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a b s t r a c t

Combing computational efficiency and accuracy, quantum mechanic/molecular mechanic (QM/MM)
methods are promising for understanding and predicting materials properties at atomic scales. We
present a general QM/MM method that can be implemented in a variety of QM and MM combinations;
we focus on a tight-binding and a plane-wave pseudopotential methods for the QM part and the
Stillinger–Weber and EAM potentials for the MM part. The QM/MM coupling errors are analyzed. It is
found that a sufficient size of the coupling region and the buffer zone is crucial in minimizing the
coupling errors. On the other hand, the size of the weighting zone turns out to be less important. The
QM/MM method is applied to model the dynamical propagation of Si cracks with different orientations
and under different mode I loadings. The QM/MM method is found to correctly reproduce the brittle frac-
ture of Si, whereas the SW potential fails to do the same. The QM/MM method is also used to study the
ductile fracture in Au and compared to the EAM potential. Finally, the QM/MM method is applied study
the vacancy diffusion in a Cu grain boundary. The QM/MM results compare very well to the previous EAM
results.

Published by Elsevier B.V.
1. Introduction

Multiscale modeling of materials has attracted a great deal of
interest recently because real materials usually exhibit multi-
physics phenomena that at one scale require a very accurate and
computationally expensive description, and at another scale, a
coarser description is often satisfactory and, in fact, necessary to
avoid prohibitively large computations [1]. For example, quantum
mechanics (QM) is required for a proper treatment of bond-
breaking, bond forming, charge transfer, electron excitation, and
magnetism, etc., in materials. However, due to the demanding
computational cost, the application of QM has to be limited to rel-
atively small systems consisting of up to a few hundreds of atoms.
On the other hand, atomistic simulations based on empirical
interatomic potentials are capable of describing small-amplitude
vibrations and torsions, elastic deformation and electrostatic
interactions, etc., in many materials and biological systems [2,3].
Termed as molecular mechanics (MM) methods, these empirical
atomistic approaches can treat millions of atoms, and with simpler
potentials, even billions of atoms [4]. Therefore, as a multiscale
modeling approach, the QM/MM coupling [5–7] that combines
the accuracy of QM with the low computational demand of MM
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represents an attractive strategy to deal with large material sys-
tems with desired accuracy.

In a typical QM/MM approach a system is partitioned into two
spacial regions: region I containing lattice defects and/or chemi-
cally active domain, where QM description is mandatory; and re-
gion II – the rest of the system which can be described by
empirical MM methods. The schematic partition of QM/MM is
shown in Fig. 1a. In general, the total energy of a QM/MM system
can be written as:

ET ¼ EQM½I� þ EMM½II� þ Eint½I; II�; ð1Þ

the three terms on the right hand side are: QM energy of region I,
MM energy of region II and the interaction energy between regions
I and II. The crux of a QM/MM method lies in its handling of Eint[I, II],
which can be treated at different levels of approximation. Depend-
ing on the formulation of Eint[I, II], QM/MM methods can be classi-
fied into two broad categories: mechanical embedding (ME) and
electronic embedding (EE). In ME, Eint[I, II] is formulated at the
MM level and the regions I and II are coupled mechanically. On
the other hand, in EE Eint[I, II] is treated quantum mechanically
[8–10] and the two regions are coupled electronically. In general,
EE is formulated based on a more rigorous theoretical footing com-
paring to ME, and is thus more accurate [8–16]. On the other hand,
EE is more complex and often computationally more expensive to
ME.

In this paper, we focus on a general QM/MM approach that is
based on ME. Although the similar QM/MM methods have been
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Fig. 1. (a) Schematic partition of the QM/MM system into region I (in gray) and
region II. The region I is further subdivided into an inner region (dashed box) and a
coupling region (CR). (b) The form of the weighting function x in relation to the
weighted zone (WZ) and the buffer zone (BZ).
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discussed in literature [17–19], detailed analysis of coupling error
is of crucial importance. As it was reported previously [5,20] and
will be shown in this paper, significant coupling errors could arise
that would render simulation results worthless if certain computa-
tional parameters are not chosen judiciously. Finally we apply the
QM/MM method to address a number of challenging problems that
involve extended defects in both Si and metallic systems.

2. Methodology

In the present QM/MM approach, the interaction energy Eint[I, II]
is determined by an MM method, i.e.

Eint½I; II� ¼ EMM½I; II� � EMM½I� � EMM½II�: ð2Þ

Here EMM[I, II], EMM[I] and EMM[II] represent the energy for the en-
tire system, regions I and II, respectively using the same MM meth-
od. Therefore, the total energy of the system becomes

ET ¼ EQM½I� þ EMM½I; II� � EMM½I�; ð3Þ

and the atomic forces on the ith atom can be written as

�Fi ¼
@EQM½I�
@ri

þ @EMM½I; II�
@ri

� @EMM½I�
@ri

; ð4Þ

where ri denotes the coordinate of the ith atom. This QM/MM meth-
od can be interpreted as applying a QM correction to the MM
description of region I since MM is considered not accurate enough
for region I [11]. A major practical advantage of this approach is
that, if region I contains many different atomic species while region
II contains only one atomic type, there is no need to have a classical
potential for each species and their interactions. This results from
the fact that if the various species of atoms are well within region
I, then the energy contributions of these atoms cancel out in the to-
tal energy calculation (the last two terms in Eq. (3)). Thus, this cou-
pling approach is particularly useful in dealing with impurities,
which is an exceedingly difficult task for classical MM simulations.

In this paper, we focus on the calculation of atomic force and at-
tempt to minimize the coupling errors in the force calculations. As
shown in Fig. 1a, the computational model is divided into regions I
and II as indicated by the solid boxes. In addition, the region I is
subdivided into an inner region (within the dashed box) and a
so-called coupling region (CR). For the atoms in the inner region,
the atomic force is calculated according to Eq. (4). In practice, since
these atoms are well inside region I, only the first term @EQM[I]/@ri

survives. In the coupling region, however, the atomic force, FQM=MM
i

is calculated as:

FQM=MM
i ¼ xFMM

i ½I; II� þ ð1�xÞFi; ð5Þ

where FMM
i ½I; II� ¼ �@EMM½Iþ II�=@ri, and Fi is given in Eq. (4). The

weighting function x is defined in the coupling region only and
the form of x is shown in Fig. 1b. Furthermore, the coupling region
in general consists of two parts: (1) a ‘‘buffer zone” (BZ) in
which x = 1 and (2) a linearly weighted zone (WZ) which smoothes
the mixture of QM and MM forces. The purpose of the buffer zone is
the same as that of the ‘‘boundary region” introduced by Liu et al.
[17]. Namely, it can reduce the fictitious surface effect of the cluster
calculation of region I. In specific, because the first and the third
term in Eq. (4) does not cancel for the surface atoms in general,
the discrepancy is a significant source of the coupling errors. By
introducing the BZ, this error is greatly reduced. Although the BZ
atoms are included in the QM calculations, i.e., they are region I
atoms, the force on these atoms is actually determined by the
MM calculation of the entire system – the fictitious surface effect
is thus removed.

For the atoms in the coupling region, the force expression in Eq.
(5) is no longer the derivative of the energy in Eq. (4). This incon-
sistency could lead to problems in atomic relaxation if a gradient-
based minimization algorithm is used. To remedy for this inconsis-
tency, one can define a so-called correction force for the atoms in
CR as:

Fcorr
i ¼ FQM=MM

i � Fi ¼ x FMM
i ½I� � FQM

i ½I�
� �

; ð6Þ

where FQM
i ½I� ¼ �@EQM½I�=@ri is the QM force in region I. The work

done by the correction forces is thus

Wcorr ¼
X
i2CR

Z
Fcorr

i � dri: ð7Þ

Here dri and Fcorr
i represent the displacement and correction force

on atom i in CR during each relaxation step; the integration is over
the entire relaxation trajectory. Therefore the corrected total energy
E0T is written as

E0T ¼ ET þWcorr; ð8Þ

where ET is defined in Eq. (3). Note that E0T is the actual energy being
minimized using the gradient-based schemes and represents the
appropriate total energy of the system.

In this paper we have used the NRL tight-binding (TB) model for
region I in addition to the plane-wave method. The NRL-TB ap-
proach has been extensively calibrated and reproduces well the
band structure and bulk properties [21–24] from more accurate
density functional theory (DFT) results. The elements of the nonor-
thogonal TB Hamiltonian and overlap matrix are parameterized as
a function of the atomic structure under the two-center approxi-
mation [25]. For region II, we have used the Stillinger–Weber po-
tential (SW) of Si [26] and the Johnson EAM potentials for Au
and Cu [27]. The following error analysis is carried out to examine
the general QM/MM scheme with TB/SW coupling as an example.

3. Error analysis

Ideally, a successful QM/MM scheme should ensure that the
QM/MM interface be transparent and not introduce fictitious dis-
continuities. However inconsistencies between QM and MM meth-
ods do exist and the discontinuities could hardly be eliminated.
Therefore, an error analysis of QM/MM methods is important,
and particularly, the discontinuities across the interface should
be closely examined. In practice, one can estimate the coupling er-
rors by calculating the displacement from the equilibrium atomic
position of a known structure, such as a perfect lattice. The magni-
tude of the displacement thus quantifies the coupling errors. The
requirement of the interfacial transparency is often more rigorous
in a molecular dynamics (MD) simulation than in a static relaxa-
tion. For MD, one has to insist that the same thermal conductivity
be maintained across the interface so that the lattice vibrations are
not impinged or reflected in a non-physical way.

First, the QM/MM scheme is tested in static atomic relaxations.
The system is a Au thin film with a dimension of 4.06 Å � 4.06 Å �
160 Å in X, Y and Z direction, respectively. The periodical boundary



Fig. 2. Schematic partition of the computational model for error analysis. (a) For
static relaxation and (b) for MD simulation. The atoms are shown in circles. The
lattice vibrations are introduced from the right end of the model, represented by the
red circles. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. The maximum deviation of the vibrational amplitude measured as a function
of the buffer zone size. For example, the legend ‘‘Si-2” refers to the system of Si and
the width of CR is 2a0.
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conditions (PBC) are applied in X and Y directions and an open
boundary condition is applied in Z direction. The TB region with
a width of 30 Å is sandwiched between two EAM regions in the
middle of the system as shown in Fig. 2a. The EAM potential is
scaled to match the lattice constant and bulk modulus of the cor-
responding TB values [8,9]. The simulations are carried out with
different sizes of CR and WZ. The atomic displacement from the
ideal equilibrium position, considered as the coupling error is show
in Fig. 3. It is found that the displacement or the coupling error is
significant for a small size of CR and WZ, which would render the
simulation results worthless for a more complicated system. The
error reduces considerably as the size of CR increases. On the other
hand, the size of WZ seems to play a minor role. In other words, the
error correction is primarily achieved by the introduction of the
buffer zone; the mixture of QM and MM forces does not play an
important role in cutting down the errors.

In Fig. 4, we present the variations of the energetics during the
static relaxation. It is observed that the corrected total energy E0T
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Fig. 3. Atomic displacement as a function of Z coordinate for different choices of CR
and WZ size. The first and second number in legends refers to the size of CR and WZ
in terms of the lattice constant a0.

Fig. 4. The energy variation in the static relaxation as a function of the iteration
step. The energy is set to zero at the initial step. E0T and ET are the total energy with
and without the correction respectively; Wcorr is the correction energy.
decreases monotonically in the relaxation while the original en-
ergy fluctuates especially at the initial stage of the relaxation.
Therefore, using the corrected total energy, one can employ the
gradient-based minimization algorithms such as the conjugated
gradient methods in static relaxations that are often more efficient
than the force-based algorithms.

The second test is performed to examine the transparency of
the QM/MM interface to lattice vibrations. Si and Au thin films
are simulated with the computational setup similar to the static
relaxation except that the region I is placed at the left side of the
system with the coupling interface placed at 50 Å from the left
end. The schematic partition of the computational model is shown
in Fig 2b. Both longitudinal and transverse lattice vibrations are
introduced from the right end of the model and propagate towards
the region I. The amplitude of the waves is 0.3 Å and the driving
frequency is 3 � 1012 Hz. After the vibrational waves propagate
into the region I, the reflected waves, if any, will overlap with
the incident waves and result in a change of wave profile. Thus
the interfacial transparency may be evaluated by the change of
the wave amplitude. The results for both Si and Au thin films are
summarized in Fig. 5. Once again, significant errors exist for smal-
ler sizes of CR and BZ. The change of the wave amplitude is mea-
sured as a function of the CR and BZ size. It is shown that the
width of CR is again the critical factor affecting the interfacial
transparency. This width seems to more important for Au compar-
ing to Si, perhaps due to the delocalized electronic states and long-
er-range of the atomic interactions in Au. In addition, it is found
that the required CR size is larger for the longitudinal wave than
for the transverse wave due to the fact that the longitudinal vibra-
tions are in the same direction of the coupling errors. Finally, the
coupling errors decrease monotonically as a function of the BZ size
in Si; but no such behavior is observed in Au.

We find that the CR size of 7 Å and 10 Å is sufficient to converge
the results for Si and Au respectively; the critical sizes are close to
the corresponding TB cut-off parameters for Si and Au [23,24]. For
the plane-wave pseudopotential methods (such as VASP), we find
the critical CR size to be 2 Å for a good convergence. The much
smaller critical size is due to the screening effect that is well
captured by these more accurate DFT methods.
4. Applications

4.1. MD simulations of si fracture

Brittle fracture of Silicon has been widely studied both theoret-
ically and experimentally owing to the technological importance of
Si. It was observed experimentally that Si was very brittle at room



Fig. 6. Atomic structures of Si {111}h100i (left column) and {111}h112i (right
column) cracks under a loading of 1.5 Gc. Upper row: the initial structures and the
regions I and II atoms are in black and gold respectively; Middle row: after 1.5 ps by
the QM/MM MD method; the arrow indicates the distance that the crack tip has
travelled; Bottom row: after 1.5 ps by the SW MD method; the cracks do not
propagate. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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temperature, with sharp crack tips propagating along the {111}
and {110} planes leaving behind flat surfaces [28]. However, MD
simulations based on empirical potentials failed to predict the
brittle fracture of Si [21,29,30,18,19,31]. Since treating the entire
crack quantum mechanically is not realistic, we resort to the
QM/MM method which is ideal for modeling fracture.

Four types of mode I cracks under different loading conditions
have been simulated in the paper: {110}h001i, {110}h110i,
{111}h110i and {111}h112i. The crack with the {110} cleavage
plane propagating towards h001i direction is denoted as
{110}h001i hereafter. A plane strain field [34,35] of a straight
mode I crack is introduced to generate the initial crack structure.
The displacement field of the atoms at the edges of the simulation
box remains fixed during the simulations. The simulation cell mea-
sures 500 Å along the propagating direction (horizontal), 275 Å
perpendicular to the cleavage plane (vertical), and a period along
the crack front line (normal to the page) in which the PBC is ap-
plied. The periodic distance is 3.84, 5.43, 6.65 and 3.84 Å for the
{110}h001i, {110}h110i, {111}h110i and {111}h112i cracks,
respectively. The width of CR and BZ is 15 Å and 5 Å respectively.
The number of atoms in the systems ranges approximately from
23,000 to 45,000 for different cracks, and the number of atoms in
region I ranges approximately from 220 to 380 depending on the
orientation, loading and instantaneous structure in the MD simula-
tion. The critical loading of the cracks is given in terms of the en-
ergy release rate, following the Griffith criterion Gc, which is 3.4
and 2.7 J/m2 for {110} and {111} cracks respectively. The leap-frog
Verlet algorithm is used in the MD simulations, with the time step
of 3 fs and the temperature at 300 K under the Berendson thermo-
stat [36]. The partition of the QM/MM domains is updated in every
20 MD steps.

It is found for the {110}h001i crack both the QM/MM and the
stand-alone SW MD simulations predict that the crack will change
to {111}h112i direction, which agrees with both experimental and
theoretical reports [32,33]. However for the other three orienta-
tions the QM/MM and SW methods give drastically different re-
sults. The results of the crack propagation speed are summarized
in Table 1 and the comparison of the atomic structures is shown
in Fig. 6. The QM/MM simulations yield flat crack surfaces which
agrees with experimental observations of the brittle fracture. The
{110} crack starts to propagate under 1.0 Gc at a speed of 600 m/s,
and the speed increases with the loading. For the {111}h112i
crack, at loadings of 1.5 Gc and 2.5 Gc the propagation speed is
1500 m/s and 3000 m/s respectively, which is in good agreement
with experimental values [31]. In a strong contrast to the QM/
MM results, the SW potential predicts no propagation of the
{111}h112i crack even under the maximum loading of 2.5 Gc ap-
plied in the simulations. For the two other cracks, the propagation
speeds are much lower. In particular, the SW MD predicts that the
crack tip would blunt in all three cases, which are contradictory to
the brittle nature of the cracks. The failure of reproducing brittle
fracture in Si is the hallmark of the empirical MD simulations
which cannot capture the bond-breaking correctly at the crack tip.
Table 1
Propagation speed of the cracks with different orientations and loadings. Upper rows
are from the QM/MM calculations and the lower rows are from the SW potential. The
unit of velocity is 103 m/s.

Load (Gc) Method 1.0 1.5 2.5

{110}h110i TB/SW 0.6 1.2 2.1
SW 0.02 0.2 0.7

{111}h110i TB/SW 0 1.7 3.1
SW 0 0.05 0.8

{111}h112i TB/SW 0 1.5 3.0
SW 0 0 0
4.2. Static simulation of Au crack

The QM/MM method can also be applied to study ductile frac-
ture in metals. As an example, we model the fracture of the
{110}h111i crack in Au under mode I loading at 0 K. The crack is
generated by taking three semi-infinite {110} atomic layers away
from a bulk Au and applying a prescribed displacement field as a
function of the stress intensive factor (SIF) KI following the solution
of the anisotropic Linear Elastic Fracture Mechanics [37]. The
dimensions of simulation model are 400 Å � 400 Å � 4.97 Å in
[111], [110] and [112] directions, respectively. The PBC is applied
along the crack front line [112] and the exterior boundaries are
fixed. The region I is a disk with a radius of 20 Å centered at the
crack tip and the width of the CR is 10 Å. There are approximately
320 atoms in region I and 46,196 atoms in the entire system. The
TB method is coupled to EAM to carry out static relaxations. The
structural optimization is performed with an iterative Broyden–
Fletcher–Goldfarb–Shanno (BFGS) scheme [38] with a convergence
criterion of 0.02 eV/Åin terms of atomic force for all atoms. The
EAM potential is scaled to match the lattice constant and bulk
modulus of the corresponding TB values. The load is applied to
the fixed atoms at the exterior boundaries which corresponds to
a certain SIF for the crack. The increment of SIF is 0.001 eV/Å2.5

and 0.005 eV/Å2.5 for the EAM and QM/MM calculations respec-
tively. By the Griffith’s criterion the minimum SIF for a crack prop-
agation is K IC ¼

ffiffiffiffiffiffiffiffi
2cE

p
¼ 0:39 eV/Å2.5; here 2c is twice the surface

energy and E is the Young’s modulus, whose TB values are
2.97 J/m2 and 128 GPa respectively. Both the EAM method and
the QM/MM (or TB/EAM) method predict a ductile fracture
behavior in which dislocations are nucleated at the crack tip at a
load much lower than KIC. In specific, the QM/MM method predicts



Fig. 9. Energy profiles of the vacancy diffusion from A to B in Fig. 8. Triangles and
spheres denote the VASP/EAM and the stand-alone EAM results respectively.
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that at a critical load of KI = 0.10 eV/Å2.5 a pair of edge dislocations
are nucleated at the crack tip (as shown in Fig. 7) while the EAM
predicts a higher critical SIF of 0.122 eV/Å2.5. Increasing the load,
the dislocations will move further away from the crack tip before
more dislocations are nucleated.

4.3. Vacancy diffusion in Cu grain boundary

As the last example, we apply the QM/MM method to calculate
the vacancy diffusion energy barrier in a Cu grain boundary (GB). A
pseudopotential plane-wave method implemented in the VASP
package [39] is used for the QM component. The projected aug-
mentation wave method [40] under the Generalized Gradient
Approximation [41] is used. The QM–VASP method is coupled to
an EAM potential of Cu [27] to carry out the QM/MM calculations.
The transition state and the corresponding diffusion energy barrier
is determined based on the nudged elastic band (NEB) method
[42]. The simulated system is a symmetric tilt R5ð�210Þ½001� GB
and measures 100 Å � 32.5 Å � 29.1 Å along ½�210�, [120] and
[001] direction respectively. A fixed boundary condition is applied
along the ½�210� direction and PBC are applied to the [120] and
[001] directions respectively. A vacancy is introduced at a lattice
site adjacent to the GB plane labeled as ‘‘A” in Fig. 8 as the initial
Fig. 8. Vacancy diffusion in Cu R5ð�210Þ½001� GB. The atoms in regions I and II are
represented by the blue and bronze spheres respectively. The GB plane is denoted
by the dashed line. The larger and smaller spheres represent the two adjacent
atomic planes in [001] direction. The initial and final positions of the vacancy are
shown in green and labeled as A and B respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Contour plot of the QM/MM displacement along the crack front line
direction under the critical stress intensity for dislocation nucleation at
KI = 0.10 eV/Å2.5. The region I is inside the circle. The unit of length is in Å.
position of the diffusing vacancy. The vacancy is then moved to
an adjacent lattice site labeled as ‘‘B” in Fig. 8 as the final position.
The QM region consists of 13 Å � 12 Å � 11 Å and it is placed at the
center of the system to contain the entire diffusion path shown in
Fig. 8. A coupling region of several Angstroms has been found to
give converged results. There are 167 QM atoms and 8127 EAM
atoms in the entire system. This particular diffusion path is chosen
to compare with a previous EAM calculation by Sørensen et al. [43].

The diffusion energy profiles of the vacancy are shown in Fig. 9
using both the QM/MM (or VASP/EAM) and a stand-alone EAM
methods. The EAM calculations predict a forward energy barrier
of 0.221 eV for the vacancy diffusing from A to B and a backward
energy barrier of 0.007 eV for the reverse process (B to A). The
VASP/EAM calculation yields 0.239 eV and 0.015 eV for the forward
and backward energy barriers, respectively. In comparison, the
EAM calculations by Sørensen et al. [43] reported 0.231 eV and
0.002 eV for the forward and backward energy barriers, respec-
tively. Note that the EAM potential used by Sørensen et al. is differ-
ent from one we use in this calculation. Generally speaking, the
three sets of calculations produce rather close results, with the
VASP/EAM method giving slightly higher energy barriers. There-
fore, we conclude that the QM/MM method works fine for this sys-
tem and the EAM potentials for Cu are accurate for describing the
vacancy diffusions in the GB.
5. Conclusion

We presented a general QM/MM method that can be imple-
mented in a variety of QM and MM combinations. In this paper,
we focus on the TB and the plane-wave pseudopotential methods
for QM and the SW and EAM potentials for MM. The coupling er-
rors are analyzed in details. It is found that a sufficient size of
the coupling region and the buffer zone is crucial to obtain accu-
rate results. On the other hand, the size of the weighting zone is
found to be less important. These computational parameters are
system dependent as expected. The QM/MM method is applied
to three typical material simulations: MD, static relaxation and en-
ergy barrier calculations. In specific, we model the dynamical prop-
agation of Si cracks with different orientations and under different
mode I loadings. The QM/MM method can correctly reproduce the
brittle behavior of Si fracture which the SW potential fails to do so.
The QM/MM method predicts a crack propagation speed that is
comparable to the experiment. The QM/MM method is also used
to study the ductile fracture in Au and compared to the EAM re-
sults. It is found that the EAM overestimates the critical load for
dislocation nucleation by 20%. Finally, the QM/MM method is ap-
plied to study the vacancy diffusion in a Cu grain boundary. The
QM/MM results compare very well to the previous EAM results,
which in turn validates both the reliability of the QM/MM method
and the validity of the EAM potentials for describing Cu GB
diffusions.
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