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Perfect Space-Time Codes for Any Number of
Antennas

Petros Elia, B. A. Sethuraman and P. Vijay Kumar

Abstract— In a recent paper, perfect (n×n) space-time codes
were introduced as the class of linear dispersion space-time codes
having full rate, non-vanishing determinant, a signal constellation
isomorphic to either the rectangular or hexagonal lattices in 2n2

dimensions and uniform average transmitted energy per antenna.
Consequence of these conditions include optimality of perfect
codes with respect to the Zheng-Tse Diversity-Multiplexing Gain
tradeoff (DMT), as well as excellent low-SNR performance. Yet
perfect space-time codes have been constructed only for 2, 3, 4
and 6 transmit antennas.

In this paper, we construct perfect codes for all channel
dimensions, present some additional attributes of this class of
space-time codes and extend the notion of a perfect code to the
rectangular case.

Index Terms— perfect space-time codes, diversity-multiplexing
tradeoff, division algebras, MIMO.

I. INTRODUCTION

Consider the quasi-static, Rayleigh fading, space-time (ST)
MIMO channel with quasi-static interval T , nt transmit and
nr receive antennas. The (nr × T ) received signal matrix Y
is given by

Y = θHX + W (1)

where X is a (nt×T ) code matrix drawn from a ST code X , H
the (nr×nt) channel matrix and W represents additive noise.
The entries of W are assumed to be i.i.d., circularly symmetric,
complex Gaussian CN (0, 1) random variables. The real scalar
θ ensures that the energy constraint

θ2||X||2F ≤ T SNR, all X ∈ X , (2)

is met.
Let

Z = {θX | X ∈ X},
denote the normalized (for SNR) version of the ST code X .
For the most part, our interest is in square space-time codes,
i.e., space time codes X where T = nt in which case we
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will use the symbol n = nt = T to denote their common
dimension.

A ST code is said to meet the rank criterion if the difference
∆X = X1 −X2 of every pair of distinct code matrices, X1,
X2 has rank equal to min{nt, T}. A ST code X is said to be
a linear dispersion code over a constellation A if every code
matrix X has a unique expansion of the form

X =
K∑

k=1

akΛk, ak ∈ A,

where the matrices Λk are fixed and independent of the
message and where conversely, every matrix of the form on
the right is a code matrix. A linear-dispersion code over a
constellation A is said to be full-rate over the constellation A
if K = ntT .

A. Diversity-Multiplexing Gain Tradeoff

Multiple transmit and receive antennas have the potential of
increasing reliability of communication as well as permitting
communication at higher rates. In a recent landmark paper,
Zheng and Tse [3] showed that there is a fundamental tradeoff
between diversity and multiplexing gain, referred to as the
diversity-multiplexing gain tradeoff (DMT). The space-time
code X transmits

R =
1
T

log(| X |)
bits per channel use. The normalized rate parameter r given by
R = r log(SNR) is called the multiplexing gain. The diversity
gain d(r) corresponding to multiplexing gain r is then defined
by

d(r) = − lim
SNR→∞

log(Pe)
log(SNR)

,

where Pe denotes the probability of codeword error. We adopt
the exponential equality notation of [3] under which this
relationship can equivalently be expressed by

Pe =̇ SNR−d(r).

A principal result in [3] is the proof that for a fixed integer
multiplexing gain r, and T ≥ nt + nr − 1, the maximum
achievable diversity gain d(r) in the case of Rayleigh fading,
i.e., when the entries of the channel matrix H are i.i.d and
drawn from a CN (0, 1) distribution, is governed by

d(r) = (nt − r)(nr − r). (3)

The value of d(r) for non-integral values of r is obtained
through straight-line interpolation. The plot in Fig. 1 is for the
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Fig. 1. The DMT in the case of 4 transmit and 4 receive antennas.

case nr = nt = T = 4. It has been shown in [2] that space-
time codes from cyclic division algebras (CDA) with a certain
non-vanishing determinant (NVD) property, achieve the DMT
with minimum possible value T = nt of delay parameter T .

Perfect codes, described in detail below, are a subclass of
space-time codes with the NVD property whose construction
is based on CDAs and whose vectorized code matrices are as-
sociated with the cubic lattice in 2ntT -dimensional Euclidean
space. In [19], the authors present constructions of CDA-based
ST codes with the NVD property in which the constellation of
code matrices in 2ntT -dimensional Euclidean signal-space is
more energy efficient. In [20], the authors show that in order to
construct CDA-based space-time codes with a prescribed NVD
property whose vectorized code matrices form the densest
possible lattice, it is necessary to minimize the discriminant
of a maximal order (see [20] for a definition) within a CDA.
A lower bound to the value of this discriminant is provided
as well as example constructions achieving this lower bound.
See [23], [22], [21] for more recent results in this direction.

B. Perfect Codes

In [1, Definition 1], perfect codes are defined as n × n
space-time codes that satisfy the following conditions.

P1 Full rate: the code is a full-rate linear-dispersion code
using n2 information symbols either QAM or HEX;

P2 Non vanishing determinant: the minimum determinant of
the infinite code is non zero (so that in particular the code
meets the rank criterion)

P3 Good constellation shaping. the energy required to send
the linear combination of the information symbols on
each layer is similar to the energy used for sending the
symbols themselves (we do not increase the energy of
the system in encoding the information symbols);

P4 Uniform average transmitted energy. it induces uniform
average transmitted energy per antenna in all time slots,
i.e., all the coded symbols in the code matrix have the
same average energy.

Perfect codes are of interest as the above attributes guarantee
excellent performance as measured by error probability. We
extend the definition of perfect codes here to include rectan-

gular (nt×T ) codes by replacing properties P1, P2 above by
the slight modifications:
P1 Full rate. The code is a full-rate linear-dispersion code

where the (ntT ) coefficients representing the message
symbols are drawn from either the QAM or HEX con-
stellations.

P2 Non vanishing determinant: For every pair X1, X2 of
distinct code matrices, the determinant det(∆X∆X†),
∆X = X1 − X2, prior to SNR normalization (this is
explained in greater detail below), is lower bounded by a
constant that is greater than zero and independent of the
code size.

Properties P3, P4 remain the same. In all of our constructions,
we will meet property P3 by ensuring that the signalling set,
obtained by code-matrix vectorization, is isometric to either
QAMn2

or else HEXn2
.

It can be shown that properties P1 through P4 imply
that when perfect codes are operated over a Rayleigh-fading
channel, they are optimal with respect to the DMT of this
channel. DMT optimality of a space-time code ensures good
performance at large values of SNR. The known constructions
of perfect codes exhibit in addition, excellent low-SNR per-
formance as well.

C. Results

In the construction of perfect codes in [1], the authors
restrict their choice of a so-called non-norm element γ to the
ring of integers lying in a certain algebraic number field. This
restriction was a key factor preventing the authors of [1] from
generalizing their construction of perfect codes to values of
nt other than 2, 3, 4 and 6. While a restriction to the ring of
integers results in better performance, the defining properties
of a perfect code P1 through P4 can be satisfied even without
this requirement. Choosing the non-norm element γ suitably
within the larger number field containing the ring of algebraic
integers, and observing, with proof, that a key construction in
[14] of unitary matrices for the prime case holds in a more
general situation, permitted us to extend the construction of
perfect codes to any value of the integer nt.

Thus in this paper explicit constructions of perfect space-
time codes for any number nt of transmit antennas and any
number nr of receive antennas are provided. Rectangular
perfect codes are constructed for any delay T that is a multiple
of nt. In addition, the following additional attributes of perfect
codes are established:
• Approximate universality: i.e., the property that perfect

codes achieve the diversity-multiplexing gain tradeoff
(DMT) for any statistical description of the channel
fading coefficients hij

• Residual approximate universality: by which we mean
that perfect codes have the property that if certain rows
of each space-time code matrix are deleted, then the
resultant code is approximately universal for the corre-
spondingly lesser number of transmit antennas

• Information losslessness: this concept was introduced in
[29]. Our codes are information lossless over the class of
rotationally invariant [38] ST channels.
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Section II provides background on space-time codes con-
structed from cyclic division algebras. The general construc-
tion of perfect codes is provided in Section III. Examples
and simulation results are also to be found here. Rectangular
versions of perfect codes are constructed in Section IV. Addi-
tional attributes of perfect codes are established in Section V.
Many proofs can be found in the appendices. A summary of
mathematical notation employed appears in Appendix IV.

II. SPACE-TIME CODES FROM CYCLIC DIVISION
ALGEBRAS

A. Division Algebras

Division algebras are rings with identity in which every
nonzero element has a multiplicative inverse. Thus unlike
in the case of fields, multiplication of two elements is not
necessarily commutative. The center F of any division algebra
D, i.e., the subset comprising of all elements in D that
commute with every element of D, is a field. The division
algebra is a vector space over the center F of dimension n2

for some integer n. A field L such that F ⊂ L ⊂ D and such
that no proper subfield of D contains L is called a maximal
subfield of D (Fig. 2). Every division algebra is also a vector
space over a maximal subfield and the dimension of this vector
space is the same for all maximal subfields and equal to n. This
common dimension n is known as the index of the division
algebra. We will be interested only in the case when the index
is finite.

L
F

D
n
n Division Algebra

Centre
Maximal Sub�eld

Fig. 2. Structure of a Cyclic Division Algebra

B. Cyclic Division Algebras

Our interest is in cyclic division algebras, i.e., division
algebras in which the center F and a maximum subfield L
are such that L/F is a cyclic (Galois) extension. CDAs have
a simple characterization that aids in their construction, see
[45], Proposition 11 of [8], or Theorem 1 of [15].

Let F, L be number fields, with L a finite, cyclic Galois
extension of F of degree n. Let σ denote the generator of the
Galois group Gal(L/F). Let z be an indeterminate satisfying

`z = zσ(`) ∀ ` ∈ L and zn = γ,

for some non-norm element γ ∈ F>, by which we mean some
element γ having the property that the smallest positive integer
t for which γt is the relative norm NL/F(u) of some element
u in L>, is n (by S> we denote the group of units of some

set S). Then a CDA D(L/F, σ, γ) with index n, center F and
maximal subfield L is the set of all elements of the form

n−1∑

i=0

zi`i, `i ∈ L. (4)

Moreover it is known that every CDA has this structure. It can
be verified that D is a right vector space (i.e., scalars multiply
vectors from the right) over the maximal subfield L.

C. Matrix Representation
The matrix corresponding to an element d ∈ D corresponds

to the left multiplication by the element d in the division
algebra. Let λd denote this operation, λd : D → D, defined
by

λd(e) = de, ∀ e ∈ D.

It can be verified that λd is a L-linear transformation of D.
From (4), a natural choice of basis for the right-vector space
D over L is {1, z, z2, . . . , zn−1}. A typical element in the
division algebra D is d = `0 + z`1 + · · ·+ zn−1`n−1, where
the `i ∈ L. By considering the effect of multiplying d×1, d×z,
. . . , d× zn−1, one can show that the L-linear transformation
λd under this basis has the matrix representation



`0 γσ(`n−1) γσ2(`n−2) . . . γσn−1(`1)
`1 σ(`0) γσ2(`n−1) . . . γσn−1(`2)
...

...
...

. . .
...

`n−1 σ(`n−2) σ2(`n−3) . . . σn−1(`0)


 , (5)

known as the left regular representation of d.
A set of such matrices, obtained by choosing a finite subset

of elements in D constitutes the CDA-based ST code X . The
non-commutativity of the CDA endows the codeword matrices
(and their differences) with a key determinant property.

Lemma 1: Let A denote the (n×n) matrix that is the left-
regular representation of the element

ψ =
n−1∑

i=0

`iz
i, `i ∈ L.

Then det(A) ∈ F.
Proof: See [47], [2].

III. PERFECT CODE CONSTRUCTION FOR
GENERAL n

A. QAM and HEX Constellations
In this section, we follow [15], [16], [1] and show how a

CDA-based ST code with NVD can be constructed, that is a
linear-dispersion code over the QAM constellation. The con-
struction is also extended to the case of the HEX constellation.
The QAM and HEX constellations are given respectively by

AQAM = {a + ıb | |a|, |b| ≤ (M − 1), a, b odd} ,

AHEX = {a + ω3b | |a|, |b| ≤ (M − 1), a, b odd} .

The AQAM constellation has the property that

u ∈ AQAM ⇒ | u |2≤ 2M2.

Since
AQAM ⊆ Q(ı)

it is natural to consider CDA with center F = Q(ı).
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B. Canonical construction of a CDA-based space-time code

Let F = Q(ı), L be a n-degree cyclic Galois extension
L/F of F and let σ be the generator of the Galois group
Gal(L/F). Let OF,OL denote the ring of algebraic integers
in F,L respectively. It is known that OF = Z[ı]. Let γ ∈
F, |γ| = 1, be a non-norm element of unit magnitude and
D(L/F, σ, γ) denote the associated CDA. Note that we do
not insist that γ ∈ OF.

Let {β1, . . . , βn} form an integral basis for OL/OF and
define the set

AQAM(β1, β2, . . . , βn) =

{∑

i

aiβi | ai ∈ AQAM

}
.

Thus AQAM(β1, β2, . . . , βn) is the set of all linear combina-
tions of the basis elements βi with coefficients lying in AQAM.

For the discussion in the next two subsections, Section III-C,
III-D, we will presuppose the existence of such a canonical
cyclic division algebra. In Sections III-E, III-F, III-G we
discuss selection of the non-norm element as well as of
the integral basis {β1, β2, · · · , βn}, we will explain how the
desired cyclic algebra is actually to be constructed.

Consider the space-time code X comprising of matrices
corresponding to the left-regular representation as in (5) of
all elements d in CDA D which are of the form

d =
n−1∑

i=0

zi`i , `i ∈ AQAM(β1, β2, . . . , βn).

C. Full-rate property

The space-time codes under this setup are linear-dispersion
ST codes as can be seen from the expansion below

X =
n−1∑

i=0

n−1∑

j=0

fij Γi diag
(
βj , σ(βj), · · · , σn−1(βj

)
(6)

where fij ∈ AQAM and where the cyclic-shift-and-multiply-
at-end-by-γ matrix Γ is given by

Γ =




0 0 · · · 0 γ
1 0 · · · 0 0
0 1 · · · 0 0

...
0 0 · · · 1 0




. (7)

Note that by taking the sum on j inside, we can write

X =
n−1∑

i=0

Γi diag
(
`i, σ(`i), · · · , σn−1(`i)

)
(8)

where

`i =
n−1∑

j=0

fijβj ,

and this is the expansion of the code matrix in terms of its
n “threads” or “layers”. The full rate property holds since we
are in effect transmitting n QAM symbols per channel use.

Example 1: When n = 3, 9 QAM symbols are trans-
mitted: 


`0 γσ(`2) γσ2(`1)
`1 σ(`0) γσ2(`2)
`2 σ(`1) σ2(`0)


 =

3∑

i=1

f0,i




βi

σ(βi)
σ2(βi)


 +

3∑

i=1

f1,i




γσ2(βi)
βi

σ(βi)


 +

3∑

i=1

f2,i




γσ(βi)
γσ2(βi)

βi


 =




`0

σ(`0)
σ2(`0)


 +




γσ2(`1)
`1

σ(`1)


 +




γσ(`2)
γσ2(`2)

`2




and the last three matrices are the 3 threads/layers.

D. Non-vanishing determinant property

From Lemma 1, it follows that the determinant of every such
left-regular representation lies in F = Q(ı). Let γ = a

b , where
a, b ∈ Z[ı]. By scaling every entry in columns 2, 3, . . . , n of
every code matrix in the space-time code X by the element
b in Z[ı] if necessary, we can ensure that every entry in the
scaled matrix lies inOL. We do not need to scale the entries in
the first column since γ does not appear in the first column of
any code matrix. It follows that the determinant of the scaled
matrix lies in

OL ∩ F = OF = Z[ı].

Consequently, the determinant of the unscaled matrix lies in
the set 1

bn−1Z[ı] and in this set, the magnitude of every element
is bounded below by 1

|b|n−1 . The NVD property of the ST
code constructed now follows since the difference of any two
elements in the CDA is also an element of the CDA. This is
regardless of the size M2 of the QAM constellation.

We have thus shown that this construction of space-time
codes is endowed with properties P1, P2.

E. Constellation Shaping and Uniform Energy Property

We next show how a proper choice of non-norm element
γ and of integral basis {β1, β2, · · · , βn} for OL/OF, will
endow the ST code with good signal constellation (Property
P3) and uniform transmitted power (Property P4). As shown
above, each code matrix X may be regarded as being built up
of n layers, with the ith layer, 0 ≤ i ≤ n− 1 comprising of
the elements that are a function of the ith symbol `i. We begin
by rearranging the entries of the code matrix X in a layer-by-
layer fashion to form a vector lay(X) as shown below.
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


l0
σ(l0)
σ2(l0)
·
·
·

ln−1

γσ(ln−1)
γσ2(ln−1)

...




︸ ︷︷ ︸
lay(X)

(9)

=




B0 G
. . .

Bn−1G




︸ ︷︷ ︸
Υ

·




f0,0

f0,1

f0,2

·
·
·

fn−1,0

fn−1,1

fn−1,2
...




︸ ︷︷ ︸
f

(10)

where

G =




β0 · · · βn−1

σ(β0) · · · σ(βn−1)
...

σn−1(β0) · · · σn−1(βn−1)


 , (11)

and where the Bi, are of the form

Bi = diag(1, 1, . . . , 1︸ ︷︷ ︸
n−i entries

, γ, γ, . . . , γ︸ ︷︷ ︸
i entries

).

Suppose next that it were possible to choose an integral
basis {β1, β2, · · · , βn} such that the normalized matrix

U(G) = κG, (12)

where the scale factor κ lies in F, is unitary and if in addition
it were possible to choose the non-norm element γ to have
unit magnitude, i.e., chosen such that |γ| = 1.

We would then have that the scaled block-diagonal trans-
formation matrix κΥ is unitary. As a consequence we would
have that,

E(lay(X)lay(X)†) = ΥE(ff †)Υ†

=
1
κ2
EI

where

E =
1

|AQAM|
∑

u∈AQAM

|u|2 =
2(M2 − 1)

3

From this it follows that

• the set {lay(X) | X ∈ AQAM} is isometric to the set

An2
t

QAM which is the constellation shaping desired
• at each time slot, on average, each antenna transmits the

same amount of energy.
To reiterate, a sufficient condition for the uniform constellation
and equal energy properties to hold is that the matrix U(G) is
unitary and the element γ have magnitude 1. In the subsections
to follow, we show how a suitable unit magnitude element γ
and a suitable unitary matrix U(G) can always be found.

F. Finding a unit-magnitude, non-norm element γ

Let us denote the lth primitive root of unity by ωl, i.e.
ωl = e2πı/l. Let k∗ denote the complex conjugate of k ∈ C.

Proposition 2 (non-norm element: QAM case): Let
n = 2sn1 where n1 > 1 is odd. Then there exists a
prime p congruent to 1 mod n1. Furthermore, there
exists a prime q that is congruent to 5 mod 2s+2 such
that the element q (mod p) of Zp has multiplicative
order n1 and which factors in Z[ı] as q = π1π

∗
1 for a

suitable prime π1 ∈ Z[ı]. Let K′ be the unique subfield
of Q(ωp) of degree n1 over Q. Let K be the composite
of K′ and Q(ı) and let L = K · Q(ω2s+2). Then L is a
cyclic extension of Q(ı), and the element

γ =
π1

π∗1
is an (algebraic) unit-magnitude element that is a non-
norm element for the extension L/Q(ı). When n = 2s,

i.e., n1 = 1, we can take L = Q(ω2s+2) and γ =
1 + 2ı
1− 2ı

.
Proof: See Appendix I

Proposition 3 (non-norm element: HEX case): Let
n = 2sn1, s ∈ {0, 1}, where n1 is odd. Then there exists
a prime p > 3 congruent to 1 mod n1. Furthermore,
there exists a prime q that is congruent to 1 mod 3 and
which has order ord(q)|Z>p = n1 and splits in Z[ω3] as
q = π1π

∗
1 for a suitable prime π1 ∈ Z[ω3]. If s = 1 then

q can be chosen to equal 3 (mod 4). The fields Q(ωp)
and Q(ω3) are linearly disjoint over Q. Let K be the
unique subfield of Q(ω3)(ωp) of degree n1 over Q(ω3)
and let L = K ·Q(ω2s+1). Then L is a cyclic extension
of Q(ω3), and the element

γ =
π1

π∗1
is an (algebraic) unit-magnitude element that is a non-
norm element for the extension L/Q(ω3). When n1 = 1,
then s = 1 and we can take L = Q(ω3)(ı) and γ =
3 + ω3

3 + ω2
3

.

Proof: See Appendix I
Some example non-norm elements identified in this way are

given in Table I.
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TABLE I
NON-NORM ELEMENTS

No. of Antennas Non-norm ‘γ’
2 (2 + ı)/(1 + 2ı)

(1 + 4ı)/(1− 4ı)
3 (3 + ω3)/(3 + ω∗3)

(1 + 9ω3)/(9 + ω3)
4 (2 + ı)/(2− ı)
5 (3 + 2ı)/(3− 2ı)
6 (3 + 7ω3)/(3 + 7ω∗3)
7 (8 + 5ı)/(5 + 8ı)
8 (2 + ı)/(1 + 2ı)
9 (3 + ω3)/(1 + 3ω3)

(4 + 9ı)/(9 + 4ı)

Remark 1: As we shall see, perfect codes can be
constructed using rational-valued γ, i..e, γ ∈ F \ OF.
For the limited situations (n = 2, 3, 4, 6) where perfect
codes can also be constructed using an algebraic integer
γ ∈ OF, the use of an algebraic integer yields a larger
value of non-vanishing determinant which makes for
better error-probability performance.

G. Finding Unitary Matrices G

The goal here is to construct unitary matrices U(G) of the
form

U(G) = κG, (13)

G =




β0 · · · βn−1

σ(β0) · · · σ(βn−1)
...

σn−1(β0) · · · σn−1(βn−1)


 ,(14)

where
• F is either Q(ı) or else Q(ω3),
• K is a cyclic, degree-n extension of F with σ as the

generator of the Galois group, as in Propositions 2, 3,
• {βi} is an integral basis for K/F,
• and the scalar κ belongs to F.
We follow the approach adopted in [10]-[14] and regard the

matrix G as the generator matrix of the lattice {λT G | λ ∈
Zn}.

We will first construct unitary matrices U(G) of the form
in (13), for the cases when n = n1 is odd and n = 2s

respectively. The Kronecker product of the resulting matrices
will turn out to yield a unitary matrix U(G) for the general
case n = 2sn1. Without loss of generality, we will restrict
our attention to the QAM case, corresponding to F = Q(ı).

1) Case n = n1 is odd. : Recently, the authors in [14],
Section V, give a detailed exposition of a previous result in
[10] of an explicit construction of unitary matrices for the
case n = p, p an odd prime. As we show below, the same
construction carries over to the more general case of n = n1,
n1 an odd integer.
• pick an odd prime p ≡ 1 (mod n1) (by a theorem of

Dirichlet, (see Theorem 10), this can always be done)
• let ω = ωp = e

2πı

p . Let σ denote the generator of the
cyclic Galois group Q(ω)/Q.

• let r be a primitive element of the field Z>p .
• set m = p−1

2 , and α =
∏m−1

k=0 (1− ωrk

)
• let λ be such that λ(r − 1) ≡ 1 (mod p) and set

z = ωλα(1− ω)
• Let the automorphism σ be defined by σ(ω) = ωr, and

set x =
∑ p−1

n1
k=1 σkn1(z).

The element x lies in the subfield K′ of Q(ω) fixed by the
subgroup < σn1 > generated by σn1 . This subfield K′ is
a degree-n1 extension of Q. Then the matrix U(Gn1) given
below is unitary.

U(Gn1) = (15)

1
p




x σ(x) · · · σn1−2(x) σn1−1(x)
σ(x) σ2(x) · · · σn1−1(x) x
σ2(x) σ3(x) · · · x σ(x)

...
...

σn1−1(x) x · · · σn1−3(x) σn1−2(x)




Since Q(ω) and Q(ı) are linearly disjoint over Q, the field
K = K′(ı) will be cyclic over Q(ı), and the elements x,
σ(x), . . . , σn1−1(x) will be an integral basis for K/Q(ı).
Proof: See Appendix II.

More specifically the first row of U(Gn1) is given by

U(Gn1)(0, j) =
1
p
ωλα

p−1
n1∑

k=1

(−1)n1k+j(1− ωrn1k+j

)

for j = 0, .., n1 − 1 and the rest of the circulant matrix by:

U(Gn1)(i + 1, j) = U(Gn1)(i, j + 1 mod n1),

for i = 0, · · · , n1 − 2.

Example 2: The first row of the 9-dimensional U(G9)
is 1

19

(
−2.831 7.298 −1.435 4.149 −8.688 −8.451 −

6.414 5.355 − 7.983
)

and every successive row is
obtained by a single left cyclic shift of the previous row.
The matrix was obtained by setting n1 = 9, p = 19, r =
3 and λ = 10.

Similarly the first row of the 15-dimensional U(G15) is
1
31

(
−2.242 6.361 −10.78 −8.071 7.253 −9.45 1.127 −

3.334 8.806 −4.391 10.442 5.404 −11.12 −11.004 −
9.989

)
obtained by setting n1 = 15, p = 31, r = 3

and λ = 16.

2) Case n = 2s [12]: We once again set F = Q(ı) and
consider K = Q(ωm′) where m′ = 2s+2 and ωm′ =
ω = e2πı/m′

the m′th primitive root of unity. Q(ω) is
a cyclic Galois extension over Q(ı). Since the order of 5
in Z>m′=̃Gal(K/Q) is m = 2s = φ(m′)

2 , we see that
for σ ∈ Gal(Q(ω)/Q) such that σ(ω) = ω5, we have
that σ(ı) = σ(ω2s

) = ω2s5ω(1+4)2s

= ω2s

ω2s+2
=

ω2s

= ı which gives us Gal(K/Q(ı)) =< σ >. Take

6



{ω0, ω1, ω2, · · · , ωm−1} to be the integral basis over Q(ı),
and set

U(G2s) =
1√
m

[
σk(ωi)

]

i,k

=
1√
m

[
ωi·5k

]

i,k

(16)

Now for ri = [1 ω5i

ω5i2 ω5i3 · · · ω5i(n−1)], i =
0, 1, · · · ,m−1, being the ith row of

√
mU(G2s)T in (16),

we have that rir
†
j =

∑m−1
k=0 ω5ikω5jk

∑m−1
k=0 ωk(5i−5j).

Since 5 has order m′

4 = φ(m′)
2 in Z>m′ , then 5i 6= 5j ∀i 6=

j, i, j = 0, 1, · · · , m′

4 − 1. This combines with the fact that
k(5i − 5j) = k5j(5i−j − 1) ≡ 0 (mod 4) so that each
summand pairs with another summand in the summation so
that their ratio is ω4. This symmetry, the fact that m′

2 ≡ 0
(mod 4) and the fact that ω5i

+(ω5i

)
m′
2 = 0, means that each

summand ω5i

has another summand as its additive inverse.
Together with the fact that the complex conjugate of ω is ω−1,
results in rir

†
j = mδi,j and in the desired unitary property

U(G2s)U(G2s)† = I .
3) The General Case n = 2sn1: We will need the following

lemma:
Lemma 4: Let L be the compositum of l Galois ex-

tensions Ki over Q of co-prime degrees ni. Assuming
that there exist unitary matrices U(Gni

) for all i =
1, 2, · · · , l then the Kronecker product of these matrices
is a (n × n) unitary matrix U(Gn) of the desired form
for n =

∏l
i=1 ni.

In particular when n = 2sn1 and F = Q(ı), we can use
the Kronecker product of the matrices constructed separately
for the case n = n1 odd and n = 2s.

For the case F = Q(ω3), for n = n1 odd we again use
the n1 × n1 unitary matrix U(Gn1) from Section III-G.1,
and for n = 2n1, n1 odd, the unitary matrix U(Gn) can be
taken to be the Kronecker product of U(Gn1) and the matrix

U(G2) = 1√
2

1 ı
1 −ı

.

This concludes the unified construction of minimum-delay
perfect codes. We summarize the results in the form of a
proposition:

Proposition 5 (Perfect Codes over QAM): Let n =
2sn1 > 1 be given, n1 odd. Let F = Q(ı), let L/F be a
cyclic Galois extension of F with σ as the generator
of the Galois group. Let γ ∈ F> be a non-norm
element in the extension L/F constructed as discussed
in Section III-F. Let D(L/F, σ, γ) be a CDA of index
n corresponding to this choice of L/F, γ and σ. Let
B = {β1, β2, · · · , βn} be an integral basis for OL/Z[ı]
as discussed in Section III-G. Let X be the (n× n) ST
code constructed from D(L/F, σ, γ) the integral basis B
and alphabet AQAM as discussed in Section III-G.

Then X satisfies the 4 defining properties P1-P4 and
is hence a perfect code.

A similar proposition can be stated to cover the case of the
HEX constellation.

H. Examples of new perfect codes and simulations

1) Examples of new perfect codes: • A 2× 2 perfect code
can be chosen to have code-matrices which prior to SNR
normalization, are of the form

X =
1√
2

f0,0 + f0,1ω
3
8 γ(f1,0 + f1,1σ(ω3

8))
f1,0 + f1,1ω

3
8 f0,0 + f0,1σ(ω3

8)

=
1√
2

f0,0 + f0,1ω
3
8 γ(f1,0 + f1,1ω

7
8)

f1,0 + f1,1ω
3
8 f0,0 + f0,1ω

7
8

where fi,j are from the desired QAM constellation, ω8 :=
e

2πı

8 and γ = 2+ı
1+2ı . Matrices map n2 = 4 information

elements from QAM. Furthermore the signalling set, in the
form of the layer-by-layer vectorization of the code-matrices,
before SNR normalization, comes from the lattice

Λ =
{
[f0,0 f0,1 f1,0 f1,1]Rv |

[f0,0, f0,1, f1,0, f1,1] ∈ QAMn2}

where

Rv =
1√
2

1 1 0 0
ω3

8 ω7
8 0 0

0 0 1 γ
0 0 ω3

8 γω7
8

satisfying the defining condition of

RvR
†
v = I4.

We find the smallest possible determinant, prior to SNR
normalization, to be

det(∆X∆X†)min =
1
20

which is larger than some previously constructed 2×2 perfect
codes. The code’s performance improves if the existing G =

1 1
ω3

8 ω7
8

is substituted with G2 = 0.5257 0.8507
0.8507 −0.5257

taken from [14].
Other examples:
• In the case of the 5 × 5 perfect space-time code, the γ

element is given in Table I to be γ = 3+2ı
2+3ı . Furthermore,

the 5 × 5 unitary circulant lattice generator matrix G5,
it self defined by its first row:




−0.32601867960931
0.54852873198059
−0.45573414065529
−0.59688478766687
−0.16989112404934




T

To obtain G5 we used the approach in Section III-G.1,
setting parameters n1 = 5, p = 11, w = e2πı/11, r =
2,m = 5, λ = 1. To obtain the code, one can either
use the vectorized form described in (9), or the linear-
dispersion form ([30])

X =
{

X =
4∑

j=0

Γj
(
diag

(
f

j
·G5

))
, f

j
∈ QAM5

}

7



• In the case of the 7 × 7 perfect space-time code, the γ
element is given in Table I to be γ = 8+5ı

8−5ı . Furthermore,
the 7×7 unitary circulant lattice generator matrix G7 has
the first row equal to:




−0.68093653331388
0.16310251780907
−0.44885286628634
0.07738152540498
0.08232156822109
0.27555479527388
−0.46857099000493




T

To obtain G7 we again used the approach in Section III-
G.1, setting parameters n1 = 7, p = 29, w = e2πı/29, r =
2,m = 14, λ = 1. As before, the code follows either in
the vectorized form (9), or the linear-dispersion form.

X =
{

X =
6∑

j=0

Γj
(
diag

(
f

j
·G7

))
, f

j
∈ QAM7

}
.

2) Simulations: All the simulations assume CN (0, 1) fad-
ing and additive noise. We begin with Figure 3 to indicate
the performance improvement as the different defining con-
ditions are satisfied one-by-one. The first curve from the top
corresponds to satisfying the full-diversity condition (single-
dimensional CDA code - orthogonal design). The second
curve now includes the full-rate condition (random, full-rate,
linear-dispersion codes). The third curve corresponds to the
family of DMT optimal but not information lossless CDA
codes presented in [2], which achieve the first three criteria
of full-diversity, full-rate, and non-vanishing determinant. The
performance transition from the CDA codes to perfect codes
is described by the next two curves. Figure 4 provides a

6 8 10 12 14 16 18 20 22
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

dB

P
C

W
E

full diversity
full rate
NVD
optimal constellation
optimal power sharing

Fig. 3. Performance improvements attributed to achieving the different
criteria for the perfect codes.

comparison of the 2×2 perfect code presented here, with some
perfect codes from [1]. Figure 5 shows the performance of the
newly constructed 5-dimensional perfect code and compares it
with the corresponding 5× 5, 5-layer, symmetric TAST code
([34]) with full diversity rotation matrix and transcendental
Diophantine numbers.
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Unified perfect 4−12bpcu
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Fig. 4. Comparison of the unified perfect code with two codes, the Golden
code and a second previously constructed perfect code. There are 2 receive
antennas and sphere decoding is employed.
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Fig. 5. Comparison of the 5 × 5 perfect code with the 5 × 5 TAST code.
There exist 5 receive antennas, the rate is at 10 bpcu, and decoding is done
using modulo-Λ (sphere) encoding and MMSE-GDFE lattice decoding ([39]).

IV. RECTANGULAR PERFECT CODE CONSTRUCTION

In this section, we show how perfect codes can be con-
structed for the case when the number of channel uses T is
a multiple of the number nt of transmit antennas. Thus the
corresponding perfect codes in this case are rectangular.

Proposition 6 (Rectangular Perfect Codes over QAM):
Let

n, n1, F, L, σ, γ, B, OL, D(L/F, σ, γ), X

be as in Proposition 5. Then the m-fold Cartesian product Xm

Xm = X × X × · · · × X︸ ︷︷ ︸
m copies

satisfies the 4 defining properties P1-P4 and is hence a perfect
code.

Proof: It is not hard to verify that the Cartesian product
satisfies properties P1, P3 and P4. It remains to verify the non-
vanishing determinant property, P2. Consider the difference

∆X = [X(1)
1 X

(2)
1 . . . X

(m)
1 ] −

[X(1)
2 X

(2)
2 . . . X

(m)
2 ]

= [∆X(1) ∆X(2) . . . ∆X(m)]
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between any two distinct code matrices in the product code
X . At least one of the ∆X(k), say, ∆X(k0) must be nonzero.
Next, let us write

∆X∆X† = [∆X(k0)][∆X(k0)]† (17)

+
m∑

k=1,k 6=k0

[∆X(k)][∆X(k)]† (18)

= A + B (19)

where A = [∆X(k0)][∆X(k0)]† and

B =
m∑

k=1,k 6=k0

[∆X(k)][∆X(k)]†.

Let

µ
(A)
1 ≤ µ

(A)
2 ≤ · · · ≤ µ(A)

nt
and

µ
(A+B)
1 ≤ µ

(A+B)
2 ≤ · · · ≤ µ(A+B)

nt

denote the ordered eigenvalues of the Hermitian matrices
A,A + B respectively. Then from a theorem of Weyl (see
Theorem 4.3.1 of [50]), we have that

µ
(A+B)
i ≥ µ

(A)
i , 1 ≤ i ≤ nt.

As a result, we have that

det([A + B]) ≥ det(A)
≥̇ SNR0.

Thus the non-vanishing determinant property, Property P2, is
also met.

V. ADDITIONAL ATTRIBUTES OF PERFECT CODES

A. Information losslessness

The ergodic capacity C of the Rayleigh space-time channel

y = Hx + w

is given by, see [38]

C = log det(I +
ρ

n
HH†),

where SNR is now defined as ρ.
Let Z be a linear dispersion space time code where each

(nt × T ) code matrix Z ∈ Z has an expansion of the form

Z =
k∑

i=1

fkFk,

in which the information-bearing symbols {fk} are chosen
from some alphabet A. Let

f = [f1 f2 · · · fk]T

Rf = E(ff†).

The maximum amount C
′

of information per channel use
that can be transferred across the ST channel using this ST
code is given by

C
′

= max
Rf Tr(Rf )≤Tρ

I(Y ;
∑

k

fkFk | H).

In [29], a code is defined to be information lossless if the
structure imposed by the dispersion matrices Fk, does not
result in a reduction of the achievable mutual information.
This comparison takes place under the assumption that the
information symbols in f are drawn randomly from a Gaussian
distribution, and that the corresponding covariance matrix is
a scaled identity matrix. Without any loss of generality, we
proceed and for our setting we set

Rf = ρ
r
n In2 .

In accordance with the above, we will assume Gaussian f
and will say that a space-time code Z is information lossless
over the Rayleigh channel if C

′
= C. We now show that the

structure of the perfect ST codes allows for this property.
Firstly, perfect ST codes are linear dispersion codes having

parameters nt = T = n, k = n2. Given an (m× n) matrix A
having columns ai, i.e.,

A =
[

a1 a2 · · · an

]
,

we will use vec(A) to denote the vectorized version of the
matrix, i.e.,

vec(A) =




a1

a2
...

an


 .

Let

H = diag(H, H, . . . , H︸ ︷︷ ︸
n times

).

Next note that if

Y = θHX + W,

then

vec(Y ) = vec(θHX) + vec(W )
= Hvec(θX) + vec(W ).

In the case of a perfect code Z , the vector vec(X) is related
via a permutation matrix P to the layered vector lay(X)
introduced earlier, so that we have

vec(Y ) = H P lay(θX) + vec(W )

= H P Υ
(
θf

)
+ vec(W )

We note that κPΥ is a unitary matrix since both P, κΥ are
unitary. The maximum mutual information C

′
that can be

transferred using the perfect code is given by

C
′

= max
Rf , Tr(Rf )≤nρ

1
n

log det(I + θ2HPΥRfΥ†P †H†).

Clearly we have the upper bound

C
′ ≤ C.

We also know that the matrix κPΥ is unitary. Combining the
two gives us that

C
′ ≥ 1

n
log det(I +

θ2ρ
r
n

κ2
HH†).
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The constant θ was chosen to meet the SNR requirement and
hence it must be that

nρ = E(Tr(θ2XX†))
= E(Tr(θ2PΥRfΥ†P †))

= n2 θ2ρ
r
n

κ2

i.e.,

θ2ρ
r
n

κ2
=

ρ

n

C
′ ≥ 1

n
log det(I +

ρ

n
HH†)

≥ C

and it follows that C
′
= C. This establishes that the structure

of perfect codes allows for information losslessness over the
Rayleigh fading channel. This proof extends to rotationally-
invariant channels H , i.e., channels H such that H , HQ1 and
Q2H for Q1, Q2 unitary, have the same statistics.

B. Approximate Universality

Theorem 7 (Approximate Universality [26]): An (nt × T )
space-time code X is approximately universal iff the ordered,
squared-singular values {`i}nt

i=1 of every difference matrix
∆X = X1 −X2, X1, X2 ∈ X , X1 6= X2 satisfy

m∏

i=1

`i ≥̇ ρm−r

where m = min{nt, nr}. The singular values are assumed to
be ordered in increasing order, i.e.,

`1 ≤ `2 ≤ · · · ≤ `nt .

We now show that perfect codes over the QAM constellation
are approximately universal. The proof in the case of the HEX
constellation is similar and will be omitted.

Consider a perfect code over a QAM constellation of size
M2. Since an (nt × nt) perfect code is full rate, it must be
that

[M2]n
2
t = ρrnt

⇒ M2 = ρ
r

nt .

Each code matrix Z in the perfect code is of the form

Z = θX.

Since each element transmits the same energy on the average,
it must be that

θ2 .= ρ1− r
nt .

Consider the case when nr ≥ nt. In this case, m = nt and
we have

nt∏

i=1

`i
.= ρ0θnt(1− r

nt
)

= ρnt−r,

so that perfect codes are approximately universal in this case.
For the case when nr < nt, m = nr. Note that

`i ≤̇ Tr(θ2∆X∆X†)
.= ρ,

so that

`i ≤̇ ρ.

It follows that
m∏

i=1

`i ≤̇ ρnt−r

ρnt−m

= ρm−r,

which shows that perfect codes are approximately universal
even in this case.

C. Residual approximate universality

This property states that if certain rows of a perfect code are
deleted, then the row-deleted code is approximately universal
for the appropriately reduced number of transmit antennas.

This observation follows from the results in [2]. For the
sake of completeness, we provide a proof.

Let Z be an (nt×nt) perfect ST code. Next, let Zn be the
(n×nt) rectangular ST code obtained by deleting a particular
set of (nt − n) rows from every code matrix Z ∈ Z . Then
the (n × nt) ST code ZR is approximately universal for n
transmit antennas.

We first observe that ∆Zn∆Z†n is a (n × n) principal
submatrix of ∆Z∆Z†. Let

µ1 ≤ µ2 ≤ · · · ≤ µn (20)
`1 ≤ `2 ≤ · · · ≤ `n ≤ · · · ≤ `nt (21)

be the ordered eigenvalues of ∆Zn∆Z†n and ∆Z∆Z† re-
spectively. By the inclusion principle of Hermitian matrices,
(see Theorem 4.3.15 of [50]) the smallest eigenvalues of
∆ZR∆Z†R dominate the corresponding smallest eigenvalues
of ∆ZS∆Z†S , i.e.,

µk ≥ `k, 1 ≤ k ≤ n.

Since ||∆Z||2F ≤̇ ρ, it follows that every eigenvalue `k of
∆Z∆Z† is bounded above by ρ. If the ST code Z is designed
to operate at rate r log(ρ) bits per channel use, then we have

det(∆Zn∆Z†n) ≥̇ SNRnt−r

SNRnt−n

= SNRn−r

and it follows that the row-deleted code is also clearly approx-
imately universal.

VI. CONCLUSION

We have explicitly constructed perfect space-time codes for
any number nt of transmit antennas, any number nr of receive
antennas and any delay T that is a multiple of n. In addition we
have identified some additional properties satisfied by perfect
codes, which make for good error probability performance.
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APPENDIX I
PROOF OF PROPOSITIONS 2 AND 3

We first recall three results that relate to identifying a “non-
norm” element γ.

Lemma 8: [9] Let L be a degree n Galois extension of a
number field F and let p be a prime ideal in the ring OF below
the prime ideal P ⊂ OL with norm given by ‖P‖ = ‖p‖f ,
where f is the inertial degree of P over p. If γ is any element
of p \ p2, then γi /∈ NL/F(L) for any i = 1, 2, · · · , f − 1.

Thus, in order to find a “non-norm” element γ in F = Q(ı)
(F = Q(ω3)), it is sufficient to find a prime ideal in Z[ı]
(Z[ω3]) whose inertial degree f in L/F is f = [L : F] = n.
Such an ideal is said to be inert in L/F.

Lemma 9: [48] Let p be any odd prime. Then for any
integer k, Z>

pk is cyclic of order φ(pk). For any integer f

dividing φ(pk) there exists an a ∈ Z>
pk such that a has order

f in Z>
pk .

Theorem 10: (Dirichlet’s theorem) Let a,m be integers
such that 1 ≤ a ≤ m, gcd(a,m) = 1. Then the arithmetic
progression {a, a + m, a + 2m, . . . , a + km, . . .} contains in-
finitely many primes.

We now discuss separately, the cases when F = Q(ı) and
F = Q(ω3).

a) Unit-magnitude, non-norm elements for F = Q(ı):
Let

n = 2sn1

where n1 is odd. Assume first that n1 > 1. Let p be the
smallest odd prime p such that n1 | (p − 1). Such a prime
is guaranteed to exist by Dirichlet’s theorem applied to the
progression

1, 1 + n1, . . . , 1 + kn1, . . . ,

The cyclic group Z>p contains an element whose order equals
(p− 1). Let a denote this element. Our first goal is to find a
prime q such that

q = 5 (mod 2s+2)
q = a (mod p).

Note that

q = 1 (mod 4) .

Since (2s+2, p) = 1, we can, by the Chinese Remainder
Theorem, find an integer b such that

b = 5 (mod 2s+2)
b = a (mod p).

Note that such an integer b is relatively prime to 2s+2p.
Consider the arithmetic progression

b + l(2s+2p), l = 0, 1, 2, . . .

By Dirichlet’s theorem, this arithmetic progression is guaran-
teed to contain a prime q having the desired properties. Now
let us verify that this leads to a CDA.

Let K′ be the subfield of Q(ωp) that is a cyclic extension of
Q of degree n1. Let K be the compositum of K′ and Q(ı) and

let L be the compositum of the fields K and Q(ω2s+2). Note
that L is cyclic over Q(ı), since it is a composite of the cyclic
extensionQ(ω2s+2)/Q(ı) of degree 2s and the cyclic extension
K/Q(ı) of degree n1 (note that 2s and n1 are relatively prime).
Next consider the decomposition of the prime ideal (q) in the
extension L/Q.

Since q = 1 (mod 4) we have that in the extension
Q(ω2s+2)/Q, q has inertial degree equal to 2s. Since q has
order (p−1) in Zp it follows that q remains inert in Q(ωp)/Q.
Since q = 5 (mod 2s+2) and 5 has order 2s in Z2s+2 , it
follows that in the extension Q(ω2s+2)/Q, q splits completely
in Q(ı)/Q but remains inert thereafter.

Let q split in Q(ı)/Q according to

q = π1π
∗
1

where π1 = (a + ıb) and π∗1 = (a − ıb). Now by using the
fact that in a field tower [E : K : F] of field extensions,
fE/F = fE/KfK/F, gE/F = gE/KgK/F, [E : F] = fE/F gE/F,
it follows that π1 remains inert in the extension L/Q(ı).
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Fig. 6. Constructing a cyclic extension of Q(ı) of degree n = 2sn1. The
integers shown indicate the degree of the corresponding extension.
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Fig. 7. Constructing a cyclic extension of Q(ı) of degree n = 2sn1. The
integers shown indicate the inertial degrees associated with the decomposition
of either the prime ideal qZ or of one of its factors, over the corresponding
extension.

To now find a non-norm element of unit magnitude, we note
that since the units of Z[ı] belong to the set {±1, ±ı}, the
associates of

π1 = a + ıb belong to the set

{a + ıb, −a− ıb, ı(a + ıb), −ı(a + ıb)}.
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It follows that since ab 6= 0, and since a 6= ±b (or else q would
not be prime), a− ıb does not belong to the set of associates
of a + ıb. Our goal now is to show that

γ =
π1

π∗1

is a non-norm element, i.e., that the smallest exponent k for
which γk is the norm of an element in L, is n. This is the
case since if

γk = NL/F(`) some ` ∈ L
then

πk
1 = (π∗1)k

n−1∏

l=0

σl(`)

where σ is the generator of the cyclic Galois group of L/F.
For ` = a

b , a, b ∈ OL, we have, in terms of ideals of OL,

(π1)k
n−1∏

l=0

(σl(b)) = (π∗1)k
n−1∏

l=0

(σl(a)).

Since the primes π1 and π∗1 are relatively prime, π1 must
divide σl(a) for some l. But since σ(π1) = π1 we have that
if (π1) divides (σl(x)) for some l and x ∈ OL, it must divide
(σl(x)), for all l. This in turn implies that the power of (π1) in
the prime decomposition of (π1)k

∏n−1
l=0 (σl(b)) is k mod n

whereas the power of (π1) in the prime decomposition of
(π∗1)k

∏n−1
l=0 (σl(a)) is a multiple of n and it follows that γ

is a non-norm element. Equivalently k must be a multiple of
n.

When n1 = 1, it is sufficient to take q to equal 5, and
L = Q(ω2s+2). The prime 5 splits in Q(ı) as (1 + 2ı)(1− 2ı)
and then each of (1 + 2ı) and (1 − 2ı) remain inert in the
extension L/Q(ı). The element

γ =
1 + 2ı

1− 2ı

is then a non-norm element for this extension, for the same
reasons as above. This concludes the proof of Proposition 2.
¤

b) Unit-magnitude, non-norm elements for F = Q(ω3):
Let n = 2sn1, s ∈ {0, 1} where n1 is odd. The proof is
similar to when F = Q(ı). Assume first that n1 > 1. We find
a prime p ≡ 1 (mod n1), p > 3 and a prime q ∈ Z, q ≡
1 (mod 3), with ord(q) = n1, when q (mod p) is considered
as an element of Z∗p. If s = 1, we also require that q ≡
3 (mod 4). Assume that we have found such a p and q. The
arguments for the rest of the statements in this paragraph are
all exactly as in the case when F = Q(ı): The conditions
ord(q (mod p)) = n1 in Z∗p and q ≡ 3 (mod 4) (if s = 1)
guarantee that the prime q remains inert in the ring of integers
OL′ of the cyclotomic field L′ = K(ω2s+1), where K is the
unique subfield of degree n1 in the extension Q(ωp)/Q. The
extension L′/Q is cyclic of degree 2sn1.

Since q ≡ 1 (mod 3), the prime q splits into two distinct
primes π1, π2 in Z[ω3] which are conjugates of each other.
Let L = L′(ω3), then L/Q(ω3) can be verified to be cyclic
of degree 2sn1. Then π1 will remain inert in the extension

L/Q(ω3). The element γ = π1
π2

= π1
π∗1

will then be a unit-
magnitude (algebraic) non-norm element for the extension
L/Q(ω3), and the codes constructed with this data will then
be perfect, i.e. be full-rate, have non-vanishing determinant,
and of course, will satisfy the equal power-sharing constraint
as γ is of unit-magnitude.

What is left is to find p and q. The prime p is found using
Dirichlet as in the case where F = Q(ı). To find q, first find
an integer b that is simultaneously congruent to 1 (mod 3), to
m (mod p), where m is a generator of Zp> , and (if s = 1) to 3
(mod 4). This is possible by the Chinese Remainder Theorem.
Next, find the prime q by applying Dirichlet’s theorem to the
arithmetic sequence b+ l(3p), l = 0, 1, 2, . . . if s = 0 and the
sequence b + l(12p), l = 0, 1, 2, . . . if s = 1.

When n1 = 1 (so s = 1), we take L to be Q(ω3)(ı), and
the prime q to be 7. Since q is congruent to 1 (mod 3) and
to 3 (mod 4), q splits into 3 + ω3 and 3 + ω2

3 in Q(ω3) but
remains inert in the extension Q(ı)/Q. It follows that each of
3 + ω3 and 3 + ω2

3 remain inert in the extension L/Q(ω3).
The element

γ =
3 + ω3

3 + ω2
3

will then be a non-norm element for this extension, for the
same reasons as above. This concludes the proof of Proposition
3. ¤

APPENDIX II
ORTHOGONAL LATTICES IN OK , WHERE K/Q IS CYCLIC

GALOIS OF ODD DEGREE

For simplicity, in this section, we write n in place of n1

and K in place of K′.
We here show that the construction in [10] (of which a

detailed exposition has been provided in [14, Section 5]) of
lattices that belong in a cyclic Galois extension K of prime
degree q over Q, actually gives without any modification
orthogonal lattices for any odd degree n. We follow the
exposition in [14] closely, and show that the proofs there only
require that n be odd, and that the assumption that n be an
odd prime is unnecessary.

To this end, let n ≥ 3 be a given odd integer, and fix a
prime p ≡ 1 (mod n). Note that such a prime p can always be
found since by Dirichlet’s theorem, Theorem 10, the sequence
{1 + dn, d = 1, 2, · · · } contains infinitely many primes. Let
ω be a primitive p-th root of unity. Thus, Q(ω) is cyclic of
degree p−1 over Q, and contains the real subfield Q(ω+ω−1)
which is cyclic of degree (p − 1)/2 over Q. Since n divides
p − 1, there is a unique field K contained in Q(ω) which is
cyclic of degree n over Q. This is the field we will work with.
Note that since n is odd, n divides (p− 1)/2 as well, so K is
contained in the real subfield Q(ω + ω−1).

Let G = Gal(Q(ω)/Q), with generator σ, chosen so that
σ(ω) = ωr, where in turn, r is a generator of Z>p . We let
m = p−1

2 , and observe that rm ≡ −1 (mod p). We also
choose λ so that λ(r − 1) ≡ 1 (mod p).

We define α by α =
∏m−1

k=0 (1−ωrk

). The following result
is just a combination of Lemmas 3 and 4 of [14], and since
they have to do purely with the cyclotomic extension Q(ω)/Q
and have nothing to do with n, their proofs remain valid:
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Lemma 11: The following equalities hold:
1) σ(α) = −ωp−1α
2) σ(ωλα) = −ωλα
3) (ωλα)2 = (−1)mp
We now define z = ωλα(1− ω) ∈ OQ(ω), and

x = TrQ(ω)/K(z) =
(p−1)/n∑

j=1

σjn(z).

Note that x is in OK, as z is in OQ(ω). Observing that

[GnGT
n ](i, j) = TrK/Q(σi(x)σj(x)), 0 ≤ i, j ≤ (n− 1),

we are interested in TrK/Q(xσt(x)). The following, which is
Proposition 2 of [14], gives us the key to constructing the
orthogonal lattice.

Proposition 12: TrK/Q(xσt(x)) = p2δ0,t, for t =
0, . . . , n− 1.

Remark 2: Note that TrK/Q(σi(x)σj(x)) =
TrK/Q(xσj−i(x)). Thus, if we embed OK in Rn via
a 7→ v(a) = [a, σ(a), . . . , σn−1(a)] (note that K is
a real field), this Proposition says that the vectors
[v(x), v(σ(x), . . . , v(σn−1(x))] are orthogonal to one
another.

Proof: For n being odd, we have

TrK/Q(xσt(x)) =
n−1∑
a=0

σa(xσt(x))

=
n−1∑
a=0

(p−1)/n∑

c,j=1

σa+cn(z)σa+t+jn(z)

and from Lemma 11

TrK/Q(xσt(x)) =
n−1∑
a=0

(p−1)/n∑

c,j=1

(−1)a+cnωλα(1− ωra+cn

)

· (−1)a+t+jnωλα(1− ωra+t+jn

)

We observe that since n is odd, (−1)cn = (−1)c and
(−1)jn = (−1)j . Moreover, (−1)a(−1)a = 1, and (−1)t is
common to the sums above. By Lemma 11, we may replace
(ωλ)2 by (−1)mp. Thus we find, after rearranging the sums,
that

TrK/Q(xσt(x)) = (−1)t(−1)mp

(p−1)/n∑
c=1

(−1)c·

·
[n−1∑

a=0

(p−1)/n∑

j=1

(−1)j(1− ωra+cn

)

−
n−1∑
a=0

(p−1)/n∑

j=1

(−1)j(ωra+t+jn − ωra+cn+ra+t+jn

)
]

Now the term
∑(p−1)/n

j=1 (−1)j(1 − ωra+cn

) can be
rewritten as (1 − ωra+cn

)
∑(p−1)/n

j=1 (−1)j . Since n is
odd, (p − 1)/n is even, and hence, there are as many
positive as negative terms in the expression

∑(p−1)/n
j=1 (−1)j ,

and thus, the sum becomes zero. Similarly, the term∑(p−1)/n
c=1 (−1)c

∑n−1
a=0 (−∑(p−1)/n

j=1 (−1)j(ωra+t+jn

)

becomes zero: this is because the terms in∑n−1
a=0 (−∑(p−1)/n

j=1 (−1)j(ωra+t+jn

) are independent of
c, while the term

∑(p−1)/n
c=1 (−1)c = 0 as (p − 1)/n is even

and there as many positive as negative terms. We thus find

TrK/Q(xσt(x)) = (−1)t+mp

(p−1)/n∑
c=1

(−1)c·

·
n−1∑
a=0

(p−1)/n∑

j=1

(−1)jωra+cn+ra+t+jn

We now have the following:
Lemma 13:

(p−1)/n∑
c=1

(−1)c
n−1∑
a=0

(p−1)/n∑

j=1

(−1)jωra+cn+ra+t+jn

=
(p−1)/n∑

d=1

(−1)d
n−1∑
a=0

(p−1)/n∑

k=1

ωra+nd+nk+ra+t+nk

=
(p−1)/n∑

d=1

(−1)d
n−1∑
a=0

(p−1)/n∑

k=1

ωra+kn(rnd+rt)

Proof: See Appendix III
As in [14], we write

(p−1)/n∑

d=1

(−1)d
n−1∑
a=0

(p−1)/n∑

k=1

ωra+kn(rnd+rt)

=
(p−1)/n∑

d=1

(−1)d

(p−1)∑
s=1

ωs
d,t

where ωd,t = ω(rnd+rt), and of course,

(p−1)∑
s=1

ωs
d,t =

{
p− 1 if ωd,t = 1,
−1 otherwise

To determine when ωd,t = 1, note that this happens (as in
[14]) when t = nd−m+k1(p−1). Since n is odd, n divides
m, so n must divide t. This forces t = 0.

We now have ωd,t = 1 implies rnd ≡ −1 (mod p), and
writing −1 as rm, yields nd−m = l(p− 1) for some l. This
then gives d = (p − 1)(2l + 1)/2n, which we may write as
(2l + 1) times (p − 1)/2n (note again that since n is odd, n
divides (p−1)/2). Since d varies in the range 1, . . . , (p−1)/n,
we find that l must be zero, that is, d = (p − 1)/2n. Thus,
ωd,t = 1 precisely when t = 0 and d = (p− 1)/2n.

In particular, when t 6= 0 then ωd,t 6= 1 and we have that

TrK/Q(xσt(x)) = (−1)t+mp

(p−1)/n∑

d=1

(−1)d

(p−1)∑
s=1

ωs
d,t

= (−1)t+mp

(p−1)/n∑

d=1

(−1)d(−1)

Once again, since n is odd, (p − 1)/n is even, so the term∑(p−1)/n
d=1 (−1)d = 0. Thus, for t 6= 0, TrK/Q(xσt(x)) = 0.
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When t = 0, we find

TrK/Q(xσt(x)) = (−1)mp

(p−1)/n∑

d=1,d 6=(p−1)/2n

[
(−1)d(−1)

+ (−1)mp(−1)(p−1)/2n(p− 1)
]

and the right side then yields p + p(p − 1) = p2. To see this
last fact, consider first the case where (p− 1)/2 is even (i.e.,
p ≡ 1 mod 4). Then, since n is odd, (p− 1)/2n is also even.
The sum

∑(p−1)/n
d=1,d 6=(p−1)/2n(−1)d equals

∑(p−1)/n
d=1 (−1)d −

(−1)(p−1)/2n, and we have already seen that, again because n

is odd,
∑(p−1)/n

d=1 (−1)d = 0. Thus the right hand side in the
equation above for TrK/Q(xσt(x)) indeed yields p2 in this
case. We can similarly deal with the case when (p − 1)/2
is odd (i.e., p ≡ 3 mod 4), to find that in both cases, indeed
TrK/Q(xσt(x)) = p2 when t = 0. This proves the Proposition.

APPENDIX III
PROOF OF LEMMA 13

We wish to prove:

p−1
n∑

c=1

(−1)c
n−1∑
a=0

p−1
n∑

j=1

(−1)jωra+cn+ra+t+jn

=

p−1
n∑

d=1

(−1)d
n−1∑
a=0

p−1
n∑

k=1

ω(rnd+rt)ra+nk

Set m = p−1
n and denote Z/mZ by Zm. In the above

equation, the dependence on c, j, d, k is only through their
values (mod m) or through their values (mod 2). If we assume
2|m, which follows from the assumption that n is odd, we can
then treat c, j, d, k as elements of Zm. We thus have

p−1
n∑

c=1

(−1)c
n−1∑
a=0

p−1
n∑

j=1

(−1)jωra+cn+ra+t+jn

=
∑

c∈Zm

(−1)c
n−1∑
a=0

∑

k∈Zm

(−1)kωra+cn+ra+t+kn

=
∑

c∈Zm

∑

k∈Zm

(−1)c+k
n−1∑
a=0

ωra+cn+ra+t+kn

.

We now make the change of variables: c = d + k (mod m)
which implies, since 2|m, that c = d + k (mod 2) and hence
d = c− k = c + k (mod 2). As the pair (c, k) varies over all

of (Zm × Zm), so does the pair (d, k). We thus have

∑

c∈Zm

∑

k∈Zm

(−1)c+k
n−1∑
a=0

ωra+cn+ra+t+kn

=
∑

d∈Zm

(−1)d
n−1∑
a=0

∑

k∈Zm

ωra+(d+k)n+ra+t+kn

=
∑

d∈Zm

(−1)d
n−1∑
a=0

∑

k∈Zm

ω(rnd+rt)(ra+nk)

=

p−1
n∑

d=1

(−1)d
n−1∑
a=0

p−1
n∑

k=1

ω(rnd+rt)ra+nk

.

¤

APPENDIX IV
MATHEMATICAL NOTATION

Z denotes the rational integers, Q denotes the rational
numbers, and Z[ı] denotes the Gaussian integers. For integers
a, b, then a mod b, is the value of a modulo b. Zb denotes the
integers modulo b. Two integers are co-prime if their greatest
common denominator (gcd) is one. S> denotes the units of
some ring S, i.e., the set of elements in S having an inverse
in S. S1 \ S2, denotes the elements that are in set S1 but not
in set S2. φ(·) denotes Euler’s totient function. For G a finite
group, the order ord(g)|G of an element g ∈ G, describes the
smallest power, say m, of g such that gm = 1.

A field F is a commutative ring where each element except
0 has a multiplicative inverse. A field L is an extension field of
F if F ⊆ L. This extension is denoted as L/F and it has degree
[L : F] equal to the dimension of L as a vector space over F.
A number field is a field that is a finite degree extension of
Q. Cyclotomic extensions are extensions of the rationals of
the form Q(ωm)/Q where ωm = exp

(
ı2π
m

)
for some integer

m ≥ 3. The degree of this extension equals φ(m).
If L is an extension of F, then l ∈ L is said to be algebraic

over F if l is the zero of some nonzero polynomial with
coefficients in F. The compositum of two finite dimensional
number fields F1,F2 is the set of all sums of products of
elements, one from F1 and the other fromF2. This set is a field.
For l an algebraic element over F, then F(l) is a field extension
consisting of sums of products of the form f ·lk, f ∈ F, k ∈ Z.

A number-field element l ∈ L is said to be an algebraic
integer if l is the zero of a monic polynomial with coefficients
in Z. The set of all algebraic integers in L forms a ring, known
as the ring of algebraic integers, and is denoted OL. If [L : F]
is a finite extension of number fields, then the ring of integers
OL of L is precisely the collection of all elements in L that
are the zeros of monic polynomials with coefficients in OF.

An integral basis for an extension L/F of number fields is
a vector-space basis {α1, α2, . . . , αn} such that αi ∈ OL, all
i, and such that every element x ∈ OL can be expressed as
x =

∑n
i=1 ciαi, ci ∈ OF. x|y denotes the fact that integer

x divides integer y.
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The Galois group of E/F is defined as the set of all
automorphisms σ of E that fix every element of F, i.e.,

Gal(E/F) = {σ : E→ E | σ is an automorphism of E
and σ(f) = f, all f ∈ F }.

This set forms a group under the composition operator. The
size of the Galois group of the extension E/F is always ≤ [E :
F]. The extension is said to be Galois if equality holds. An
Abelian (cyclic) extension E/F is a Galois extension in which
the Galois group Gal(E/F) is cyclic, by which we mean that
Gal(E/F) is generated by an automorphism σ, i.e.,

Gal(E/F) = < σ > = {σ0, σ, · · · , σn−1}, (22)

where n = [E : F]. In a cyclic Galois extension E/F, the
“relative norm” NE/F(x) of an element x ∈ E is given by
NE/F(x) =

∏n−1
i=0 σi(x) and it can be shown that NE/F(x) ∈

F. The “relative trace” TrE/F(x) is given by TrE/F(x) =∑n−1
i=0 σi(x) ∈ F.
An ideal I of the ring of integers OF is an additive subgroup

which is closed under multiplication by any element of OF. In
number fields, every ideal I of OF has a unique factorization
as the products of powers of prime ideals. Let L be a finite
Galois extension of F. If p is a prime ideal of OF, then the
ideal pOL of OL has a unique factorization of the form

p OL =
g∏

i=1

βe
i , (23)

for distinct prime ideals βi of OL. The exponent e is called
the ramification index of βi over p and written e(βi/p). This
number is the same for all βi. We will also loosely refer to
e(βi/p) as the ramification index of p or the ramification index
of βi.
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