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ABSTRACT: For metallic nanoparticles less than 10 nm in diameter, localized surface
plasmon resonances (LSPRs) become sensitive to the quantum nature of conduction
electrons. In this regime, experimental probes of size-dependent LSPRs are particularly
challenging, and contradictory results are often reported. Unfortunately, quantum
mechanical simulations based on time-dependent Kohn−Sham density functional theory
(TD-KSDFT) are computationally too expensive to tackle metal particles larger than 2
nm. Herein, we present a time-dependent orbital-free density functional theory (TD-
OFDFT) that accurately captures the dynamic response of electrons in the presence of
realistic ionic potentials. The TD-OFDFT method offers a comparable accuracy as TD-
KSDFT but with a much lower computational cost. Using TD-OFDFT, we study size-
dependent LSPRs on Na nanoparticles with diameters from 0.7 to 12.3 nm. The optical
absorption spectra exhibit a nonmonotonic behavior from blue shift to red shift and back
to blue shift as the particle size decreases. Three principal plasmon modes are identified,
and their physical origins are elucidated. Competing physical mechanisms responsible
for the nonmonotonic size dependence are discussed. The TD-OFDFT provides a unified theoretical framework that bridges the
gap between classical electromagnetic theory and quantum mechanical theory for plasmonics and nanophotonics.
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Metallic nanoparticles are attracting much attention
recently owing to their unique physical and chemical

properties that are beyond their bulk counterparts and can be
tuned based upon their size, shape, composition, and
environment.1−5 In particular, the collective electron oscil-
lations on metal surfaces, known as local surface plasmon
resonances (LSPRs), enable strong optical absorption and
scattering in the subwavelength scale, leading to novel
applications in chemical and biological sensing, imaging,
optoelectronics, energy harvesting and conversion, and
medicine.6−11 However, in order to advance such applications,
one needs to control LSPRs in metal nanostructures. It turns
out that the control of nanoparticle size represents one of the
most effective approaches to harness the tremendous potentials
of plasmonics and nanophotonics. Crucial to this endeavor is
the size dependence of LSPRs in nanostructures, which
unfortunately remains poorly understood due to the quantum
nature of the phenomena, especially for particle sizes from 2 to
20 nm. Therefore, it is scientifically and technologically
important to understand, predict, and ultimately control
plasmonic responses in nanostructures.
Experimentally, there have been controversies on the size

dependence of LSPRs in metallic nanostructures. For example,
Parks et al. reported that the optical spectra of small Na clusters
exhibited a red shift from 3.4 to 2.4 eV as the cluster size
decreased from 300 to 10 atoms.12 Reiners et al. examined the
optical response of spherical Naj

+ particles (9 ≤ j ≤ 93) and

observed a red shift as the particle size decreased from 93 to 41
atoms followed by a blue shift as the particles shrank from 41
atoms to 9 atoms,13 contradictory to the results of Parks et al.
Using photodepletion spectroscopy, Kappes et al. studied the
optical absorption of small Na clusters (<20 atoms) and found
an irregular size dependence.14 To the best of our knowledge,
there is no experimental report on the size dependence of
LSPRs for larger Na nanoparticles with more than 300 atoms.
However, there are experimental results on Ag nanoparticles,
which are also controversial. For instance, monodispersed Ag
nanoparticles stabilized with organic ligands exhibited a blue
shift as the particle diameter was d < 20 nm and then a strong
red shift as d < 12 nm.15 Scholl et al. examined plasmon
resonances of individual ligand-free and substrate-free Ag
nanoparticles and found a blue shift as the particle size was
between 2 and 20 nm.16 Therefore, theoretical investigations
are imperative to resolve the experimental controversies and
more importantly to provide fundamental understanding of the
size-dependent LSPRs.
However, theoretical investigation of plasmonic resonances is

equally challenging for particle sizes between 2 and 20 nm. This
length scale is too small for classical electromagnetic theories to
be valid but too large for full-fledged quantum simulations to be
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feasible. Classical theories often fail to capture quantum
resonances, producing results contradictory to experiments
for particle sizes less than 10 nm.16−18 Quantum mechanical
simulations based on the time-dependent Kohn−Sham density
functional theory (TD-KSDFT) are, in principle, capable of
describing quantum resonances. For example, Nordlander’s
group has examined the plasmonic resonances of nanoparticle
dimers,19,20 nanowires, and nanowire dimers21,22 using TD-
KSDFT. However, such calculations are computationally
demanding and are currently limited to particles smaller than
2 nm (100 electrons) with pseudopotentials.23 Even when the
jellium model is used, TD-KSDFT can treat no more than a few
thousand electrons (∼2000 electrons) routinely.19−22 The only
exception to this general rule is the work by Prodan et al. for
metallic nanoshells, which assumed spherical symmetry of the
wave functions in conjunction with the jellium model.24

Therefore, it is crucial to develop an accurate and expeditious
quantum mechanical method that can provide a unified
theoretical framework to predict and understand LSPRs in
metallic nanostructures.
In this Letter, we introduce a time-dependent orbital-free

density functional theory (TD-OFDFT) that retains the
accuracy of TD-KSDFT at a fraction of its computational
cost. Using TD-OFDFT, one can treat particle sizes up to 20
nm, thus bridging the quantum and classical plasmonics. Not
only does TD-OFDFT yield excellent agreements with both
TD-KSDFT and experimental results for smaller nanoparticles,
it also reproduces experimental observations for larger
nanoparticles that are beyond the reach of TD-KSDFT. The
success of TD-OFDFT is due to the incorporation of two
important elements that are missing in previous theoretical
efforts.25 The first is introduction of a dynamic kinetic energy
potential (DKEP)26 that ensures the correct frequency-
dependent and wave-vector-dependent linear response of
electron gas; the second is the use of ab initio pseudopoten-
tials27 for describing the positive charge background beyond the
jellium model.
In this Letter, we first use smaller Na nanoparticles as

examples to demonstrate the accuracy of the TD-OFDFT
method by comparing its results to those of TD-KSDFT and
experiments. We then apply the method to examine size-
dependent plasmonic resonances of individual ligand-free Na
nanoparticles in the quantum size regime (12.3 > d > 0.7 nm).
We find that the optical absorption spectra of Na nanoparticles
exhibit an intriguing nonmonotonic behavior (blue shift−red
shift−blue shift) as the size decreases. An analysis on the
electronic charge density indicates the coexistence of three
principal resonance modes. The competing physical mecha-
nisms responsible for the observed nonmonotonic size
dependence are illustrated. This work resolves the long-
standing controversies on the size-dependent LSPRs in metallic
nanoparticles and provides a first-principles theoretical frame-
work to understand, predict, and ultimately control plasmonic
responses in nanostructures.
Instead of treating many orbitals as in TD-KSDFT, the TD-

OFDFT approach is based on a single orbital Ψ, which is
related to the time-dependent charge density ρ ⇀r t( , ) via

ρΨ ⇀ = ⇀ χ ⇀
r t r t( , ) ( , ) e r ti ( , )

(1)

and is normalized to the total number of electrons; χ is a phase
factor. Note that, arguably, this method may be better labeled
as a “time-dependent single-orbital”, but we will use the

prevailing notation of TD-OFDFT in this Letter. Ψ is
determined by solving a Schrodinger-like equation
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where the symbols are defined according to the usual
conventions. Here, a local pseudopotential is used for

⇀V R( )ion instead of a jellium background. The atomic-centered
local pseudopotential is constructed by inverting the Kohn−
Sham equations on the bulk valence electron density using a
modified ABINIT code27,28 (see the Supporting Information).
νDKEP in eq 2 is the DKEP, including three contributions, as
shown in eq 3
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They are the Thomas−Fermi contribution (exact for a
uniform electron gas), von Weizsacher contribution (exact for
one electron), and a dynamic kernel term νker. Here, a is the
numerical coefficient of the von Weizsacher term. The dynamic
kernel term is further decomposed into a static nonlocal kinetic
energy potential νker

s as well as a dynamic term νker
d

ν ν ν= +ker ker
s

ker
d

(4)

Here, νker
s represents the modern kernel term29 for the static

OFDFT potential, which depends on the instantaneous
electron density ρ ⇀r t( , ) via ν δ δρ= ⇀V r t/ ( , )ker

s
s . Typically, Vs

takes the following form
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where K is a material-specific density-dependent kinetic energy
kernel.
The crucial ingredient of the formalism is the νker

d term in eq
4, introduced to ensure the proper frequency-dependent linear
response or the correct dynamic susceptibility of the electron
gas.26 It manifestly vanishes for the static response and is
written as
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The ansatz for ⇀y r t( , ) takes cue from the static kinetic
energy potential; dj, κj, and ωj are complex parameters, and for
simplicity, the exponentials αj and βj are taken to be real, as in
the static case. On the basis of the TD-OFDFT formalism, one
can derive the dynamic (wave-vector- and frequency-depend-
ent) susceptibility, χ0(q,ω,ρ0), for an initial charge density ρ0.

26

These parameters are then obtained by fitting the TD-OFDFT
dynamic susceptibility χ0(q,ω,ρ0) to the exact dynamic
susceptibility of a homogeneous electron gas with the same
density of ρ0 (see the Supporting Information). Note that the
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theoretical formalism and numerical fitting procedure are
general and can be applied to alkali and even noble metals.
Recently, an angular-momentum-dependent static OFDFT
method has been developed,30 which renders OFDFT
applicable to metals with localized d electrons. Therefore, it
is feasible to incorporate both the relativistic effect (via angular
momentum pseudopotentials) and contributions from d
electrons in the present formalism. Because the relevant
revisions are entirely on the static contributions, we do not
anticipate technical difficulties to implement the revisions. As
we previously fitted the parameters for sodium,26 we use Na
particles as examples to explore size-dependent LSPRs in this
Letter. Because TD-OFDFT deals with electron density as
opposed to wave functions, the computational cost is about the
same between, say, Na and Ag clusters. The TD-OFDFT
approach is implemented in real space using conventional
exchange−correlation functionals.
First, we demonstrate the accuracy of the TD-OFDFT

method by comparing its predictions to those from TD-
KSDFT and experiments for small particles. In particular, four
positively charged nanoparticles, Na5

+, Na7
+, Na9

+, and Na55
+,

are studied using both TD-OFDFT and TD-KSDFT methods.
In all cases, we find excellent agreements between the two
methods in terms of plasmon energythe quantity of interest
in plasmonics. Here, we only present the results of Na9

+, while
the results of Na5

+, Na7
+, and Na55

+ are discussed in the
Supporting Information. We use a tricapped trigonal prism
(D3h) geometry to model a Na9

+ particle, as shown schemati-
cally in the inset of Figure 1. This structure is the lowest-energy

configuration for Na9
+.31 We calculate the longitudinal optical

adsorption spectra using both TD-KSDFT and TD-OFDFT
along three polarization directions. As displayed in Figure 1, we
find one absorption peak in each polarization direction; owing
to the symmetry, the adsorption spectra in y and z are identical.
The area under the adsorption curve represents the oscillator
strength. The plasmon energy from TD-OFDFT is 2.70 and
2.96 eV, respectively, along the x and y (or z) directions. The
corresponding energy from TD-KSDFT is 2.64 and 2.82 eV,
both in excellent agreement with the TD-OFDFT values (less
than 5% error). Although the atomic structure of the Na9

+

particle and the polarization direction were unknown, two
adsorption peaks were observed (2.70 and 2.95 eV) in

experiment;32 these energies matched exceedingly well the
TD-OFDFT results. Hence, we establish that the TD-OFDFT
method provides an accurate description of the plasmon
resonances for small Na nanoparticles. Additionally, in TD-
OFDFT, the computational cost scales linearly with the system
size, whereas in TD-KSDFT, the scaling is cubic. Therefore,
TD-OFDFT is computationally much more efficient than TD-
KSDFT, particularly for larger particles.
Using TD-OFDFT, we examined the LSPRs of Na

nanoparticles in the quantum size regime with d = 0.7−12.3
nm; the largest particle contains over 17800 atoms. The
nanoparticles are in a symmetric Ih icosahedral shape, which
was reported to be experimentally stable.15 The highly
symmetric structure renders the analysis of plasmonic
resonances more convenient without the complication of
anisotropy. Because particle shape influences optical spectra
considerably,33 we examine the particles with the same
icosahedral shape to explore exclusively the size dependence
of LSPRs. In Figure 2, we display the optical absorption spectra
of 13 Na particles (left panel) and the peak value of the optical
absorption spectra as a function of the diameter (right panel).
The calculated absorption energies are between 2.92 and 3.12
eV for the nanoparticles examined here, which agree well with
previous TD-KSDFT results34 ranging from 2.7 to 3.0 eV for
particle sizes between 15 to 331 atoms. The energy differences
are mainly due to different shapes of the clusters (the
icosahedral shape versus bcc) used in the calculations. The
most distinctive feature of the results is nonmonotonic size
dependence of LSPRs. The plasmon energy is blue-shifted as
the particle size decreases from 12.3 to 8.8 nm. As the particle
size is further reduced, a strong red shift takes over, with the
lowest absorption energy at d = 2.9 nm. With continual
shrinking of the particles, the energy is blue-shifted again. Thus,
we can classify the size dependence of LSPRs into three
regions, (I) blue shift (d > 8.8 nm), (II) red shift (2.9 < d < 8.8
nm), and (III) blue shift (d < 2.9 nm).
In order to understand this nonmonotonic size dependence,

we analyze the optical absorption of three selected nano-
particles in more details. In Figure 3a, we display the optical
absorption spectra of Na nanoparticles with d = 9.5 (Na8217

+),
5.1 (Na1415

+), and 1.7 nm (Na55
+), exemplifying, respectively,

regions I, II, and III. Shown in Figure 3a, in addition to the
strongest absorption peak at 2.97 eV, there are two weaker
peaks at around 4.0 and 5.0 eV for Na55

+. This multiple-peak
feature of Na55

+ along with the asymmetric adsorption spectra
for the two other particles hints that multiple resonance modes
may be present. To verify this speculation, we resolve each
absorption spectrum as a sum of Gaussian functions35 and
derive three distinctive resonance modes termed ω1, ω2, and
ω3 in Figure 3a (green curves). They correspond to 2.97, 3.96,
and 4.78 eV for Na55

+; 3.02, 3.35, and 4.45 eV for Na1415
+; and

3.04, 3.48, and 4.65 eV for Na8217
+, respectively. Indeed, the

sum of the three Gaussians (red curve) matches very well the
original absorption spectrum (black curve) for each particle,
with the only exception at the low-energy range of Na55

+.
Therefore, one can try to understand the size dependence of
LSPRs in terms of these resonance modes.
In Figure 3b, we present the induced charge density (relative

to the equilibrium values) evaluated at the three frequencies,
ω1, ω2, and ω3. The charge density was obtained by Fourier
transform of the charge density distribution from the time
domain to the frequency domain. For each particle, the induced
charge density at ω1 exhibits a typical dipolar plasmon

Figure 1. The optical absorption spectra of the Na9
+ particle along the

x, y, and z axes from the TD-OFDFT and TD-KSDFT calculations.
The atomic structure of the particle is shown in the inset. The black
vertical lines indicate the experimental values.
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oscillation across the entire particle in the direction of
polarization (negative charge on the left surface and positive
charge on the right surface).36 The charge density distribution
(Friedel oscillations) inside of the particle results from the
screening of the charge oscillation on the surface. The charge
density distribution at ω2 can be identified as a Bennet
multipole surface plasmon,37,38 which originates from electron
spill-out at the edge of the nanoparticle. The charge distribution
in the polarization direction displays a predominant dipole
shape, characterized by two dipoles across the surface. In this
case, the surface dipoles are in the same direction. The charge
density at ω3 is similar to that at ω2 but with two opposite
surface dipoles, resembling a breathing mode on the surface.
Provided that the particle size is not too large, the two surface
dipoles could interact with each other. This interaction gives
rise to different energies for the two resonance modes. The ω2
mode has a lower energy, resulting from a symmetric
combination of the surface dipoles (in the same direction),
while ω3 has a higher energy from the antisymmetric
combination of the surface dipoles (in the opposite
direction).39,40

Three competing physical mechanisms underlie the size
dependence of LSPRs, including electrodynamic phase
retardation, electron spill-out, and quantum size effect. The
phase retardation is a classical effect and plays an important role
only in larger particles (d > 8 nm).41 Electron spill-out has a
significant impact on the plasmon energy when particles
become smaller (d < 5 nm).41 The quantum size effect, on the
other hand, is prominent only for very small particles (d < 3
nm).42 In region I (d > 8.8 nm), the phase retardation is at play,
and the absorption spectrum is blue-shifted as d decreases from
12.3 to 8.8 nm. This blue shift is well-known both
experimentally and computationally from classical theories.15,16

The fact that the present TD-OFDFT simulations reproduce
this blue shift is a validation of the method as applied to large
nanoparticles. In addition, we also find a reasonable quantitative
agreement between the classical Mie theory and the present
TD-OFDFT for large particles. For example, for d = 10 and 12
nm, the resonance energies from the Mie theory are 3.20 and
3.17 eV, respectively,41 close to our corresponding TD-OFDFT
values of 3.05 and 3.0 eV. In region II (2.9 < d < 8.8 nm), the
electron spill-out effect becomes more important, which is
corroborated by the fact that the relative contribution (the

relative height of ω2 peak among the three plasmon modes) of
the spill-out mode ω2 in Na1415

+ is greater than that in Na8217
+

and Na55
+, as shown in Figure 3a. The spill-out of electrons

leads to a reduced average electron density; thus, the surface
plasmon energy is lower.41 In this region, as the particle size
decreases, the electron spill-out effect becomes more
prominent, and hence, a strong red shift is observed in Figure
2b. In region III (d < 2.9 nm), the quantum size effect is
dominating for all three plasmon modes as the particle becomes
increasingly smaller.42 The quantum confinement increases the
energy-level separations and the excitation energies of surface
plasmons, leading to a blue shift with decreasing particle sizes.
For smaller nanoparticles, shape or symmetry has a greater

influence on the plasmon resonances.33 This may be one of the
reasons why there were contradictory experimental results for
smaller Na particles (N < 300).12−14 By examining Na
nanoparticles in the same shape, we can identify the relevant
mechanism (quantum size effect) underlying the blue shift size
dependence in the smallest nanoparticles. For larger Na
particles (d > 3 nm), there is no experimental result on the
plasmonic size dependence. However, there is a recent
experiment on Ag nanoparticles stabilized with organic ligands
that reported a blue shift as the particle diameter was reduced
from 20 nm then a strong red shift beyond 12 nm,15 consistent
with our prediction for Na particles. Finally, we note that recent
experiments16 combining the aberration-corrected transmission
electron microscope (TEM) imaging and monochromated
scanning TEM electron energy loss spectroscopy may be able
to confirm the TD-OFDFT predictions reported in this Letter.
In summary, we have developed a first-principles TD-

OFDFT method that captures the dynamic response of
electrons and the ionic potential accurately. The method offers
a comparable accuracy as TD-KSDFT but with much a lower
computational cost, thus bridging the gap between classical
electromagnetic theory and quantum mechanical theory for
plasmonics. The TD-OFDFT method is validated for small Na
particles by comparing its predictions to those from TD-
KSDFT and experiments. Using the TD-OFDFT method, we
study the size dependence of LSPRs for Na nanoparticles in the
size range of 12.3 > d > 0.7 nm. The absorption spectra exhibit
a nonmonotonic behavior, a blue shift for d > 8.8 nm, a red
shift for 2.9 < d < 8.8 nm, and a blue shift for d < 2.9 nm, as the
particle size decreases. Three principal modes underlying

Figure 2. (Left): The optical absorption of Na nanoparticles for d = 12.3, 9.5, 8.8, 8.0, 7.3, 6.6, 5.1, 4.4, 3.6, 2.9, 2.2, 1.7, and 0.7 nm. (Right) The
peak values (black squares) of the optical absorption spectra as a function of d. I, II, and III indicate the three regions of blue shift, red shift, and blue
shift of the plasmon resonance energy, respectively.
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plasmonic responses are identified, and their physical origins
are elucidated. Three competing mechanisms, phase retarda-
tion, electron spill-out, and quantum confinement, are
responsible for the nonmonotonic size dependence. The
present study resolves the long-standing experimental con-
troversies and sheds light on the size-dependent LSPRs in
metallic nanoparticles. Finally, because solvent effects are
important for plasmonic applications, one may extend the
TD-OFDFT method to incorporate the solvent effects
approximately by using an electrostatic continuum solvent
model.43

■ COMPUTATIONAL DETAILS

TD-OFDFT and TD-KSDFT calculations of Na nanoparticles
were performed using a code developed in our group and the
Octopus code,44 respectively. For both codes, real space grids
were used to propagate the Kohn−Sham orbitals (TD-KSDFT)
and the charge density (TD-OFDFT) in real time under the
influence of time-varying electromagnetic fields. A local density
approximation45 for the electron exchange and correlation was
used in both the ground-state and excited-state calculations.
The ionic potential of Na was described by a local
pseudopotential27 and the Troullier−Martins pseudopotential46

in the TD-OFDFT and TD-KSDFT calculations, respectively.

Figure 3. (a) Optical absorption spectrum (black curve) of Na particles with a diameter of 9.5 (Na8217
+), 5.1 (Na1415

+), and 1.7 nm (Na55
+). The

three resolved Gaussian spectra are shown in green centered at ω1, ω2, and ω3, respectively. The sum of the three Gaussians is shown in red,
matching well the original spectrum (black curve). (b) The induced charge density (in atomic unit) evaluated at the frequency ω1, ω2, and ω3 in
response to a horizontal polarization (along x axis). The magnitude of the charge density is color-coded.
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In the TD-OFDFT calculations, we have performed a
convergence check on the size of the supercell and found
that the dimension of the cubic supercell (2.5 times of the
diameter of the Na nanoparticle) was sufficient to eliminate
particle−particle interactions. The Na nanoparticle was placed
at the center of the supercell. A uniform mesh grid with a
spacing of 0.35 Å was used over which the charge density and
potential were calculated in both TD-OFDFT and TD-KSDFT.
The simulation zone in TD-OFDFT, beyond which the charge
density vanishes, was defined by assigning a sphere with a
radius of 8 Å around each atom. This choice of radius is
necessary for numerical convergence. If electrons are placed too
far from the atoms, it becomes exceedingly difficult to converge
the results. Fast Fourier transform was used to efficiently
calculate the Coulomb potential and the convolution integrals
in the kinetic energy functional. We examined 13 Na
nanoparticles containing 17885, 8217, 6525, 5083, 3871,
2869, 1415, 923, 561, 309, 147, 55, and 13 atoms, with
corresponding diameters ranging from 12.3 to 0.7 nm. The
linear response calculations were performed by propagating the
electron wave packets under perturbation of an impulse field
E(t) = Ekickδ(t) for both the TD-OFDFT and TD-KSDFT
calculations.47 In the real time propagation, the electronic wave
packets were evolved for 7500 steps with a time step of Δt =
0.0015ℏ/eV.
The geometries of the Na particles with diameter d ≥ 1.7 nm

(55 atoms) were relaxed using the OFDFT method. For the
smallest particles, Na5

+, Na7
+, Na9

+, and Na13
+, the geometries

were optimized using KSDFT.
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