =
F(ty = V1) is a cyclic extension of F of degree 2. The generator of the Galois group is given
by o : ty — —to. Now, let 0 be any transcendental over K. Then, (K(§)/F(d),0,0) is a cyclic
division algebra. Thus, we have the STBC C with the codewords as follows (obtained in a similar

way as in the previous example):

L | foo+ foita do(fio+ fi,1t2) ] 1 [ Jo,o + foata 0(fi0 — fit2)

V2 | fio+ fiite o(fop + foita) T V2 | fiot fiate (foo — foata)

where fo 0, fo,1, f1,0, f1,1 €S CF.

Example 14. Let n =5 and S be the signal set. Then, with F = Q(ws, S,t) and K = F(t; =

t1/5), we have K/F cyclic and o : t5 — wsts is a generator of the Galois group. Thus, we have

a STBC for 5 antennas as follows :

900 0914 0g23 0932 0ga:

1 go,1  9g1,0 592,4 593,3 594,2

C=<9—7=1| 92 91,1 920 0934 0943
V5 5

go,3 di,2 921 g3,0 g4.4

goa 913 922 G3,1 G40

where g; j = Z?:o fj,l(wgtg,)l and f;; € S CF fori,j7=0,1,2,3,4.



7.3 Mutual Information

In this section we show that our STBC’s maximize the mutual information for any number of

transmit and receive antennas. Continuing the discussion of capacity from the Subsection 4.2,

X:\/EHF—FW
n

where W (r x n) is the noise, X(r x n) is the received matrix and F is our codeword matrix

we have

(18)

which is of the form given in (17). Then, we can rewrite the above equation as

fo,0
H o0 --- 0 fo,1
. >0 H - 0 fo,2 -
X =4/— . d . + W (19)
n : : :
0 O H
% | fn—l,n—l ]

where X and W are vec(X) and vec(W) respectively (vec(x) arranges all the columns of z in

one column, one after another) and 0 is a r X n zero matrix. The matrix ® is

1
o= —

vﬁ[@§¢?¢gu.@T

where ®; fori=1,2,...,n—1,is
B Starts at Starts at Starts at Starts at 7
oth col n(n —i— l)th col n(n — i)th col n(n —i+ l)th col
. v
0t" row — 0 0 0 S0 (tn) 0 0
0 0 0 0 Soi(tn) 0
o, = : B
0 o . i} i} 0 . 5ot (tn)
ith row = oi(tn) 0 . 0 0 0 . 0
0 o (tn) 0 0 0 . 0
| 0 0 o () 0 0 . o |
(20)
and ® = diagy, (t,), where diag, (z) denotes the n x n block diagonal matrix with the block z
as each diagonal entry. O denotes the n-length zero vector, t, is the vector [1 ¢, t2 ... t" 1]
: 24 n—1 . . ) 2 .
and o'(t,) = (O’%t%)) . Note that ®;s are n x n® matrices and ® is a n° X n° matrix.

J=0



To see it more clearly, consider the STBC of Example 11. We have ® as

1 Vi 0 0
o L]0 0 1 i
V210 0 & =65
1 -5 0 0
and for the Example 12, we have ® as
(1 wg w3 0 0 0 0 0 0 ]
0 0 0 1 wy w3 0 0 0
00 00 0 0 1 w w
0 0 0 0 O 0 ¢ 5w3 5wg
dP=|1 wh w8 0 0 0 0 0 0
0 0 0 1 wg wdb 0 0 0O
0 0 0 0 dwyd 6wy 0 0 0
0 0 0 0 O 0 6§ dws dwj
|1 wf w§g 0 0 0 0 0 0

Lemma 15. Let K/F be a cyclic extension of degree n, where K = F(t, = t'/"), t,w, € F,

|t| =1 and o : t, — wpty be a generator of the Galois group. Then,

n—1 .
>t (o) —{ 0 ifk#0
=0

Proof. Note that t* = ¢! by the choice of t. If k = 0, it is trivial. So, let & # 0. Then,
"o th (oF(#))" = 0 is same as proving Y7 (t5) (o®(t})) = 0. So, we have

=0 “n

S ) (R (8)) = Yo (1) (08 ()] = S0y (1) (whta) ] = S0 (wh)' = 0. O

proving that )

We have the following theorem

Theorem 16. Let K/F be a cyclic extension of degree n with K = F(t, = t'/™), t,w, € F,|t| =
1 and o be a generator of the Galois group. Let 6 (|6| = 1) be a transcendental element over K.
Then, the design given in (17), arising from the division algebra (K (0)/F(9),0,9), achieves the

capacity. i.e., the capacity of the new channel H® is C(p,n,r).

Proof. We have the capacity of the equivalent channel H®, denoted by C'p a(p, n,r) (DA standing

for Division algebras), as

Cpalp,n,r) = %EH log, (det (L, + 2 () (0)™))

n



The factor % is to compensate the n channel uses. Using the above lemma and the fact that ¢

lies on the unit circle, it is easy to see that ®® = I ». Simplifying the above, we have
Cpalp,n,r) = LEulog, ((det (I, + LHH"))") = Eylog, (det (I, + LHH)) = C(p,n, 7).

O

8 Brauer’s Division Algebras

We present here a different class of examples; this is a construction due to Brauer ([45], see
also [39, §2.8]). Let [ and n be any two integers such that [ and n have ezactly the same prime
factors, and such that [ divides n (so the exponent of every prime factor of [ is not more than
the exponent of the same prime factor of n). Let w; be a primitive [-th root of unity, and
let k£ be the field Q(w;). Let 1, ..., z, be indeterminates, and consider the rational function
field K = k(x1,...,%,), which is the set of all quotients of polynomials in the variables z1,
.., Ty with coefficients from k. Let o be the automorphism of this field that takes z; to zo,
%o to T3, ..., Tn_1 t0 Ty, and z, to z1, and that acts as the identity on k. (Thus, o takes a
polynomial f(z1,z2,...,zy,) to the polynomial f(x9,z3,...,21).) Let F be the fixed field of o
(so [K : F] = n). As in the beginning of Section 7, we may abstractly construct the algebra
(K/F,0,w)) = K ® 2K + ®2°K +--- + ®2z""'K, where z is some symbol that satisfies the two
relations given in (14), namely zk = o(k)z and 2™ = w;. In general, we are only guaranteed that

we will get a simple algebra, but Brauer ([45], [39, §2.8]) proved the following:

Theorem 17. With notation as above, the algebra (K/F,o,w;) is a division algebra. It is of

index n, and is clearly cyclic.

8.1 STBCs using Brauer’s division algebras

We can use Theorem 17to construct STBCs as follows. Let n and [ be as above, and let «aq,
ag,...,a, be algebraically independent transcendental numbers. (We will address the issue of
finding such numbers momentarily). Let m be given. Assume that m > n. Take as the signal

set these n transcendental numbers a, ..., oy, along with as many powers o (i = 1,...,n,
j =2,3,...) as necessary to get a signal set of size exactly m. View the signal set as elements
of the field k(ay, ..., ay), where k, as above, is Q(w;). Note that because the «; are chosen to
be algebraically independent transcendental elements, the «; just act as indeterminates over k.

The automorphism ¢ then sends a; to ag, ay to a3, and so on, and «, to ay. (Similarly, o sends



a{ to ag, and so on.) Embedding the cyclic division algebra (K/F, o, w;) into M, (k(aq,...,ap))
as in Section 6.1, we find that the set of matrices of the form (16), with the k; coming from the
signal set, with § = w; and with o acting on the «; (and their powers) as above, is a full rank
rate-optimal space time block code, with m™ elements. The entries of the matrices will either

be elements of the signal set or will be elements of the signal set multiplied by w;.

If m < n, then we may take our signal set to be any subset of «ay, ..., a, of cardinality
m. The same procedure as above will give us a full rank rate-optimal space time block code of
size m". The entries of the matrices will not be restricted to the signal set, but will either be

elements from the larger set «q, ..., an, or will be one of these elements multiplied by wj.

We now address the issue of finding n algebraically independent transcendental numbers.

For this, we have the following (see [35, pp 277, Vol 1]):

Theorem 18. (Lindemann- Weierstrass) If uy, us, ..., u, are algebraic numbers that are linearly
independent over Q, then the complex exponentials e**, e¥2, ..., €% are algebraically independent

over the field of algebraic numbers.

We can use this theorem as follows to get a signal set, all of whose elements are on the unit
circle: Pick wq, ..., u, to be real algebraic numbers that are linearly independent over Q (for
example, 1, /2, v/3, ...). Then juy, - -- ju, will also be linearly independent over Q. Hence, we

may take a; = e/, ap = /%2, ..., o, = €7 to be our algebraically independent transcendental

elements, all of which are on the unit circle.

Note that since the only requirement on the u; is that they be linearly independent over Q,

we can choose the u; so that the points e/" can be essentially in any region of the unit circle.

Example 15. Using these same ideas, let us construct a code for three antennas, using a signal

set of siz elements. We take oy = €7, ag = ejﬁ, and ag = ej‘/g, and we take our signal set to

be ay, o, as, a3, az, and a%. We take l to be 3, that is, the “w;” in the example is the primitive

2mj /3

third root of unity ws = e Thus, our code will consist of all 63 = 216 matrices of the form

b wyo(a)™ w0 (ay)
% O'(Ckp)k w3 - o2 (ap)™
oy (o)’ o*(ap)"*

where k, [, and m can be any of {1,2}, where p, q, and r can be any of {1,2,3}, and where

o(ar) = ag, o(ag) = az, and o(a3) = oy (and so o%(ay) = a3, etc.).



9 Decoding and Simulation results

9.1 Decoding

A Linear Dispersion code consists of n x [ matrices of the form

Q
C=> sqdq+s;B, (21)
g=1
where s, belongs to a signal set S and Ay, B, where ¢ = 1,2, ---, () are 2¢Q) number of n x/ complex

matrices that define the code. In [6] these matrices are chosen to optimize an information

theoretic criterion and not the rank of the code. Observe that the codeword matrices consist of

entries that are complex linear combinations of signal points and their conjugates.

The codes of this paper can easily be seen to constitute a special case of Linear Dispersion
codes where n = | = (), all the matrices B;,q = 1,2,---,(@) are zero matrices and A, =
M? q=1,2,---,n where M is given by (1). Hence, the efficient suboptimal decoding algorithms
mentioned in [6] for the general class of Linear Dispersion codes can be used to decode the codes
of this paper. In particular, the sphere decoding [21] can be used effectively for decoding the
STBCs obtained from both commutative and non-commutative division algebras, under some
conditions on the rate and number of receive antennas. However, we can employ the generalized
sphere decoder [22] for decoding STBCs for arbitrary rate and arbitrary number of receive

antennas.

9.2 Simulation Results

In this section, we present the simulation results for space time block codes constructed using
field extensions as well as cyclic division algebras. We also point out the performance of STBCs
from cyclic division algebras in terms of how close they are to the actual capacity of the MIMO

channel. We have employed the sphere decoding algorithm [21] for our simulations.

9.2.1 STBCs from field extensions

fi fo
channel use and from 256-QAM for 8 bits per channel use. And for rate-2 STBCs we used the

We use the rate-1 STBC [ Jo Jh ], with fy, f1 coming from 16-QAM signal set for 4 bits per

one constructed in Example 6 with f; ; coming from 4-QAM for 4 bits per channel use and from



16-QAM for 8 bits per channel use. Figure 5 shows plots for 2 transmit and 2 receive antenna
system with 4 bits per channel use. From the plot, it can be seen that the though the LD code
performs at better than rate-1 code, the rate-2 code performs better than LD code at high SNRs.
This is because, the LD codes are constructed to maximize the mutual information and not the
diversity. And from Figure 6, it is clear that though the rate-1 code performs better than LD
code only at very high SNRs, rate-2 code outperforms the LD code at medium and high SNRs.

This motivates the use of high rate codes.

9.2.2 STBCs from cyclic division algebras

We use the code of Example 11 with 4 QAM and 16 QAM for 4 and 8 bits per channel use
respectively. The value of § has been arbitrarily chosen to be ¢/%°. Figure 7 shows the BER
vs SNR for 2 transmit and 2 receive antennas. It can be seen that at 107 BER, STBC from
division algebras outperforms the Damen’s rate-2 STBC (B3 4) by 0.5 dB for 4 bits per channel
and by 0.75 dB for 8 bits per channel use. Comparing the BER curves corresponding to the LD
code in Figure 5 and Figure 6 with the BER curves in Figure 7, we can see that our code from
cyclic division algebras performs better than LD code by about 3 dB at 10> BER. From the
capacity calculations of [46], it can be seen that for 4 and 8 bits per channel use, i.e., with 4
QAM and 16 QAM our code is less than 1 dB away from the capacity. Figure 8 gives the BER
vs SNR for 2 transmit and 10 receive antennas. Here also, it can be seen that we outperform
the Damen’s rate-2 STBC by 0.25 dB for both 4 and 8 bits per channel use. In this case, our
code is less than 0.25 dB away from the capacity of the channel and coincides with capacity of

channel used with 4 QAM and 16 QAM as given in [46].

10 Discussion

The construction of full-rank codes using the both commutative and non-commutative division
algebras have been studied. For STBCs obtained using commutative division algebras, we have
studied the coding gains achieved by them and for some special cases, we have studied the
capacity of these codes. We have proved that the STBCs obtained from cyclic division algebras
are information lossless. Though Brauer algebra is a cyclic division algebra, the construction of
STBCs from them in this paper does not give information lossless STBCs. Another construction,
a lengthy and complicated one, of STBCs from Brauer division algebras which yields information

lossless STBCs, is given in [43].



Some of the possible directions for further research are:

It is shown in [6] that the codes obtained by Orthogonal designs generally fall short of
achieving capacity (except the Alamouti code for 2 transmit and 1 receive antenna) and
it will be interesting to see capacity that the codes presented in this paper achieve. Note

that we have discussed this aspect only for codes from cyclotomic extensions.
Do some of the codes constructed admit simpler decoding?

In the first half of the paper where we construct codes using field extensions we have
studied primarily cyclotomic field extensions. Code constructions using non-cyclotomic

field extensions may yield some interesting codes.

One of the advantages of the ”twisting” by o in (16) is that it makes the STBCs information
lossless under some conditions. What are the possible advantages due to this ”twisting”
7 Is it possible to have simpler decoding algorithm in this case? These aspects is worth

investigating further.

It would be interesting to see how the codes constructed in this paper perform when the

channel is fast fading.
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