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1. Introduction.

Let p be an arbitrary prime, and let D be a division algebra of index p™
and exponent p* (n > k > 1). Tt is well known that for any i (1 < i < k),
ind(DP') < p"~i ([A, p. 76, Lemma 7]). Let nj > ng_1 > ... > ny > ng = 0 be
an arbitrary sequence of integers. The question of whether there exists a division
algebra D such that ind(D) = p™, ind(D?) = p™-1, ..., ind(DP" ') = p™, and
ind(Dpk) = p™° =1 (so exp(D) = p*) was first investigated by Schofield and van den
Bergh ([ScvdB, Construction 2.8]), who showed by construction that such a division
algebra indeed does exist. Their construction, which is a corollary to some very
deep results about generic splitting fields, is iterative and involves generic division
algebras at every stage, along with passage to function fields of suitable Brauer-
Severi varieties. Because of the use of generic methods, their final division algebra
is somewhat complicated, (for instance, its center is hard to describe explicitly),
and it is reasonable to ask if elementary examples exist.

We provide in this paper an elementary construction of a division algebra
with the property above. The construction is based on repeated use of symbol

algebras of the form (a:, P~y p, Fo(y)(z), w), where Fj is a field containing suf-
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ficiently many roots of unity,  and y are indeterminates, n is a suitable integer,
and w is a primitive p-th root of unity. The division algebra that results from this
process is actually a symbol algebra over a rational function field over Fp, and is
thus somewhat amenable to computation. Further, as an offshoot, this construction
yields new examples of indecomposable algebras of index p™*? and exponent p*t?
(1<i<k t=1,2,...).

Our basic approach is formalized in the following theorem. (If R is any

ring, Z(R) will denote the center of R.)

THEOREM 1. Let Fy be a field containing all primitive p'-th roots of unity (i =
1,2,...), and let y be an indeterminate. Let C be a class of finite-dimensional
division algebras such that

1. For any D € C, Z(D) is an extension field of Fy(y).

2. C contains some extension field of Fy(y).

3. For any D € C, if ind(D) = p", and if

E = (D ®zpy Z(D)(x)) ®z(pyw) (#,27" —y; p, Z(D)(z),w)

where x is a new indeterminate, then E € C. (In particular, E is a division
algebra of index p"*1.)
4. For any D € C, there exists a division algebra A € C such that Z(A) =
Z(D), AP ~ D, and ind(A) = p - ind(D).
Let ng > ng_1 > --- > ny > ng = 0 be a sequence of integers. Then C contains
an algebra A such that ind(A) = p™, ind(AP) = p™—1, ..., ind(Apkfl) = p"t, and
ind(Apk) =p" = 1.

PROOF: By properties (2) and (4), C contains a division algebra B; of index p.

If ny =1, we set Ay = B;. Else, let X = {x1,23,...,2,,-1} be a set of new
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indeterminates. We set

Ay :(B1 ®z(B,) Z(Bl)(X)) ®z(B)(X) (ﬂfl,fﬁf —Y;Dp Z(B1)(X),w) Qz(B1)(X) -

ny—1

Xz (B1)(X) ($n1—1,$ﬁl_1 y;p,Z(Bl)(X),w).

By repeated application of property (3), A; € C, and is thus a division algebra of
index p™. It is clear that A; has exponent p.

Let Z1 = Z(A;). It will be convenient to set Ay =7y = Z;. Now assume
that for 1 < j <4 < k, A; € C has been chosen such that A; has index p"J,
and if Z(A;) = Z;, then Z; is a purely transcendental extension of Z;_; and
A? ~ A;_1®z, , Z;. By property (4), C contains an algebra B;y; with center Z;
such that BY | ~ A; and ind(Bj;1) = p™*!. If nip1 =n; + 1, we set Aj41 = Biqy.
Otherwise, let s;41 = nj11 — ng, and let U = {uy,u2,...,us,,,—1} be a set of new
indeterminates. We set

ni+1

Aiy1 =(Bis1®z, Z;(U)) @z, (u1, v —y;p,Zi(U),w) @z ) ---

si+171

®ZZ(U) (U’Si+1—1,usi+1—1 _y;p,Zl(U)7w)'

We have Zj 11 = Z(Aiy1) = Z;(U), and AL, ~ BY | ®z, Ziz1~ A; @z, Ziqa.
Also, property (3) shows that A;y; € C, and is thus a division algebra of index
p*itt=t o ind(By ) = phitt.

Proceeding inductively, Ay is the desired algebra. |

The construction thus depends on the existence of a class of division alge-
bras that has the properties stated in the theorem. We describe such a class in the
next section.

The work described here is part of our doctoral dissertation, and we would
like to thank our adviser Adrian Wadsworth for his constant encouragement. We
would also like to thank the referee for some extremely insightful suggestions that

drastically simplified our original arguments.
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2. The class C.

Our class C will consist of certain valued division algebras, i.e., division
algebras D with a valuation v: D — I, where I' is a totally ordered abelian group.
(See [JW, §1], for instance, for the basic definitions and terminology of valued
division algebras.) The image of v will be denoted I'p. The valuation ring of D
and its maximal ideal will be denoted Vp and Mp respectively, and D will denote
the residue Vp/Mp.

Note that all our division algebras need to contain Fy(y) (by property (1)
of Theorem 1). We will restrict our attention to valued division algebras D such

that
(*) the valuation on D restricts to the trivial valuation on Fy(y).

We will find it convenient to make the following definitions. Every division
algebra is iteratively valued of height 0. In addition, a division algebra is iteratively
valued of height h > 0 if it has a valuation v on it satisfying (*) above such that
D is iteratively valued of height h — 1. (It is clear that the same division algebra
can be iteratively valued of different heights hi and hy depending on the sequence
of valuations chosen, but this will not be a concern.) We will denote the residue at
the i-th stage by E(i), and call E(h) the final residue of D.

If K =Fk(xzq,...,z,) is the rational function field over k in the n variables
Z1, ..., Tn, and if 7 is any irreducible in the polynomial ring k[z1, ..., z,], then the
m-adic valuation on K is the discrete valuation of the ring obtained by localizing
klx1,...,z,] at the height 1 prime ideal generated by .

Recall that if K/k is an algebraic extension of fields, then any extension to
K of the trivial valuation on k is also trivial. (This follows, for instance, from [E,
Corollary 13.11], since 'y is trivial, so I' /T is torsion implies that I'k is torsion.

But the only totally ordered torsion group is the trivial group.)
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Notice that since we require our valuations to be trivial on Fy(y), the residue
of any division algebra in C will contain Fy(y), and hence be of the same charac-
teristic as Fy. Since Fy contains primitive p’-th roots of unity (i = 1,2,...), the
characteristic of Fy is not equal to p. It follows from [M, Theorem 3] that if D € C
is of index a power of p, then D is defectless over Z(D).

We set wg = 1, w; = w, and for each ¢ = 2,3,..., we select a primitive
p’-th root of unity w; such that wf = w;_1. If F'is a field, then as a convention,
(a,b; p°, F,wp) will just be the field F.

The following lemma and its corollary will be the key to our determination

of C.

LEMMA. Let F be an extension field of Fy(y) and suppose D = (y, a; p", F, wn)
(for some fixed n. > 0) is an iteratively valued division algebra of height h with final

residue Fo(ypf(n)). Let x be a new indeterminate. Then the algebra

is an iteratively valued division algebra of height h+1 with final residue Fy (ypf(nﬂ) ).

Moreover,

E = (y,ap

ProOOF: Note that if K is any extension field of Fy(y), and if v is a valuation on
K that satisfies (*), then v has an extension to the rational function field K (z)
(that also satisfies (*)) defined as follows: v(g kiz®) = min{v(k;)}, and v(f/g) =
v(f)—wv(g) for f,g € K[z] with g # 0. The resz;i(l)le K (x) is just the rational function
field K(z), where by abuse of notation, we write x for its image modulo M K(z)-

(See [B, Section 10, Proposition 2].)

We will write Z; for Z(E(i)) (¢t = 1,...,h). It will be convenient to set
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5(0) = D and Z, = F. We will show by reverse induction that for i = h,h—1,...,0,
E; = (E(l) Rz, Z’L(CL')) Xz, (z) ($,$pn —Y; D, Zi(x),w)

is an iteratively valued division algebra of height h — ¢ + 1 and final residue

—(n+1)
Fo(y? ).
When i = h, By = (xvxpn —Y;D Fo(?/p_(n))(x),w)- Write z for yp_n and
recall that zP" —y factors into linear factors of the form x —w%z (j=0,1,...,p"—1)

in Fy(z)[z]. The field Fy(z)(z)((zP" — y)l/p) is thus totally ramified over Fy(z)(x)
with respect to the (z — z)-adic valuation on Fy(z)(z). On the other hand, the field

~0FYY, Thus,

Fo(2)(2/?) is inertial over Fy(z)(z) with residue isomorphic to Fp(yP
E}, is a nicely semi-ramified (NSR) division algebra with respect to the (z — z)-adic
valuation on Fy(z)(z), with residue Fo(yp_(n+1)) (see [JW, Example 4.3]). This

valuation is clearly trivial on Fy(y), so, in particular, Ej, is iteratively valued of

height 1 and final residue Fo(yp_(n+1)).

Now assume that F; is iteratively valued of height A —i+1 and final residue

Fo(ypf(nﬂ)) for some i, h > ¢ > 1. Consider F;_1, and let v be the valuation on

)

DY with respect to which DY i iteratively valued of height h — (i — 1). Con-

sider the extension of v|z,_, to Z;_i(x) described at the beginning of the proof,

)

and denote it by w. The valuations v on D%V and w on Z;_1(z) then extend to a

) ®z, , Zi—1(x), which we also denote by v. (This follows, for in-

)

. —(i—1
valuation on D(z

stance, from [M, Theorem 1]. The residue of Dl ®z,_, Zi—1(x) is just e Qg

Zi—1(z)= D ®z, Zi(x).) We first show that A;_; = (x,xpn —y;p, Zi_l(:v),w) is

a division algebra and that w extends to this division algebra. For, let Z;_1(2),,.,,s

denote the henselization of Z; ;(xz) and let S be the underlying division alge-

bra of (Aj—1)hens = Ai—1 @z, (z) Zi-1(T) (Thus, (Aj—1)nens = Mn(S),

hens*

where n is either 1 or p.) The algebra A = (:E,:Epn —y; P, VZFl(m)henva) is

an Azumaya algebra over the valuation ring Vz, (), of Zi_1(7) and is

hens

6



an order in (A;_1)pens (see [JW, Example 2.4(1)]). Thus, by [JW, Proposition

2.5], S is inertial over Z;_i(x) and A =2 M, (Vs), where Vg is the valua-

hens?

tion ring of S. Hence, A/AMy > Mu(S). But A/AMz,_ (s, s just

i—1(%) pens
(:E,:Epn —y; p,m(az),w). This is a division algebra, since by the induction hy-
pothesis, (l’,l’pn —y:p Z; (:E),w) is a division algebra, and Z;_; C Z;. It follows
that n = 1, s0 (Aj—1)nens is an (inertial) division algebra. By [M, Theorem 2|, w
extends to A;_1, and (A;_1)hens/Ai_1 is an immediate extension.

Now write v’ for the extension of w to A;_;. Since I'yy = T'z,_, () (as A1

is inertial), we have ', NT'yr = T'z,_, (). Also

(D @5 Zini(@) @5y (20" —yi 0. Zici(@),0) =

(ﬁ(i) ®z, Zi()) @z (x) (fE,prn —y;p, Zi(z),w) = B

which is a division algebra by the induction hypothesis. Since our algebras are

all defectless, [M, Theorem 1] shows that F;_; is a valued division algebra with

) and v/ on A;_;. The same theorem also

a valuation that restricts to v on DU "
shows that F;_; = F;. The valuation on E;_; is clearly trivial on Fy(y), so F;_1
is iteratively valued of height h — (i — 1) + 1 with final residue Fo(yp_(n+1)). By
induction, we are done.

As for the final statement of the lemma, standard symbol algebra identities

(see, for instance, [D1, Chapter 11, Lemmas 6 and 11] as well as the fact that —1

is a p"-th power for all r show

E~ (y,a;p", F(z),ws) @p) (27,2 —y; p" F(2), wnt1)

P —y
— PnHa F(x)7wn+1)

~ (y7 aP ; pn+1,F(x),wn+1) ®F(w) (y, P

P —y
— p"T F(2),wpt1).

~ (y, aP o

Since ind(E) = p™*1, the similarity is actually an isomorphism. [ |
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COROLLARY. Let F' be an extension field of Fy(y) and suppose (y, a;p™, F, wm) is
an iteratively valued division algebra of height h and final residue Fo(ypf(m)) for all
m > n (where n > 0 is a fixed integer). Let x be a new indeterminate. Then the
algebra

P —y

E = (y,a'p n ;pm+1,F(x)awm+1)

xrP
is an iteratively valued division algebra of height h+1 and final residue Fo(ypf(mﬂ))

for all m > n.

Proor: We have
E~ ((yaaa pm7F7 wm) QF F(ZE)) ®F(a:) (l,pnvxpn —Y; pm+17F($)7wm+1)-
Let u =P ", so [F(u): F(z)]=p™ ", and u?" = zP". Thus,

~ ((y,a; p", F, wm) QF F(U’)) ®F(u) (upm,upm —Y; pm+17F(U’)7wm+1)

~ ((y,a5 p™ F,wm) ®p F(u)) ®p@) (w,u?" —y;p, F(u),w).

Since E ®p(z) F(u) has index atmost p™*1, the lemma (applied to the right hand
side of the similarity above) shows that F ®p(,) F(u) is an iteratively valued di-

“Y . Thus, B is a di-

vision algebra of height A + 1 and final residue Fy(y?
vision algebra. Moreover, the valuations on E ®p(,) F(u) and its residues in-

duce valuations on E and its residues that are clearly trivial on Fy(y). We have

gy C Foy (yp_(m+1)). On the other hand, E contains the field Fy (yp_(m+1)), Since
the valuation on Fo(yp_(m+1)) is necessarily trivial, EY will contain Fo(yp_(m+1))
for i =1,2,...,h+1. Thus, B = Fy(yr "), n

We are now ready to describe our class C.

THEOREM 2. Let F be an extension field of Fy(y). The class of symbol algebras

(y, a;p", F, wn) (n > 0) such that (y, a;p™, F, wm) is an iteratively valued division
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(m)
)

algebra with finaly residue Fy(y? for all m > n satisfies properties (1) through

(4) of Theorem 1.

PROOF: Property (1) is trivially satisfied. As for (2), consider the algebras E,, =
(y,x; p",Fo(y)(x),wn) for n > 0. For n > 1, E, is an NSR division algebra
with respect to the z-adic valuation on Fy(y)(z), with residue Fj (ypf(n)) (see [JW,
Example 4.3]). Since for n = 0, Ey (= Fo(y)(z) ) has residue Fy(y) with respect
to the z-adic valuation, we find that for all n > 0, FE, is an iteratively valued
division algebra of height 1 and final residue Fj (ypf(n)). In particular, Fy(y)(z) € C.
Property (3) follows from the last statement of the lemma and the corollary. As
for (4), if D = (y,a; p", F,wy), then A = (y,a; p" ™!, F,w,41) is also in C, and A
satisfies AP ~ D and ind(A) = p - ind(D). |
Remark: If Ey = (y,a; p", F,w,) € C has exponent p* (¢ < n), then for all i > 0,
E;, = (y, a; p"ti F, wn+i) is an indecomposable division algebra of exponent pf*t.
For, when i > 0, E¥ ~ E;_1, so ind(E;) = p"** and ind(E?) = ind(E;_;) = p"**~L.
By Saltman’s criterion ([S, Lemma 3.2]), each E; (i > 0) is indeed indecomposable.

The assertion about the exponent of F; is clear.

REFERENCES
[A] A.A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Pub., vol. 24,
Providence, RI, 1961.

[B] N. Bourbaki, Algébre commutative, Chapitre VI, Hermann, Paris, 1961.

[D1] P.K. Draxl, Skew fields, London Math. Soc. Lecture Note Series, Vol. 81,
Cambridge Univ. Press, Cambridge, 1983.

[D2] P.K. Draxl, Ostrowski’s theorem for henselian valued skew fields, J. Reine.
Angew Math., 354 (1984), 213-218.

9



