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Applications of Discontinuous Galerkin Methods to the
Solution of Kinetic Equations

Outlook
Applications of non-equilibrium gas flows.
The microscopic description of gas, thermodynamic equilibrium
and the Boltzmann Equation.
The model kinetic equations.
Discontinuous Galerkin (DG) methods
Application of DG velocity discretization to the solution of model
equations.
Development of local time-stepping techniques for the DG
discretizations.
Development of methods for solving the Botlzmann equation
based on DG methods.
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Applications of Dilute Gas Flows
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Challenges in Simulation Complex Gas Flows

Applications of high-speed high-altitude flight and flows in small
channels contain regions of different flow regimes.
Regions where the flow is not in thermodynamic equilibrium
(definition follows) requires kinetic description.
The solution of kinetic equations is extremely challenging, because of
their high dimensionality, non-linearity, stiffness.

The Objective: Develop efficient methods for the solution of kinetic
equations.

Priorities:
high order, high resolution techniques.
methods that are implicit in time.
methods for dimensionality reduction.
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The Kinetic Description of Gas

Gas consists of particles that most of
the time do not interact.

Each particle is associated with a
velocity and a position.

The state of gas is described using
the molecular velocity distribution func-
tion f (t , ~x , ~v) defined by the property
that f (t , ~x , ~u)dxdu gives the number of
molecules contained in a box of size
dx × dv at point (~x , ~u) of the physical
space.

1D case:  ignore velocity components in Y and Z 
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Macroparameters

Kinetic description is largely excessive for most of the applications.
Measurable quantities of interest are usually expressed as a
combination of just a few first moments of the distribution function.
Here are a the first two moments:

n(t , ~x) =

∫
f (t , ~x , ~v)dv (density) (1)

n(t , ~x)~u(t , ~x) =

∫
~vf (t , ~x , ~v)dv (bulk velocity (2)

n(t , ~x)T (t , ~x) =
1

3R

∫
|~v − ~u|2f (t , ~x , ~v)dv (temperature) (3)

n(t , ~x)Tij =

∫
(vi − ui )(vj − uj )f (t , ~x , ~v)dv (stress tensor) (4)

Higher moments may be used as well in formulations.
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The Thermodynamic Equilibrium

As particles collide and exchange energy, their velocities change.
The gas is approaching thermodynamic equilibrium state. Molecular
velocities of equilibrium gas are distributed according to a local
Maxwellian

fM(t , ~x , ~v) = n(t , ~x)(2πRT (t , ~x))−3/2 exp
(
−|
~v − ~u(t , ~x)|2

2RT (t , ~x)

)
Equilibrium gas is described by just five macroparameters! We make
a practical assumption that gas is at equilibrium if the time to reach
equilibrium is small compared to the characteristic timescale of the
process. In particular, we can estimate this from the gas and the
process lengthscales and the gas temperature.
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The Kundsen Number

Traditionally, Knudsen number is used to determine if the gas is at
equilibrium.

Kn =
λ

L
,

where λ is the mean free moleculuar path and L is the characteristic
lengthscale of the flow.

Boltzmann Equation

Euler 
eqn.

Navier Stokes Eqns.

no-slip slip-conditions

Extended 

Hydrodynamics.

Model Boltzmann

0Kn
10 10 10

-3 -1 1 Kn∞

Continuum flow Transitional flow Free molecule
       flow

Slip-Flow
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The Boltzmann Equation

The dynamics of gas is given the Boltzmann equation:

∂

∂t
f (t , ~x , ~v) + ~v · ~∇x f (t , ~x , ~v) = Q(f , f ),

where (no external forces, binary collisions, single species)

Q(f , f ) =

∫
R3

∫ 2π

0

∫ b0

0
(f ′f ′1 − ff1)|g|b db dεdv1

Where f = (t , ~x , ~v), f = (t , ~x , ~v1),
f ′ = (t , ~x , ~v ′), and ~v and ~v1 are pre-
collisional and ~v ′ and ~v ′1 are post
collisional velocities.

Five dimensional integration re-
quires O(n5) operations at each
point of six dimensional phase
space where n is the number of
D.O.F. in one dimension.

Particle ξ

Particle ξ

g=ξ−ξ
1

1

Θ

χ

b

g=ξ−ξ
1

‘
‘

‘

Alex Alekseenko Applications of DG Methods to the Solution of Kinetic Equations



The Model Equations

In the regimes when gas flows are close to equilibrium (.1 < Kn < 10)
a good approximation to the Boltzmann equation is given bv the
model equations where molecular collisions are modelled by
relaxation:

∂

∂t
f (t , ~x , ~v) + ~v · ~∇x f (t , ~x , ~v) = ν(f0 − f (t , ~x , ~v)),

where f0 is either Maxwellian (Bhatnagar-Gross-Krook, 1954) or a
gaussian (ellipsoidal-statistical BGK, Holway 1966) distribution
function or some other distribution function.

ν is called the collision frequency and can be large (ν ≈ 1/Kn).

Because model equations depend only on a few macroparameters,
their evaluation requires O(n3) operations at each point of three
dimensional physical space

Model equations offer computational savings in evaluation of collision
of about O(n5) compared to the full Boltzmann equation. However no
savings in the transport part.
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Discretization in the velocity space

∂

∂t
f (t , ~x , ~v) + ~v · ~∇x f (t , ~x , ~v) = ν(f0 − f (t , ~x , ~v)),

Discrete ordinate method. Introduce ~uj , j = 1, . . . ,N and

fj (t , x̄) = f (t , x̄ , ūj )

Enforce equations at ordinates only, replace integrals with
quadratures. Solve first order (nonlinear) symmetric hyperbolic
system.

Choices of ordinates: Gauss-Hermite ordinates. Richter (1973),
Alexeenko etal., (2008), Uniformly spaced ordinates. Mieussens
(2000), Xu (2004).
Spectral-collocation method. Use basis of Hermite polynomials on
Gauss-Hermite nodes. Gobbert and Cale (2007), Hauck (2010)
(Virtually equivalent to discrete ordinate.)
Challenges: unclear accuracy and loss of conservation.
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Convergence Analysis

Richter (1973) considered application of discrete ordinate method to
steady state Couette flow. He estimated the error of discrete ordinate
approximation by the errors of quadrature formulas in evaluating
moments of the solution

‖f − fb‖∞ ≤
qw (ρ0,n + ρ−1,n)

T0,n(1/λ)

where

ρi,n =

∫ 2/λ

0
|Ti (s)− Ti,n(s)|ds

where
Ti (s) =

∫ ∞
0

t i exp(−(t2 + s/t))dt , s > 0

and Ti,n(s) are the corresponding quadratures
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Discontinuous Galerkin Discretizations

Domain is partitioned into elements Vi , i = 1,N. On each Vi a finite
local functional basis ϕj;i (~v), j = 1, k is selected. Then

f (~v)
∣∣∣
Vi

≈
k∑

i=1

fj;iϕ(~u)

Values of f on the boundaries of Vi are approximated by a numerical
flux. Approximation of integrals of f is straightforward. Derivatives of f
are approximated in a weak form using numerical flux (Cockburn,
1999).

K i Ki+1Ki-1

xi-1/2 xi+1/2
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DG Discretization in the Velocity Variable
(A., 2010) Partition the velocity space (or a bounded subset) by Vi ,
i = 1, . . . ,M. On each Vi introduce λl,i (ū) (e.g., polynomials). Seek
the solution in the form

f (t , x̄ , ū)|Vi =
∑

l

fl,i (t , x̄)λl,i (ū)

Substitute into the BGK eqn., multiply by a basis function, integrate:

Di∂t fi (t , ~x) + ∂xTu
i fi (t , ~x) + ∂y Tv

i fi (t , ~x)+∂zTw
i fi (t , ~x)

= ν
(∫

Vi

f0λm,i − Di fi (t , ~x)
)
.

where

T u
ml,i =

∫
Vi

uλl,iλm,i , T v
ml,i =

∫
Vi

vλl,iλm,i , T w
ml,i =

∫
Vi

wλl,iλm,i ,

Dml,i =

∫
Vi

λl,iλm,i .

Gobbert and Cale (2007) presented a global Galerkin method where
T ∗ml,i are diagonal.
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Basis Functions

Efficiency of a DG method depends on sparseness of matrices T u
ml,i ,

T v
ml,i , T w

ml,i , Dml,i which can be achieved by a clever match between
the quadrature formulas and basis functions. Let Ui = [ui−1/2,ui+1/2],
∆ui = ui+1/2 − ui−1/2, ui = (ui+1/2 + ui−1/2)/2. Let κp, p = 1, . . . , s be
the nodes of Legendre’s quadrature of order 2s − 1 and

κp,i =
∆ui

2
κp + ui or κp =

2(κp,i − ui )

∆ui

u ui-1/2 i i+1/2u

-1 0 1

κ p

κ p,i
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Basis Functions cont.

Define basis functions

λp,i (u) =
(u − κ1,i ) · . . . · (u − κp−1,i )(u − κp+1,i ) · . . . · (u − κs,i )

(κp,i − κ1,i ) · . . . · (κp,i − κp−1,i )(κp,i − κp+1,i ) · . . . · (κp,i − κs,i )

(Approximate the solution by a Lagrange polynomial of degree s − 1
on nodes κp,i .) Recall that

λp,i (κq,i ) =

{
1, if p = q
0, it p 6= q

The basis functions are orthogonal (recall that the Gauss quadrature
with s nodes is exact on polynomials of degree 2s − 1):∫

Ui

λp,i (u)λp,i (u) du =
s∑

r=1

wrλp,i (κr ,i )λq,i (κr ,i ) =

{
wp, if p = q
0, it p 6= q

where wr are the Gauss quadrature weights.
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Basis Functions cont.

More importantly,∫
Ui

uλp,i (u)λp,i (u) du =
s∑

r=1

wrκr ,iλp,i (κr ,i )λq,i (κr ,i ) =

{
wpκr ,i , if p = q

0, it p 6= q

In two dimensions and three dimensions, use

λp,i (u)λq,j (v) and λp,i (u)λq,j (v)λr ,l (w)

Then the matrices

T u
ml,i =

∫
Vi

uλl,iλm,i , T v
ml,i =

∫
Vi

vλl,iλm,i , T w
ml,i =

∫
Vi

wλl,iλm,i ,

Dml,i =

∫
Vi

λl,iλm,i

are diagonal!
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DG Discretization in the Spatial Variable
Partition the spatial domain by Kp, p = 1, . . . ,N. On each Kp
introduce ψr ,p(ū). Seek the solution in the form

f (t , ~x , ~u)|Kj×Vi =
s∑

l=1

µ(l)∑
p=1

fl,i;p,j (t)ϕp,j (~x)λl,i (~u),

where µ(l) = min(max_degree− l , k). After the standard steps, e.g.
Cockburn 1999,

∂t fij (t)Cj − T̂u
i fij (t)Cx

j −T̂v
i fij (t)C

y
j − T̂w

i fij (t)Cz
j + L−ij fij∗(t)C∂K

j∗ + L+
ij fij (t)C∂K

j

=

∫
∂Kj

ν
( s∑

m=1

(Dlm,i )
−1
∫

Vi

f0λm,i − fi (t , ~x)
)
ϕq,j .

where j∗ is the index corresponding to the adjacent element Kj∗

Cj = Cpq,j =

∫
Kj

ϕp,j (~x)ϕq,j (~x), Cx
j = Cx

pq,j =

∫
Kj

ϕp,j (~x)∂xϕq,j (~x), . . .

C∂K
j∗ = C∂K

pq,j∗ =

∫
∂Kj

ϕp,j∗(~x)ϕq,j (~x)dσ.
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Runge Kutta Integration in Time

∂t fj (t , x) = L(t , fj (t , x));

Runge-Kutta schemes:

fn+1 = fn + h
s∑

i=1

biKi

Ki = L(tn + hci , fn + h
s−1∑
j=1

aijKj )

s is the degree of the method.
0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs
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The Solution to Normal Shock Wave Problem

1D Mach 10 shock wave in Ar-
gon gas. (A., 2010; A., Gimel-
shein and Gimelshein, 2011

The solution is obtained by fifth
order Runge-Kutta method in
time and a fifth order DG method
in space and ninth order method
in velocity. 0
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Conservation of Mass

The following plots show conservation of mass in the high order
discrete velocity scheme. Notice that convergence is only second
order for the 5th order scheme and high order for the 9h order
scheme!

0 0.005 0.01 0.015 0.02 0.025 0.03
6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

t

lo
g

 | 
m

d
 �

 m
 | 

/ 
| m

 | 
 

M=8
M=16
M=32
M=64
M=128

0 0.005 0.01 0.015 0.02 0.025 0.03
14

13

12

11

10

9

8

7

6

5

4

t
lo

g
 | 

m
d

 �
 m

 | 
/ 

| m
 | 

 

M=8
M=16
M=32
M=64
M=128

5th order in u 9th order in u
Solutions are obtained by 5th order in x scheme on 16 cells.

Alex Alekseenko Applications of DG Methods to the Solution of Kinetic Equations



The Solution to Heat Transfer

1D heat transfer in Nitrogen gas.

The solution is obtained by fifth
order Runge-Kutta method in
time and a fifth order DG method
in space and ninth order method
in velocity.
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Heat Transfer Problem

1D Heat Transfer Problem for argon: Initial density di = 10−4.
Temperature is Tl = 300K on the right wall and Tr = 1000K. Diffusion
boundary conditions.
There are spurious oscillation near walls in the bulk velocity. These
however, can be treated to some extend by using non-uniform spatial
grids.
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Numerical Effects of Gas Surface Interaction

∂

∂t
f (t , ~x , ~u) + ~u · ~∇x f (t , ~x , ~u) = ν(t , ~x)(f0(t , ~x , ~u)− f (t , ~x , ~u))

In fact, the solution to the heat
transfer has a tiny discontinuity
in the direction of velocity vari-
able at the wall because of the
use of diffuse boundary condi-
tions. This is indicated by the
temperature jump.
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Error Pollution due to the Equation Stiffness

A comparison of solutions with different spatial resolution allows to
see the sources of error.
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Multiple Spatial Grids and Local Timestepping

Joint work with Patrick Medina: Use local mesh refinement to
overcome stiffness. However, small cells will put a restriction on the
time step when explicit time integration is used.
Local time stepping (LTS): use different time step size on different
grids. Grotte and Diaz, 2009, Grotte, 2010, Grotte and Teodorova,
2011.
The new Local Time Stepping DG discretization:

hierarchical collection of meshes in x ;
use DG discretization in the spatial variable;
use local time integration is by multiple time stepping
(Adams-Bashforth, Adams-Moulton); use uniform RK
time-stepping to calculate the values required in the multistep
integration.
use interpolation to advance finer meshes, make sure that
course meshes advance in time first;
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Local Time Stepping

Step 0. Step 1.

Step 3. Step 4.
1D traces on the course mesh are interpolated by Hermite
interpolating polynomials or splines.
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Time and Convergence Improvement
LTS has much smaller CFL stability constant (∆t/∆x < CFL) as
compared to the uniform time stepping (UTS) method. However, the
LTS techniques give overall savings of 2-3 times.

Comparison of computational time for LTS and UTS.

On a locally refined mesh spurious
velocity oscillations decrease faster
than a on uniform meshes

1.56

1.11

2.41x

x

x

x

x
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Motivation for UWVF

Implicit time integrators are known to be significantly faster for
steady-state problems and have better stability properties when
applied to stiff problems.

Ultra Weak Variational Formulations (UWVF) are generalizations of
DG methods. Cessenat and Depress, 1998; Darrigrand and Monk,
2006, Huttunen, Monk, Collino, and Kaipio, 2004.

UWVF inherit many nice properties from DG formulations: they can
handle complicated geometries, h-p refinement. They add flexibility in
designing the solution and test spaces.

In UWVF, the equations are reduced to the equations on the skeleton
of the mesh which in general is coupled to a system of local
equations. This results in a reduced number of unknowns (but not in
non-linear or case). The method is somewhat demanding on storage
for test functions in hon-homogeneous or nonlinear case.
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A Toy UWVF Example

Consider an application of UWVF to an ODE:

∂t f (t) = ν(f0(t)− f (t)), t ∈ [0,T ]

f (0) = g

where ν is constant and f0(t) is given. Partition the time interval in
Tk = [tk−1/2, tk+1/2]. Introduce fk = f |Tk . DG discretization follows by
multiplying the equation by a test function ρk integration over Tk .
Integrating by parts, we obtain:∫

Tk

fk∂tρk dt+fk (tk+1/2)ρk (tk+1/2)−fk (tk−1/2)ρ(tk−1/2) =

∫
Tk

ν(f0−fk )ρk dt

We replace fk (tk−1/2) with fk−1(tk−1/2) to allow communication
between intervals (upwind flux):∫

Tk

fk∂tρk dt+fk (tk+1/2)ρk (tk+1/2)−fk−1(tk−1/2)ρ(tk−1/2) =

∫
Tk

ν(f0−fk )ρk dt
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A Toy UWVF: Test Functions
Consider the DG formulation with upwind flux.∫

Tk

fk∂tρk dt+fk (tk+1/2)ρk (tk+1/2)−fk−1(tk−1/2)ρ(tk−1/2) =

∫
Tk

ν(f0−fk )ρk dt

To derive UVWF, assume that ρk solve

∂tρ(t) = νρk (t), t ∈ Tk

ρk (tk+1/2) = 1.

The DG scheme reduces to a system on the “skeleton of the mesh”
with respect to the boundary data ξk = fk (tk+1/2):

fk (tk+1/2)ρk (tk+1/2)− fk−1(tk−1/2)ρ(tk−1/2) =

∫
Tk

νf0ρk dt

Finally, we restore fk (t) by solving

∂t fk (t) = ν(f0(t)− fk (t)), t ∈ Tk

fk (tk−1/2) = xik−1.
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UWVF for the BGK Equation

We consider 4D rectangular partition Πkj = [tk−1/2, tk+1/2]× Rj of
[0,T ]× Ω, where Rj = [xj−1/2, xj+1/2]× [yj−1/2, yj+1/2]
× [zj−1/2, zj+1/2]. Introduce test functions ρ(t , x) on Πkj .

Integrate the discrete velocity model over Πkj by parts and transfer all
derivatives onto ρ. Use numerical flux Φ(f ) (say, upwind):

−
∫

Πkj

fp∂tρ−
∫

Πkj

fp(~χp · ∇)ρ+

∫
Rj

fp(tk+1/2)ρ(tk+1/2)− f ext
p (tk+1/2)ρ(tk−1/2)

+

∫ tk+1/2

tk−1/2

∫
∂Rj

~χp · ~nΦ(fp)ρ =

∫
Πkj

ν(f0(~χp)− fp)ρ

Require that ρ solves

∂tρ+ (~χp · ∇)ρ = c(~x)ρ

ρ|~χp·n>0 = ϕ(t , x), ρ|t=tk+1/2 = 0.
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UWVF for the BGK Equation (cont.)

Equation on the faces of the mesh:∫
Rj

fkjp(tk+1/2)ρkj (tk+1/2) +

∫ tk+1/2

tk−1/2

∫
∂Rj

~χp · ~nΦ(fkjp, ξkjp)ρkj

=

∫
Πkj

(νf0(~χp)− (ν − c)fkj,p)ρkj

The local solutions fkjp satisfy

∂t fkjp + (~χp · ∇)fkjp = ν(f0(~χp)− fkjp)

fkjp|~χp·n>0 = ξkjp, fkjp|t=tk−1/2 = fk−1,jp(tk−1/2).

The new unknowns are traces ξkjp and local solutions fkjp.
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Summary of the Algorithm

∫
Rj

fkjp(tk+1/2)ρkj (tk+1/2) +

∫ tk+1/2

tk−1/2

∫
∂Rj

~χp · ~nΦ(fkjp, ξkjp)ρkj =

∫
Πkj

(. . . fkj,p)ρkj

∂t fkjp + (~χp · ∇)fkjp = ν(f0(~χp)− fkjp)

fkjp|~χp·n>0 = ξkjp, fkjp|t=tk−1/2 = fk−1,jp(tk−1/2).

choose Lagrange basis function on Guass-Lobatto nodes.
the test functions ρkj are calculated for each basis function on the
faces of the mesh.
the equations of the faces and the local equations are solved by
a split iteration.

set the initial approximation for fkjp = fk−1,jp and some consistent
ξkjp.
solve the local problems for an update fkjp. Local problems are
non-linear. Use Broyden update.
solve equation on faces explicitly for an update of traces ξkjp.
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The Deterministic Solution of the Boltzmann Equation

The model equations are efficient, however, sometimes they fail to
approximate the true physics. In this case, one has to solve the
Botlzmann equation.

Presently, the direct statistical method Monte-Carlo simulations are
the prevailing methods.

Because of the statistical noise, DSMC methods are difficult to couple
to continuum solvers, e.g., Navier-Stokes solvers. Also, they are
prohibitively slow for slow flows and transient flows.

Deterministic methods can be used in these cases, however their
solution is still expensive. Examples: Tcheremissine 2006, Bobylev
and Rjasanow 1999, Aristov 2001.

Existing deterministic techniques do not allow for high Mach number
simulations and generally are limited to steady problems in one and
two dimensions.

With Dr. Josyula, AFRL, we proposed a deterministic approach
based on the DG velocity discretization that generalizes the approach
of Tcheremissine
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The DG Velocity Dicretization

Consider the Boltzmann equation:

∂

∂t
f (t , ~x , ~v) + ~v · ~∇x f (t , ~x , ~v) = Q(f , f ),

where Q(f , f ) is the collision operator:

Q(f , f ) =

∫
R3

∫ 2π

0

∫ b0

0
(f ′f ′1 − ff1)|g|b db dεdv1

Recall, that in DG formalism, we partition the velocity space by Vi ,
i = 1, . . . ,M and seek the solution in the form

f (t , x̄ , ū)|Vi =
∑

l

fl,i (t , x̄)ϕl,i (ū)

We use the DG discrete velocity formulation with the Lagrange basis.
The discrete transport part has the form of a diagonal symmetric
hyperbolic system (many recipes are available). The challenging part
is the evaluation of the collision integral.
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The DG Discrete Velocity Collision Operator

Consider the projection of the collision operator to a DG basis
function

Iϕ =

∫
R3
ϕ(~ξ)

∫
R3

∫ 2π

0

∫ b∗

0
(f (~ξ′)f (~ξ′1)− f (~ξ)f (~ξ1))|g|b db dεdξ1 dξ

The following identity is valid, (e.g., Kogan 1995)

Iϕ =

∫
R3

∫
R3

f (~ξ)f (~ξ1)
|g|
2

∫ 2π

0

∫ b∗

0
(ϕ(~ξ′) + ϕ(~ξ′1)− ϕ(~ξ)− ϕ(~ξ1))b db dεdξ1 dξ

=

∫
R3

∫
R3

f (t , ~x , ~ξ)f (t , ~x , ~ξ1)A(~ξ, ~ξ1;ϕ)dξ1 dξ

where

A(~ξ, ~ξ1;ϕ) =
|g|
2

∫ 2π

0

∫ b∗

0
(ϕ(~ξ′) + ϕ(~ξ′1)− ϕ(~ξ)− ϕ(~ξ1))b db dε . (5)

The operator A depends only on the velocity discretization and the
collision model and is pre-computed. No interpolation of f is required.
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Some Properties of the New Method.

Advantages:
No interpolation of f ;
Operator A is pre-computed;
The velocity discretization is high-order;
The integration over R6 is very sparse and is rather O(n3)

An elegant mathematical formulation. Symmetry, periodicity of A.
Easy application of implicit techniques, UVWF.

Challenges:
Large CPU and storage costs to evaluate A, need to use big
computers;
Still high costs to evaluate the collision integral, need to study
accuracy to increase efficiency;
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DG Methods for Kinetic Equations. Summary

The DG Velocity Collision Integral: Need to experiment with different
basises, study the accuracy and to increase efficiency. Develop
implicit methods for the Boltzmann equation. Development of a
posteriory error analysis. Develop model error analysis for model
equations.

Graduate students: Implementaion of UWVF, use of software
packages (DIAL II, ClawPack). Experiment with different Galerkin
basis. Development of efficient evaluation of A.

Undergraduate students: Interdisciplinary research team to research
energy harvesting using thermal transpiration. Simulation of rarefied
gas flows.

Future goal: Development of model reduction techniques.
Quantification of uncertainty in solution due to the uncertainty in
model and in data. Development of ultra-fast template-based
solutions. Development of large scale code.

Alex Alekseenko Applications of DG Methods to the Solution of Kinetic Equations



Thank you!
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