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We propose a theoretical method that can predict carrier mobility in disordered semiconducting polymers
and organic semiconductors from first principles. The method is based on nonadiabatic ab initio molecular
dynamics and static master equation, treating dynamic and static disorder on the same footing. We have applied
the method to calculate the hole mobility in disordered poly�3-hexylthiophene� conjugated polymers as a
function of temperature and electric field and obtained excellent agreements with corresponding experimental
results. The method could be used to explore structure-mobility relation in disordered semiconducting
polymers/organic semiconductors and aid rational design of these materials.
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Disordered semiconducting polymers and organic semi-
conductors have received significant attention recently for
their potential applications in light-emitting diodes,1 field-
effect transistors,2 photovoltaics,3 etc. The disordered nature
of these organic materials render them more flexible, lighter,
and more cost effective to process than their inorganic coun-
terparts. However, one of the major bottlenecks that limits
the efficiency of the disordered semiconductor devices is
their poor charge carrier mobility. Therefore it is of great
scientific and technological importance to understand under-
lying physical processes and, in particular, to develop theo-
retical tools that can predict the carrier mobility from first
principles.

The charge transport in the disordered conjugated poly-
mers and organic semiconductors have been studied exten-
sively in the past decades and two popular classes of models
have emerged in literature: polaron models and disorder
models.4 In the polaron models, the charge transport is char-
acterized by the dynamic disorder arising from electron-
phonon coupling. Model Hamiltonians such as Holstein and
Peierls types have been widely used with mixed success.5–7

Often based on perturbation theories, these models are lim-
ited in scope with restrictions to specific ranges of micro-
scopic parameters and temperatures.4 On the other hand, the
static disorder models which capture structural randomness,
including Miller-Abrahams8 and Marcus9 theories, have been
proposed to calculate the hopping rates between sites.10–15

The widely used Gaussian mobility model belongs to this
category.10,11 The major weakness of the disorder models is
that they are not material specific and in general contain
empirical parameters. Therefore a successful theory of the
charge transport should include ingredients of both models
and describe the dynamic and static disorders in a realistic
manner. Toward this goal, significant advances have been
made recently, including the Marcus theory with ab initio
determined microscopic parameters,16–20 the construction of
model Hamiltonians with the transfer integrals evaluated
quantum mechanically,21–23 and using time-dependent pertur-
bation theory to determine the phonon-assisted transition
rate,24,25 among others. However, all these methods have cer-
tain elements of empiricism, relying on classical force fields
to compute material structure and/or phonon spectrum. In
addition, many of these methods are based on the perturba-

tion theories and/or the harmonic approximation of phonons,
which may not always be valid.

In this paper, we propose an ab initio approach that can
predict charge carrier mobility in disordered conjugated
polymers and organic semiconductors as a function of tem-
perature, electric field, and carrier concentration, entirely
from first principles; i.e., there is no empirical input or ad-
justable parameter in the simulations. This approach is based
on the ab initio nonadiabatic molecular dynamics �MD�
�Refs. 26 and 27� for simulating phonon-assisted electron
transitions between localized electronic states in disordered
systems. The electronic energy levels and their transition
rates are determined from the density-functional theory, tak-
ing into account of both intermolecule and intramolecule �or
chain� contributions. Treating both the dynamic disorder and
the static disorder at an equal footing, the approach is quite
general and does not involve the perturbation theories or the
harmonic approximation of phonons. In conjunction with the
macroscopic master equation, this approach allows us to
study the electron transport in length scales that are relevant
to realistic devices. As an example, we have applied this
approach to determine the hole mobility in poly�3-
hexylthiophene� �P3HT� polymers at various temperatures
and electric fields and obtained excellent agreements with
experiments. It is expected that the approach could be used
to elucidate the structure-mobility relations and aid rational
design of these materials.

In disordered semiconductors, the electronic states are
spatially localized and the electron transport could be re-
garded as random walks in the real and the energy space.10

The thermal fluctuations of the ions lead to overlaps between
the localized electronic states in space and energy, thus pro-
mote electronic transitions between the states as depicted
schematically in Fig. 1�a�. A charge carrier �electron or hole�
initially resides in the red state; as the red and blue states
evolve under the influence of phonons, at some point the red
state starts overlapping with the blue one, and as a result, the
charge carrier transfers to the unoccupied blue state. There-
fore our first goal is to determine this probability or the tran-
sition rate.

The time-dependent one-electron wave function of the
carrier �electron or hole� is ��r , t� which is expanded in the
adiabatic Kohn-Sham �KS� orbitals �i�r ,R�t��

PHYSICAL REVIEW B 82, 205210 �2010�

1098-0121/2010/82�20�/205210�6� ©2010 The American Physical Society205210-1

http://dx.doi.org/10.1103/PhysRevB.82.205210


��r,t� = �
j

cj�t�� j�r,R�t�� , �1�

where cj�t� is the expansion coefficient and �i�r ,R�t�� is the
eigenstate of the KS Hamiltonian for the current ionic posi-
tions R�t�. Let the carrier start in the KS state i at t=0, i.e.,
��r ,0�=�i�r ,R�0��, the evolution of the coefficient cj

�i��t� is
given by26,27

�

�t
cj

�i��t� = − �
k

ck
�i��t�� i

�
�k� jk + djk� , �2�

where �k is the energy of the kth KS orbital and djk is the
nonadiabatic coupling between the jth and kth KS orbitals

djk � 	� j
�R
�k� ·
dR

dt
= 	� j


�

�t

�k� . �3�

Therefore 
cj
�i��t�
2 represents the transition probability that

the carrier is hopping from the state i to the state j during the
time interval �t �in this case �t= t−0�. As the result, the
transition rate from the state i to j is given by 	
cj

�i��t�
2 / t�,
averaging over the molecular-dynamic trajectory during �t.
To ensure the detailed balance, the thermal equilibrium mi-
croscopic transition rate �i,j is defined as28

�i,j = �


cj

�i��t�
2

t
�exp�−

� j − �i

kBT
� if � j � �i,


 
cj
�i��t�
2

t
� if � j � �i.� �4�

Next we switch to the macroscopic scale �100 nm and be-
yond� for which the carrier mobility is calculated. Specifi-
cally, the material is divided into lx	 ly 	 lz boxes as shown
in Fig. 1�b�. Each box should be chosen as large as compu-
tationally feasible but the minimal dimensions of the box
should be greater than the intersite distance used in the
Gaussian mobility models.10 To simulate the static disorder,
each box is randomly chosen and randomly rotated from the
snapshots of the molecular-dynamics trajectory. To assist the
evaluation of the microscopic transition rate across neighbor-
ing boxes, we associate each localized state with a position
vector in the real space. First, we calculate the average po-
sition of the localized state i by the first moment of its charge
density via r̄=�
i�r�rdr, where 
i�r�= 
�i�r�
2 is the charge
density of the state i. Second, we determine the root-mean-
square deviation of the average position by �r
=��
i�r��r− r̄�2dr. Finally, the spatial position of the local-
ized state can be obtained by a random selection from the
range �r̄−�r , r̄+�r�. The above procedure applies to all
boxes, with the localized wave functions in different boxes
correspond to different �but random� snapshots of the wave
functions from ab initio MD trajectory; the wave functions
are also rotated randomly before placed in each box. In Fig.
2, we show schematically the positions of the top four va-
lence bands plotted in Fig. 1�b�. As discussed later, the mi-
croscopic transition rate across the neighboring boxes is cal-
culated based on these positions and an average has to be
taken over the random selections. On the other hand, the
intrabox transition rate is determined by Eq. �4� and does not
depend on the position vectors.

The macroscopic transition rate of the charge carrier from
box n to box m, �n→m is given by summing up the micro-
scopic transition rates,

�n→m = �
i�n

pnf i �
j�m

�i,j�1 − pmf j� , �5�

where the summations of i and j are over all relevant elec-
tronic states of the carrier in box n and m, respectively. For

FIG. 1. �Color online� Schematic representation of the model.
�a� Hopping of a hole �h+� assisted by phonons. Red and blue colors
denote the localized electronic states in two separated P3HT chains,
where the red state is occupied by the hole. Thermal vibrations of
the ions lead to overlap between the two states promoting the hole
transition from the red state to the blue state. �b� The system is
divided into lx	 ly 	 lz boxes; each box has a dimension of a few
nanometers �in this particular case, the dimension of the box is 1.8
nm�. Atomic structure and isosurfaces of several valence bands are
shown in the representative box. The top four valence bands are
shown in red, blue, yellow, and green, respectively. The electronic
states are spatially localized over a length scale of a few angstroms.

FIG. 2. �Color online� Schematic spatial position of the local-
ized states in two neighboring cubes n and m. The red, blue, yellow,
and green points in cube n correspond to the spatial position of the
localized electronic states shown in Fig. 1�b�.
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the electron �hole� carrier, the relevant states are from the
conduction �valence� bands. pn is the partial concentration of
the carriers in box n. f i is the Fermi-Dirac occupation of the
state i. Therefore pnfi represents the probability that the
carrier is located at the state i in box n while the factor
1− pmf j accounts for the fact that at most one carrier can
occupy a single state due to the Pauli exclusion principle.
The actual occupation of each state is much smaller than 1
owing to the small carrier density. Here the energy difference
� j −�i in �i,j contains −eERn,m

x when the uniform electric field
E is applied in x direction; Rn,m is the distance between the
box n and m. In equilibrium, the static master equation

�
m

��n→m − �m→n� = 0 �6�

is satisfied for each box n. The partial concentration pn can
be determined from the master equation under the constraint
that �npn= pV, where p is the total carrier concentration �or
density� and V is the volume of the system. Therefore the
carrier mobility � is obtained by

� =

�
n,m

�n→mRn,m
x

pEV
. �7�

The dependence of � on temperature T, electric field E, and
the carrier density p is through the macroscopic transition
rate.

In the following, we show how the approach can be used
to determine the hole mobility in disordered P3HT from first
principles. The system consists of 100	100	100 cubes and
each cube has a dimension of 1.8 nm, larger than the intersite
distance �1.4 nm� estimated from the Gaussian mobility
model of P3HT with experimental parameters.29 Each cube
contains 606 atoms, including three P3HT chains with each
chain of eight thiophene rings, which leads to a mass density
of 1.1 g /cm3, similar to the experimental value. The top
16 valence bands spreading over 1.4 eV are chosen as the
relevant states of the hole carrier. The ab initio MD cal-
culations are carried out for a representative box with peri-
odic boundary conditions. The projector augmented wave
pseudopotentials30 and Perdew-Burke-Ernzerhof exchange-
correlation functional31 as implemented in the VASP

package32,33 are used in the calculations. The calculations are
performed at � point with 300 eV energy cutoff.

The initial structure of the P3HT chains starting from a
randomly placed and warped configuration is fully relaxed to
reach the local-energy minimum. The ab initio Born-
Oppenheimer molecular dynamics are performed to bring the
system to a desired temperature with repeated velocity scal-
ing. The system is then kept at the desired temperature for
500 fs with 1 fs time step to reach the thermal equilibrium.
Finally, the microcanonical production run is carried out for
1000 fs with 1 fs time step for each temperature. To check
whether the system is equilibrated within the 1000 fs MD
simulations, we calculate the autocorrelation function C�t� of
the highest occupied molecular orbital �HOMO� as

C�t� =
	�HOMO�t��HOMO�0��

	�HOMO
2 �

, �8�

where �HOMO is the energy of HOMO state and the average is
taken over 1000 MD steps. The result is shown in Fig. 3 and
we find that C�t� decreases by 75% within the first 50 fs, and
then has a small oscillation �within 20%� for the remaining
time. Therefore we conclude that our simulated system is
reasonably equilibrated.

The energies, localized KS orbitals and djk in Eq. �3� are
determined for each MD snapshot during which Eq. �2� is
solved by a standard second-order finite-difference method
with a time step of 10−3 fs. Subsequently, the microscopic
transition rate �i,j is obtained via Eq. �4� for both intracube
and intercube transitions. This is justified because �i� there is
no distinction between intracube and intercube transitions in
reality—the carriers simply hop from one localized state to
another with no regard to the cubes introduced solely for
computational purpose. �ii� The atomic structures in different
cubes are randomly chosen and oriented from the different
MD snapshots. Therefore we can determine the intercube
transition rates based on the relevant intracube transition
rates by noting that the transition rates depend most sensi-
tively on the distance between two states. More specifically,
the intracube transition rate �i,j, where states i and j are
located in the same cube, is calculated directly from the ab
initio molecular dynamics following Eq. �4�. On the other
hand, the intercube transition rate �i,j, where states i and j
are located in two neighboring cubes n and m, respectively,
is determined from the relevant intracube transition rates
shown below. As shown in Fig. 2, states i� and j� are selected
from the cube n and m, respectively, so that the distances Rii�
and Rj�j match as closely as possible to Rij. Since states i�
and i �j� and j� fall within the same cube n �m�, their intrac-
ube transition rate can be calculated by Eq. �4�. Finally, the
intercube transition rate can be approximated by

	
cj
�i��t�
2/t� =

	
ci�
�i��t�
2/t� + 	
cj

�j���t�
2/t�

2
. �9�

This approach is similar in spirit to the one used by Vuk-
mirovic and Wang.24 As the last step, the master equation,
Eq. �6�, is solved iteratively12 from which the partial concen-

FIG. 3. The time evolution of the autocorrelation function for
the HOMO state in the microcanonical MD simulation at
T=300 K.
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tration pn can be obtained. Finally the carrier mobility is
determined via Eq. �7�.

Before discussing the physical aspect of the results, we
examine the statistics of the results. To this end, we ran-
domly generate ten different macroscopic structures and cal-
culate their mobility as a function of electric field at 300 K.
There are three sources of randomness: �i� the localized wave
functions in different cubes are selected randomly from dif-
ferent MD snapshots; �ii� the obtained wave functions are
then randomly rotated before placed in the cubes; and �iii�
the spatial position of each localized wave function is deter-
mined randomly as discussed above. The combination of
these randomness gives rise to the different macroscopic
structures. We find that the different macroscopic structures
yield the mobility values that are within 10% from each
other as shown in Fig. 4. Given our modest goal to predict
mobility with the correct order of magnitude, the statistics of
the results is very encouraging. In particular, the results vali-
date our approach to the intercube transition rates.

We have considered two hole densities 1020 and 1021 m−3

in the simulations, and obtained the similar mobility. This
finding is consistent with the experimental observation that
the hole mobility is constant for carrier density �1022 m−3

in P3HT.29 The hole density of 1020 m−3 corresponds to an
average density of 10−6 carrier per cube. In this dilute limit,
the motion of a carrier is not influenced by others, therefore
the mobility is essentially independent of the hole density. In
the following, we will concentrate on the mobility for the
hole density of 1020 m−3.

We first discuss the mobility as a function of uniform
electric field and results are summarized in Fig. 5. It is gen-
erally suggested that the field-dependent mobility in many
polymers follows approximately Poole-Frenkel form, i.e.,
�
exp���T��E� over an extended range of electric
fields.34–36 Here ��T� is the field activation factor. Examining
the logarithm of mobility vs �E from 100 to 350 K, we find
that only at 100 K the mobility follows the Poole-Frenkel
form over a large range of electric field. At other tempera-
tures, the logarithm of mobility is either constant or a poly-
nomial at low electric fields, and follows a linear relation
above a critical field strength of E=5	107 V /m. For a
P3HT diode with 95 nm thickness �with the similar dimen-

sions to our simulations�, it is found experimentally that the
hole mobility is constant at the low fields under applied volt-
ages up to 3 V in the temperature range of 255–294 K.29

This voltage range corresponds to �E in the range of
0–5600 V1/2 /m1/2, which compares very well to Fig. 5 at
300 K, in which the mobility is constant up to
�E=6000 V1/2 /m1/2. In addition, it is reported13 that the
logarithm of mobility is approximately constant at low fields
and becomes linear above a critical field given by � /ea; here
� is the Gaussian width of the energy fluctuations due to the
static disorder and a is the intersite distance. By using the
experimental fitting29 with �=98 meV and a=1.4 nm, we
arrive at the critical field of 8000 V1/2 /m1/2 for P3HT, which
is in good agreement to Fig. 5. Overall, our first-principles
simulations reproduce very well the experimental observa-
tions.

The carrier mobility at a vanishing electric field
��E=0,T� is given by the extrapolation of the fitted � vs
E curves to E=0. Here we compare our simulation results
with the experimental data for two types of P3HT: regio-
regular P3HT �rr-P3HT� and regioirregular P3HT �rir-
P3HT�. In rr-P3HT all side groups have the same orientation
with the head to tail coupling. On the other hand, rir-P3HT
has both head to head and tail to tail couplings that could
lead to interference of the side groups. In Fig. 6, we show
the temperature dependence of the mobility for rr-P3HT
and compare against the available experimental values.37

It has been reported experimentally that the low-field mobil-
ity is governed by a universal Arrhenius-type equation:
��E=0,T�=�0 exp�−� /kBT� with the activation energy
�=0.30 eV; the room-temperature experimental mobility is
found to be �300 K=1.3	10−8 m2 /V s. The corresponding
experimental values for rir-P3HT are �=0.35 eV and
�300 K=2.8	10−9 m2 /V s.29 Our first-principles result of
��E=0� is 2.9	10−9 m2 /V s at 300 K, which is in excellent
agreement with the experimental result for rir-P3HT, but
slightly smaller than the experimental value for rr-P3HT. The

FIG. 4. The variation in carrier mobility due to the structure
disorder at T=300 K. The solid curve denotes the average value
and the error bars represent the standard deviation for ten randomly
generated macroscopic structures.

FIG. 5. �Color online� Field dependence of the mobility at vari-
ous temperatures. Squares: the logarithm of mobility against E1/2 at
T=100, 150, 200, 250, 300, and 350 K. Red curves: fitted curve of
the simulated mobility.
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simulated mobility from 200 to 350 K follows closely the
Arrhenius equation as shown in Fig. 6, and the fitted activa-
tion energy is 0.31 eV, which compares very well with the
experimental value. Finally, we predict that the mobility at
low temperatures deviates from the Arrhenius relation, which
awaits for experimental verifications.

In the ab initio MD simulations, the energy level of each
state fluctuates, including the HOMO state which is most
relevant to the hole mobility. For a given energy interval, the
count that the HOMO state falls between is termed as density
of states �DOS� following the nomenclature in this field. In
Fig. 7, we present the density of states for T=100 K, 200 K,
and 300 K, respectively. We find that the density of states
follows the Gaussian distribution. At the room temperature
�300 K�, the fitted Gaussian width is 97 meV, which is in
excellent agreement with the experimental value of 98 meV
for a P3HT-based hole-only diode.29 We also find that the
Gaussian width becomes larger with increasing temperature
because the energy fluctuation is greater.

The Fourier transform for the time dependence of the en-
ergy levels is used to identify the relevant phonon modes that

contribute to the electron-phonon coupling. Figure 8 shows
the Fourier analysis of the time-dependent HOMO energy
level. The vibration modes of P3HT are known to have two
contributions: one from the bending and torsion modes of the
backbones with lower phonon frequencies and the other from
the stretching modes with higher frequencies. In particular,
the stretching frequency of CuS, CvC, and CuH bonds
is 750 cm−1, 1500 cm−1, and 3000 cm−1, respectively. We
find that from 100 to 300 K, these lower frequency phonons
dominate the hole mobility; beyond 300 K the stretching
modes of CuS and CvC bonds become more important.
On the other hand, the stretching modes of CuH bonds
despite having the highest phonon frequencies do not con-
tribute to the hole mobility. This result is consistent with the
finding of Vukmirovic and Wang.24

In conclusion, we have proposed a method that can pre-
dict carrier mobility in disordered semiconducting polymers
and organic semiconductors from first principles. The
method is based on the nonadiabatic ab initio molecular dy-
namics and the static master equation without any empirical
input or adjustable parameters. We have applied the method
to calculate the hole mobility in P3HT conjugated polymers
as a function of temperature and electric field and have ob-
tained excellent agreements with the corresponding experi-
mental results. Being general and of predictive power, the
method could be used to explore the structure-mobility rela-
tion in disordered semiconductors and aid the rational design
of these materials.

This work was supported by NSF Solar energy under
Grant No. DMR-1035480 and NSF MRI-R2 under Grant No.
DMR-0958596. We acknowledge helpful discussions with
Thuc-Quyen Nguyen and Carlos Garcia-Cervera.

FIG. 6. �Color online� Temperature dependence of the mobility.
Squares: simulated low-field mobility ��E=0,T� vs inverse tem-
perature. Red line: experimental fit using the Arrhenius relation
��E=0,T�=�0 exp�−� /kBT�. The solid line represents the avail-
able experimental results from 300 to 200 K; the dotted line gives
the full temperature dependence of the Arrhenius equation down to
the low temperatures where no experimental result is available.

FIG. 7. �Color online� The density of states �counts per energy�
at different temperatures. The curves are the Gaussian fits to the
computed DOS. Black, red, and blue curves represent T=300 K,
200 K, and 100 K, respectively. Inset: the Gaussian width vs
temperature.

FIG. 8. The Fourier transform of the HOMO energy levels at
T=100 K, 200 K, and 300 K, respectively. The bottom panel shows
the characteristic phonon frequencies corresponding to the stretch-
ing modes of CuS and CvC bonds.

FIRST-PRINCIPLES DETERMINATION OF CHARGE… PHYSICAL REVIEW B 82, 205210 �2010�

205210-5



1 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature
�London� 347, 539 �1990�.

2 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K.
Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J.
Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature
�London� 401, 685 �1999�.

3 N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger,
G. Stucky, and F. Wudl, Appl. Phys. Lett. 62, 585 �1993�.

4 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R.
Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 �2007�.

5 R. W. Munn and R. Silvey, J. Chem. Phys. 83, 1843 �1985�.
6 K. Hannewald, V. M. Stojanovic, J. M. T. Schellekens, P. A.

Bobbert, G. Kresse, and J. Hafner, Phys. Rev. B 69, 075211
�2004�.

7 V. M. Kenkre, J. D. Andersen, D. H. Dunlap, and C. B. Duke,
Phys. Rev. Lett. 62, 1165 �1989�.

8 A. Miller and E. Abrahams, Phys. Rev. 120, 745 �1960�.
9 R. A. Marcus, Rev. Mod. Phys. 65, 599 �1993�.

10 H. Bässler, Phys. Status Solidi B 175, 15 �1993�.
11 D. Hertel and H. Bässler, ChemPhysChem 9, 666 �2008�.
12 Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin, and A. R.

Bishop, Phys. Rev. B 63, 085202 �2001�.
13 W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert,

P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys.
Rev. Lett. 94, 206601 �2005�.

14 J. L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem.
Rev. 104, 4971 �2004�.

15 G. J. Nan, L. J. Wang, X. D. Yang, Z. G. Shuai, and Y. Zhao, J.
Chem. Phys. 130, 024704 �2009�.

16 J. Kirkpatrick, V. Marcon, J. Nelson, K. Kremer, and D. An-
drienko, Phys. Rev. Lett. 98, 227402 �2007�.

17 S. Athanasopoulos, J. Kirkpatrick, D. Martnez, J. M. Frost, C. M.
Foden, A. B. Walker, and J. Nelson, Nano Lett. 7, 1785 �2007�.

18 W. Q. Deng and W. A. Goddard, J. Phys. Chem. B 108, 8614

�2004�.
19 J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, and J. M. Frost,

Acc. Chem. Res. 42, 1768 �2009�.
20 N. G. Martinelli, Y. Olivier, S. Athanasopoulos, M.-C. R. Del-

gado, K. R. Pigg, D. A. da Silva Filho, R. S. Sánchez-Carrera, E.
Venuti, R. G. D. Valle, J.-L. Brédas, D. Beljonne, and J. Cornil,
ChemPhysChem 10, 2265 �2009�.

21 M. Hultell and S. Stafstrom, Chem. Phys. Lett. 428, 446 �2006�.
22 A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 �2006�.
23 A. Troisi, D. L. Cheung, and D. Andrienko, Phys. Rev. Lett.

102, 116602 �2009�.
24 N. Vukmirović and L. W. Wang, Nano Lett. 9, 3996 �2009�.
25 N. Vukmirović and L. W. Wang, Phys. Rev. B 81, 035210

�2010�.
26 W. R. Duncan, W. M. Stier, and O. V. Prezhdo, J. Am. Chem.

Soc. 127, 7941 �2005�.
27 C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett.

95, 163001 �2005�.
28 P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102

�2005�.
29 C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw,

Phys. Rev. Lett. 91, 216601 �2003�.
30 P. E. Blöchl, Phys. Rev. B 50, 17953 �1994�.
31 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
32 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 �1993�.
33 G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 �1996�.
34 A. Abkowitz, H. Bässler, and M. Stolka, Philos. Mag. B 63, 201

�1991�.
35 P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys.

Rev. B 55, R656 �1997�.
36 I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl.

Phys. Lett. 74, 2809 �1999�.
37 N. I. Craciun, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett.

100, 056601 �2008�.

ZHANG, LI, AND LU PHYSICAL REVIEW B 82, 205210 �2010�

205210-6

http://dx.doi.org/10.1038/347539a0
http://dx.doi.org/10.1038/347539a0
http://dx.doi.org/10.1038/44359
http://dx.doi.org/10.1038/44359
http://dx.doi.org/10.1063/1.108863
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1063/1.449372
http://dx.doi.org/10.1103/PhysRevB.69.075211
http://dx.doi.org/10.1103/PhysRevB.69.075211
http://dx.doi.org/10.1103/PhysRevLett.62.1165
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1002/pssb.2221750102
http://dx.doi.org/10.1002/cphc.200700575
http://dx.doi.org/10.1103/PhysRevB.63.085202
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1021/cr040084k
http://dx.doi.org/10.1021/cr040084k
http://dx.doi.org/10.1063/1.3055519
http://dx.doi.org/10.1063/1.3055519
http://dx.doi.org/10.1103/PhysRevLett.98.227402
http://dx.doi.org/10.1021/nl0708718
http://dx.doi.org/10.1021/jp0495848
http://dx.doi.org/10.1021/jp0495848
http://dx.doi.org/10.1021/ar900119f
http://dx.doi.org/10.1002/cphc.200900298
http://dx.doi.org/10.1016/j.cplett.2006.07.042
http://dx.doi.org/10.1103/PhysRevLett.96.086601
http://dx.doi.org/10.1103/PhysRevLett.102.116602
http://dx.doi.org/10.1103/PhysRevLett.102.116602
http://dx.doi.org/10.1021/nl9021539
http://dx.doi.org/10.1103/PhysRevB.81.035210
http://dx.doi.org/10.1103/PhysRevB.81.035210
http://dx.doi.org/10.1021/ja042156v
http://dx.doi.org/10.1021/ja042156v
http://dx.doi.org/10.1103/PhysRevLett.95.163001
http://dx.doi.org/10.1103/PhysRevLett.95.163001
http://dx.doi.org/10.1063/1.1856460
http://dx.doi.org/10.1063/1.1856460
http://dx.doi.org/10.1103/PhysRevLett.91.216601
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1080/01418639108224441
http://dx.doi.org/10.1080/01418639108224441
http://dx.doi.org/10.1103/PhysRevB.55.R656
http://dx.doi.org/10.1103/PhysRevB.55.R656
http://dx.doi.org/10.1063/1.124021
http://dx.doi.org/10.1063/1.124021
http://dx.doi.org/10.1103/PhysRevLett.100.056601
http://dx.doi.org/10.1103/PhysRevLett.100.056601

