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The Evolution Systems with Differential Constraints

Some physical processes require equations two types for their description: the
equations that contain both time and space derivatives, called the evolution equations
and the equations that only contain spatial derivatives, called the constraint equations.

The constraint equations play an important role in the system. Among other
things they

• guarantee that the obtained solutions is physical,

• enable transitions from the current process to some other processes with possibly
more general descriptions and

• influence properties of the solution, including the stability property.

Usually, treatment of constraints in numerical calculations is a challenging task.
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The Maxwell’s Equations

The evolution equations

µ0ε0∂tE = curlB − µ0J (Ampere’s Circuital law)

∂tB = −curlE (Faraday’s law of induction)

The constraint equations

divE =
ρ

ε0
(Gauss law)

divB = 0 (absence of magnetic monopoles)

• the divergence constraints guarantee that a solution is physical;

• the divergence constraints enable transition from the wave equation to the Maxwell’s
equations.
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The Incompressible Navier-Stokes Equations

Evolution equations

ρ
(
∂tv + v · ∇v

)
= −∇p+ µ∆v + f, (conservation of momentum)

The constraint equation

div v = 0 (the mass continuity equation)

• in the case of compressible fluid, the mass continuity equation completes the
conservation of momentum equation to a closed system;

• unless the continuity equation is satisfied, transition to the incompressible Navier-
Stokes equations is not possible.

– Typeset by FoilTEX – 3



The BSSN Formulation of General Relativity
Evolution equations

∂0ϕ = −1
6
ak + . . . ,

e4ϕ∂0k = −6a∂p∂qϕ+ . . . ,

∂0h̃ij = −2aÃij + . . . ,

e4ϕ∂0Ãij = −1
2
a∂p∂ph̃ij + a∂ph̃p(i(Γ̃j) − 8∂j)ϕ) + . . . ,

∂0Γ̃i = −4
3
a∂ik + . . . ,

The constraint equations

∂p∂qh̃pq − 8∂p∂pϕ = . . . , ∂lAil −
2
3
∂ik = . . . ,

Γ̃j = h̃pq∂ph̃qj .

• the constraints are used to derive the BSSN system form the Einstein equation,
• constraints are necessary to distinguish physical solutions from all solutions,
• constraints are important to the stability properties of the formulation.
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The Generalized Harmonic Formulation
Evolution equations

1
2
ψcd∂c∂dψab = −∇(aHb) + γ0[t(aCb) −

1
2
ψabt

cCc] + ...

ψab∇c∇cxb = Ha(x, ψ)

The constraint equations

Ca := Ha +
1
2
ψab(∂bψac + ∂cψab − ∂aψbc) = 0

• the constraints are used to derive the BSSN system form the Einstein equation,

• constraints are necessary to distinguish physical solutions from all solutions.
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Numerical Solution of Systems with Differential Constraints

For the robustness of the numerical method it is important that

• a well-posed IBVP be specified for the system with differential constraints, ideally
in a manner suitable for computations;

Well-posed constraint-preserving boundary conditions, methods of analysis for
IBVP.

• techniques be developed for the numerical treatment of the constraint equations.

Technique of constrained evolution, constraint projection, constraint-preserving
boundary conditions, constraint damping, constraint-free methods.
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Methods for Formulating

Well-Posed IBVPs for Systems

with Differential Constraints
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The Model System
Let A : C∞(Ω,Rn)→ C∞(Ω,Rn), A∗ = −A and B : C∞(Ω,Rn)→ C∞(Ω,Rk).

∂tu = Au+ F

Bu = g

The key assumption BA = NB, N∗ = −N . Then the evolution of p := Bu− g obeys:

∂tp = ∂t(Bu− g) = BAu+BF − ∂tg = NBu+BF − ∂tg = Np+ F

If BF − ∂tg = F = 0, then the system is said to preserve the constraints. Two options
are then available

• Constrained Evolution: solve both the evolution and constraint equations;

• Free Evolution: solve the evolution equations, constraint equations are only monitored.

The problem is well-posed in a unbounded domain. Existence is guaranteed (locally
in time), if the initial data satisfies the constraint equations.

In a bounded domain, well-posedness of the IBVP is contingent to the existence
of well-posed constraint-preserving boundary conditions.
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Example 1. The Maxwell’s Equations

∂tu = curl v

∂tv = −curlu

p := div u = 0

q := div v = 0

Propagation of the constraints: (use div curl = 0)

∂tp = 0

∂tq = 0

Solve the free evolution problem, e.g., use div -free elements.

Well-posedness on an IBVP is automatic since propagation of the constraints is static:
boundary data does not disturb constraints quantities.

– Typeset by FoilTEX – 9



Example 2. The linearized BSSN system

∂tϕ = −1
6
κ,

∂tκ = −6∆ϕ,

∂tγ̃ij = −2Aij,

∂tAij = −1
2

∆γ̃ij +∇(iΓj) − 8∇i∇jϕ,

∂tΓi = −4
3
∇iκ.

Subject to the constraint equations

H := div Γ− 8∆ϕ = 0, Mi := (divrA)i −
2
3
∇iκ = 0, Ci := Γi − (divrγ̃)i = 0

Evolution of constraints:

∂tH = 0, ∂tCi = −2Mi, ∂tMi = −1
2∆Ci + 1

2∇iH.

Systems are reducible to a FOSH system, possesses a well posed energy (Gundlach and
Martin-Garcia (2004), Alekseenko (2005)). Constraint compatible boundary conditions
are essential for the well-posedness.
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The Meta Strategy for the Well-Posed IBVP

∂tu = Au+ F

Bu = g

Consider propagation of the constraints. We assume that BA = NB, N∗ = −N (or
that ∃B, B > 0, such that (BN)∗ = −BN). Then p := Bu− g obeys:

∂tp = Np+ F

To construct the constraint-preserving boundary conditions:

• find the BCs that imply p = const. (ideally also minimize reflections at the artificial
boundary);

• replace p with its definition, obtain (higher order differential) BCs for u;

• study the well-posedness of the resulting IBVP using either the energy methods or
the Kreiss technique of pseudo-differential reduction.
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Example 1. 1D Wave Equation

∂2
t u = ∂2

xu, x ∈ [x0, x1]

C = ∂xu = 0

Notice that C obeys ∂2
tC = ∂2

xC. Consider

C|x0 = 0,

∂xu|x0 = 0

This is a constraint preserving Neumann boundary condition.

In 3D it is possible to find a combination of homogeneous Neumann and Dirichlet
BCs that are constraint-preserving. Inhomogenous Neumann and Dirichlet BCs
require integration of a PDE system restricted to the boundary.
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Example 2. 1D Wave Equation

∂2
t u = ∂2

xu, x ∈ [x0, x1]
C = ∂xu = 0

Notice that C obeys ∂2
tC = ∂2

xC. Consider

(∂tC − ∂xC)|x0 = 0,

∂t∂xu− ∂2
xu = 0,

Use the evolution equation to replace ∂2
xu = ∂2

t u :

∂2
t ∂xu− ∂2

t u = 0.

Or ∂t(∂tu− ∂xu) = 0.

Therefore, set
(∂tu− ∂xu)|x0 = ∂tu(x0, 0)− ∂xu(x0, 0)

In 3D the “trading of the second normal derivatives” step will introduce tangential
derivatives in the BCs. The energy proofs are not obvious. However, the Kreiss
techniques of pseudo differential reduction proved to be very effective to rule out the
bad cases.
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An alternative Meta Strategy for the Well-Posed IBVP
Notice that the problem

∂2
t u = ∂2

xu, x ∈ [x0, x1]
C = ∂xu = 0

does not need any boundary conditions. Instead, one can reduce it to

∂2
t u = 0

C = ∂xu = 0

and integrate from any compatible initial data. Notice that in the new system, ∂tC = 0.

This suggests An Alternative Meta Strategy for the Well-Posed IBVP:

• reduce to a system that evolves constraint quantities statically, find boundary
conditions that are “essential” for the system;

• use the essential boundary conditions in the original system, complement with the
data that enforces the constraint and makes the problem well-posed.

• try to prove the well-posedness of the IBVP using the energy methods or the Kreiss
techniques of pseudo-differential reduction.
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Example 4. The 3D Wave Equation

Vector wave equation (ui ∈ R3) in a polyhedral domain Ω (Friedrich and Nagy 99,
Sarbach and Reula 05, Alekseenko 07)

∂2
t ui = ∆ui

C := div u = 0 (∂2
tC = ∆C)

Use the relationship to Maxwell’s equations, ∆ui = −curl curl ui +∇idiv u,

∂2
t ui = −curl curl ui

C := div u = 0 (∂2
tC = 0)

Let |α| < 1, un - normal and uA - tangential components of ui on the boundary ∂Ω
∂tuA + ∂nuA − ∂Aun = α(∂tuA − ∂nuA + ∂Aun) + gA

∂tun + ∂nun = −α(∂tut − ∂nun) + g

Implies that ∂tC + ∂nC = α(∂tC − ∂nC)

This problem is well-posed in the generalized sense (Alekseenko 07), see also (Reula
and Sarbach, 2005) and (Kreiss etal., 2007, arXiv:0707.44188v2.)
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Methods for Solving Numerically the

Systems with Differential Constraints
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Solving the Constrained Evolution Problems Numerically

Let A : C∞(Ω,Rn)→ C∞(Ω,Rn), A∗ = −A and B : C∞(Ω,Rn)→ C∞(Ω,Rk),

∂tu = Au+ F

Bu = g

Prescribe the constraint satisfying initial data and constraint-preserving boundary data.

Constraint equations are still violated in the numerical simulations due to the
discretization errors!

Methods to maintain the constraint equations:

• Include the constraint equations into the solution.

• Make periodical projections to the constraint manifold

• Add terms to the evolution equations that damp the small constraint violations

• Use sophisticated discretization techniques, e.g., constraint-free elements.
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Incorporating the Constraint Equations into Evolution

Let A : C∞(Ω,Rn) → C∞(Ω,Rn), A∗ = −A and B : C∞(Ω,Rn) → C∞(Ω,Rk).
Consider

∂tu = Au+ F (1)

Bu = g (2)

Include the constraint equations into the evolution. For example, introduce

∂tu = Au−B∗p+ F

∂tp = Bu− g − λ2p

Can check that (we assume that BA = NB, N∗ = −N :)

∂2
t p = Np−BB∗p− λ2∂tp− ∂tg

The energy estimate

∂t[‖∂tp‖2 + ‖B∗p‖2] = −λ2‖∂tp‖2 −
∫

Ω

∂tg∂tp

Disadvantages: larger system, needs special boundary conditions to maintain p = 0.
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Enforcing the Constraint Equations by a projection

Let A : C∞(Ω,Rn) → C∞(Ω,Rn), A∗ = −A and B : C∞(Ω,Rn) → C∞(Ω,Rk).
Consider

∂tu = Au+ F

Bu = g

Keep both the evolution and constraint equations are under control by solve the evolution
equations and periodically project u back on the constraint manifold, e.g. by computing

ũ = {w : L = ‖w − u‖2 + λ(Bw − g)→ min}

Disadvantages: the projection may be expensive.
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Using the Constraint Damping

Let A : C∞(Ω,Rn) → C∞(Ω,Rn), A∗ = −A and B : C∞(Ω,Rn) → C∞(Ω,Rk).
Consider

∂tu = Au+ F

Bu = g

Introduce terms in evolution equations (not necessarily all of them) that a) are
proportional to the constraint quantities, b) do not disturb the symmetric hyperbolicity
of the system and c) force the small constraint violations to decay exponentially in
time. The recipe is non-unique. Essentially, we are looking for an algebraic operator
Λ : Rk → Rn such that

∂tu = Au− Λ(Bu− g) + F

has the desired properties.

One of the requirements is that BΛ(Bu − g) does not produce higher order terms,
so Λ has to be rather sparse and imply equation of the form

∂tp = −LL∗p− µ2p

Disadvantages: the boundary conditions may be different for the new system.

– Typeset by FoilTEX – 20



Example 1. The Scalar Wave Equation

∂2
tψ −∆ψ = 0

Introduce π = ∂tψ, ϕi = ∇iψ, decompose into the FOSH system (Holst etal, 2004)

∂tψ = π

∂tπ = divϕ

∂tϕi = ∇iπ

The first order system has a constraint Ci = ϕi −∇iψ that is evolving statically,

∂tCi = ∂t(ϕi −∇iψ) = ∂tϕi −∇i∂tψ = ∂tϕi −∇iπ = 0.

or

∂tCi = 0
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Example 1. The Scalar Wave Equation

Introduce the modified system:

∂tψ = π

∂tπ = divϕ

∂tϕi = ∇iπ − µ2(ϕi −∇iψ)

The new system is still symmetric hyperbolic:

∂tψ = π

∂t(π − µ2ψ) = divϕ+ µ2(π − µ2ψ) + µ4ψ

∂tϕi = ∇i(π − µ2ψ)− µ2ϕi

and it implies

∂tCi = −µ2Ci
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Example 2. The Vector Wave Equation
Consider the vector wave equation (ui ∈ R3)

∂2
t ui = ∆ui

C := div u = 0 (∂2
tC = ∆C)

Want to solve first order in time, second order in space. Introduce πi = ∂tu. Use
∆ui = −curl curl ui +∇idiv u, rewrite the evolution equation as

∂tui = πi

∂tπi = −curl curl ui +∇idiv u

Introduce ϕi = curlui, C = div u, reduce to the FOSH system

∂tui = πi

∂tπi = −curl ϕi +∇iC
∂tϕi = curlπi

∂tC = div π

Want to enforce C = 0 by adding damping terms to the last equation.
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Example 2. The Vector Wave Equation
Introduce the modified system:

∂tui = πi

∂tπi = −curl ϕi +∇iC
∂tϕi = curlπi

∂tC = div π − µ2C

Verify that C now obeys

∂2
tC = δC − µ2∂tC ⇒ ∂t[‖∂tC‖2 + ‖∇iC‖2] = −µ2‖∂tC‖2

Finally, go back to first order in time second order in space

∂tui = πi

∂tπi = −curl curl ui +∇idiv u− µ2

∫ t

0

e−µ
2(t−τ)div u(τ)dτ
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Conclusion

• We did not talk about the techniques for proving the well-posedness of IBVP
for evolution systems with differential constraints. Numerical relativity spurred
development of new techniques based on the pseudo-differential reduction and the
energy methods (Kreiss and Lorenz, 89; Gustafsson, Kreiss and Oliger 95; Sarbach
and Reula 2005, Kreiss and Winicour, 2006; Rinne, 2006; Kreiss, Reula, Sarbach
and Winicour, 2007).

• A work is underway to implement techniques of constraint-damping, constraint
preserving boundary conditions for a model problem for Einstein equations in first
order in time second order in space form using the DG method.

• It is interesting to apply these techniques to other problems in numerical relativity,
such as gauge driving
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