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Abstract
We propose an efficient method for carrying out time-dependent density functional theory
(TDDFT) calculations using range-separated hybrid exchange–correlation functionals. Based
on a non-self-consistent range-separated Hamiltonian, the method affords large-scale
simulations at a fraction of the computational time of conventional hybrid TDDFT approaches.
For typical benchmark molecules including N2, CO, C6H6, H2CO and the C2H4–C2F4 dimer,
the method possesses the same level of accuracy as the conventional approaches for the
valence, Rydberg, and charge-transfer excitation energies when compared to the experimental
results. The method is used to determine π → π∗ excitations in both disordered and
crystalline poly(3-hexylthiophene) (P3HT) conjugated polymers with more than six hundred
atoms and it yields excitation energies and charge densities that are in excellent agreement
with experiments. The simulation of the crystalline P3HT reveals that the phase of the
wavefunctions could have an important effect on the excitation energy; a hypothesis based on
π–π stacking is proposed to explain this novel effect in conjugated polymers.

(Some figures may appear in colour only in the online journal)

1. Introduction

The last decade has witnessed the emergence of time-
dependent density functional theory (TDDFT) [1, 2] as
one of the most popular theoretical/computational tools for
understanding electronic excitations. An important advantage
of TDDFT over many-body Green’s function or traditional
wavefunction based theories is the density dependence
of TDDFT energy functionals, which is formally exact.
However, in practice, approximate exchange–correlation
(XC) functionals have to be used, such as the adiabatic
local density approximation (LDA) or the generalized
gradient approximations (GGA). For example, the gradient-
corrected BP86 [3, 4] and hybrid B3LYP [5, 6] functionals
have been used extensively, providing reliable ground
state properties. However, among other problems, these
functionals fail to exhibit the long-range −1/r dependence
of the exchange–correlation potential on the inter-electronic
distance r; as a result they have serious problems, such as
in dealing with extended Rydberg states [7, 8] and charge-

transfer excitations [9, 10]. Although asymptotically corrected
XC functionals such as LB94 lead to a better description
of Rydberg states, they still significantly underestimate the
charge-transfer states [11]. To remedy this crucial deficiency,
range-separated (RS) hybrid XC functionals [12–16] have
been proposed for smoothly recovering the correct asymptotic
behavior of the XC potential at large distances and
simultaneously maintaining the delicate balance between the
exchange and correlation contributions at short distances.
The range-separated functionals have been shown to yield
substantial improvement over the local or conventional hybrid
functionals for excitations in conjugated polymers [17–22],
weakly bonded complexes [23, 24] and extended charge-
transfer states [25–29], to name but a few.

Despite the success of the range-separated TDDFT
(RS-TDDFT), its application to large systems remains
challenging due to the overwhelming computational cost
of the Hartree–Fock (HF) integrals, which are 30–50
times more expensive than the conventional functionals.
For dynamical simulations, the RS-TDDFT is normally
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limited to a few tens of atoms with moderate computational
resources. To overcome the prohibitive computational
barrier, herein we propose an efficient RS-TDDFT method
based on a non-self-consistent range-separated Hamiltonian
that can deal with excitations in large systems (up to
103 atoms) with a reasonable computational cost and a
desirable accuracy. In this approach, the non-self-consistent
range-separated Hamiltonian is used to determine the
excited wavefunctions and energies following Casida’s
formulation [30]. Two key approximations are introduced.
(1) The KS orbitals and energies are determined non-
self-consistently by diagonalizing the range-separated KS
Hamiltonian constructed from a self-consistent KS-GGA
calculation. The range-separated Hamiltonian is not updated
self-consistently; thus the time-consuming HF exchange
integrals are calculated only once to determine the KS
orbitals and energies. (2) Since we are primarily interested
in low-energy excitations contributed from the frontier KS
orbitals, we consider only a subspace of occupied KS
orbitals in determining the energies and wavefunctions of
the frontier KS orbitals. For a similar level of accuracy,
the first approximation could produce saving of one order
of magnitude in computational time comparing to the
conventional range-separated TDDFT methods; the second
approximation can further reduce the computational time and
memory up to one order of magnitude.

Recently, the optoelectronic and photovoltaic tech-
nologies have broadened their materials base to organic
molecules, and in particular to π -conjugated oligomers and
polymers, thanks to their unique nonlinear optical and/or
semiconducting properties, paving the way to the emergence
of organic optoelectronics [31]. One of the prominent
examples is poly(3-hexylthiophene) (P3HT) which is the
focus of the present study. P3HT has been widely used in
organic electronics, including as the donor material in bulk
heterojunction organic solar cells. Light absorption within
P3HT generates excitons that diffuse to the donor/acceptor
interfaces where they dissociate into free charge carriers.
Therefore an accurate description of the excitons in P3HT
is of crucial importance in understanding exciton generation,
diffusion and dissociation in P3HT and related materials.
To study excitations in either amorphous or crystalline
P3HT—both are important for applications—large-scale
TDDFT simulations are indispensable. Therefore it is of
great scientific interest to develop efficient computational
methods that can describe excitations accurately in large
organic molecules and crystals. Our results show that the
local or semi-local functionals fail to provide an accurate
description of the exciton states in P3HT, which can be
addressed satisfactorily by using the range-separated hybrid
functionals.

2. Methodology

In range-separated XC functionals, the Coulomb repulsion
operator 1/r12 is divided into short-range and long-range parts
by using the error function:

1
r12
=

erfc(µr12)

r12
+

erf(µr12)

r12
, (1)

Figure 1. The schematic flowchart of the proposed approach
(non-self-consistent; solid line) and the self-consistent RS-DFT
calculation (dashed line).

where r12 = |r1 − r2| is the distance between two electrons
at r1 and r2, and µ is a range-separation parameter. The
range-separated XC functionals are given by [13, 14]

E′xc = Ec,DFT + ESR
x,DFT + ELR

x,HF, (2)

where Ec,DFT is the DFT correlation; ESR
x,DFT is the short-range

part of the conventional DFT exchange functional, and ELR
x,HF

is the long-range part of the HF exchange integral. Since
Ex,DFT ≡ ESR

x,DFT+ELR
x,DFT, where ELR

x,DFT is the long-range part
of the conventional DFT exchange functional, equation (2)
can be rewritten as E′xc = Exc,DFT − ELR

x,DFT + ELR
x,HF. Then

the corresponding XC effective potential is given by V̂ ′xc =

V̂xc,DFT − V̂LR
x,DFT + V̂LR

x,HF.
To introduce the approximations, let us start with the

self-consistent range-separated DFT calculations with the
KS eigenvalues and eigenfunctions obtained by conventional
GGA-DFT. The schematic flowchart of the self-consistency
is shown in figure 1 by a dashed line. Here ρ(0), Ĥ(0)

[ρ(0)],
ε
(0)
i , and ϕ

(0)
i denote the charge density, KS Hamiltonian,

KS eigenvalue, and KS eigenfunction from the self-consistent
GGA-DFT calculations and ρ′, Ĥ′[ρ′], ε′i , and ϕ′i represent the
same quantity in the RS-DFT formulation. A self-consistent
GGA calculation is performed to determine the ground state
density ρ(0) and the corresponding GGA-KS Hamiltonian.
The eigenvalues and eigenfunctions of the Hamiltonian
can then be obtained, which are used to construct the
range-separated KS (RS-KS) Hamiltonian in equation (3).

2



J. Phys.: Condens. Matter 24 (2012) 205801 X Zhang et al

More specifically, the RS-KS Hamiltonian matrix elements
are expressed in terms of the GGA quantities as

Ĥ′ij = 〈ϕ
(0)
j |Ĥ

′
|ϕ
(0)
i 〉 = 〈ϕ

(0)
j |Ĥ

(0)
− V̂LR

x,DFT + V̂LR
x,HF|ϕ

(0)
i 〉

= ε
(0)
i δij −

∫
ϕ
(0)∗
j (r)VLR

x,DFT[ρ
(0)(r)]ϕ(0)i (r) dr

−

occ∑
k

[
njk

∣∣∣∣erf(µr)

r

∣∣∣∣ n∗ik

]
, (3)

where the charge density is defined as nik ≡ ϕ
(0)∗
i ϕ

(0)
k

and the Coulomb inner product is defined as [f | 1r |g] ≡∫ f (r1)g(r2)
|r1−r2| dr1 dr2. Here, i and j denote both the occupied and

virtual orbitals, and k indicates only the occupied orbitals.
The range-separated KS eigenvalue ε′i and eigenfunction ϕ′i
can thus be determined by a direct diagonalization of the
Hamiltonian matrix Ĥ′ in equation (3). A new charge density
can be computed by using ρ(0)new =

∑occ
i ϕ′∗i ϕ

′
i . The updated

ρ
(0)
new, ε(0)i,new and ϕ

(0)
i,new are then used to construct the new

range-separated Hamiltonian and the cycle repeats until the
converged ρ′, ε′i and ϕ′i are obtained.

As the first approximation in the method, we assume the
ground state charge density ρ(0) obtained by the KS-GGA
to be the same as ρ′ determined from RS-DFT; this is a
reasonable approximation because the GGA functionals are
known to produce accurate ground state charge densities.
Therefore instead of executing the self-consistent loop, we
perform a non-self-consistent RS-DFT calculation to obtain
ε′i and ϕ′i without updating the RS-DFT Hamiltonian in
equation (3). The flowchart of the non-self-consistent method
is shown in figure 1 with solid lines. We should point
out that there are well-known situations where the ground
state charge density of KS-GGA deviates significantly from
that of RS-DFT. For example, when a molecule is being
stretched or subject to an applied electric field or when
charge transfer takes place between the molecule and metal
leads [32], one should be particularly cautious in using the
non-self-consistent RS-DFT method.

Using the non-self-consistently determined RS-DFT
eigenvalues and eigenfunctions, the excited energies and
states can be subsequently determined by solving the
non-Hermitian eigenvalue equations of Casida [30]:(

A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
, (4)

where ω is the excitation energy and the elements of matrices
A and B are given by

Aijσ,klτ = δi,kδj,lδσ,τ (ε
′
jσ − ε

′
iσ )+ Kijσ,klτ ,

Bijσ,klτ = Kijσ,lkτ .
(5)

Here, i, k and j, l indicate the occupied and virtual orbitals,
respectively. σ and τ are spin indices. And the coupling matrix
elements Kijσ,klτ are given by

Kijσ,klτ =

[
n′ijσ

∣∣∣∣1r
∣∣∣∣ n′∗klτ

]
− δστ

[
n′ikσ

∣∣∣∣erf(µr)

r

∣∣∣∣ n′∗jlτ

]

+

∫
n′ijσ (r1)

δ2(Exc,DFT − ELR
x,DFT)

δρ
(0)
σ (r1)δρ

(0)
τ (r2)

n′∗klτ (r2) dr1 dr2, (6)

where n′ijσ ≡ ϕ
′∗
iσϕ
′
jσ . The last two terms on the right-hand side

of equation (6) represent the linear response of the nonlocal
HF exchange energy and the local XC potential with respect
to variations of the density matrix, respectively [30].

Because the GGA quantities are used in constructing the
non-self-consistent RS-DFT Hamiltonian, and subsequently
the calculations of excited states, the proposed method can
be considered as an improvement over GGA-TDDFT, making
a passage towards RS-TDDFT.

According to the assignment ansatz of Casida, the
many-body wavefunction of an excited state I can be written
as [30]

8I ≈
∑
ijσ

zI,ijâ
†
jσ âiσ80, (7)

where zI,ij = (XI,ij + YI,ij)/
√
ωI ; âiσ is the annihilation

operator acting on the ith KS orbital with spin σ and 80
is the ground state many-body wavefunction taken to be the
single Slater determinant of the occupied KS orbitals. With
the density operator ρ̂(r) =

∑N
n=1δ(r − rn) of an N-electron

system, the charge density of the Ith excited states can be
written as [33]

ρI
excited(r) = 〈8I |ρ̂(r)|8I〉 = ρground(r)

+

∑
i,jj′

z∗I,ijzI,ij′φ
∗
j (r)φj′(r)−

∑
ii′,j

z∗I,ijzI,i′jφ
∗

i′ (r)φi(r). (8)

Here, ρground is the charge density of the ground state, and
the second and the third terms on the right-hand side of
equation (8) represent the charge density of the quasi-electron
and the quasi-hole, respectively.

3. Validations

In the following, we validate the proposed method by
comparing the excitation energies of five molecules (N2,
CO, C6H6, H2CO and C2H4–C2F4) to the conventional
RS-TDDFT results and the corresponding experimental
values. These molecules are typically used in benchmarking
the accuracy of TDDFT calculations [13]. The KS-
GGA calculations with the projector augmented wave
pseudopotentials [34] and Perdew–Burke–Ernzerhof (PBE)
[35] XC functional are performed at the 0 point with an
energy cutoff 300 eV [36, 37]. The molecules are placed in
an orthorhombic box with the dimensions of 20× 20× 20 Å

3

using the periodic boundary conditions. The dimension of the
simulation box is increased to 30 Å for the C2H4–C2F4 dimer.
Experimental geometries of these molecules have been used
in the TDDFT calculations. The range-separation parameter µ
varies for different systems and it can be tuned by enforcing
the identity between the energy of the highest occupied
molecular orbital (HOMO) and the ionization potential [38].
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Figure 2. The lowest charge-transfer excitation energy of the
C2H4–C2F4 dimer versus intermolecular distance R. The red, green,
and blue curves represent the results determined from the
conventional range-separated TDDFT, the proposed method, and the
PBE-GGA functional, respectively. The experimental values (black
curve) are estimated by the function c0 − 1/R, where c0 = 12.5 eV
is the energy difference between the vertical ionization potential of
C2H4 and the electron affinity of C2F4. Inset: the atomic structure of
the C2H4–C2F4 dimer where gray, white, and red spheres denote C,
H, and F atoms, respectively.

Here µ is taken to be 0.62 Å
−1

, which has been previously
optimized for the benchmark molecules [13].

The vertical excitation energies of N2, CO, C6H6
and H2CO determined by the proposed method and the
conventional RS-TDDFT method, and the corresponding
experimental values, are listed in table 1. To assess the
overall accuracy of the proposed method, we have determined
the mean absolute errors (MAE) for the valence and
Rydberg excitations. Comparing to the experiment values,
the MAEs for the valence and the Rydberg excitations
from the proposed method are 0.24 eV and 0.28 eV,
respectively, less than the corresponding MAE values of the
conventional RS-TDDFT of 0.27 and 0.65 eV. Therefore, the
proposed method has a similar accuracy to the conventional
RS-TDDFT for the valence states and is more accurate than
the conventional RS-TDDFT for the Rydberg excitations.
The superior performance of the proposed method for the
Rydberg states may be due to fortuitous error cancellations:
on one hand, the conventional RS-TDDFT is known to
underestimate the Rydberg energies; on the other hand,
the non-self-consistent RS-DFT calculation typically yields
higher energies than the fully self-consistent calculation (a
variational principle at work). We have also calculated the
lowest charge-transfer excitation energy of the C2H4–C2F4
dimer with increasing intermolecular distance as shown
in figure 2. The results demonstrate that the PBE-GGA
functional (blue dotted curve) fails to describe the long-range
behavior of the charge-transfer excitation energies, but the
proposed method gives results (green squared curve) that
agree very well with the conventional RS-TDDFT results (red
curve) and reproduces the correct long-range behavior of the
experiment (black curve).

Table 1. Vertical excitation energies (in eV) of N2, CO, C6H6 and
H2CO molecules calculated by the proposed method (‘Ours’) in
comparison with the conventional RS-TDDFT calculations
(‘Conventional’) and the experiments (‘Exp.’) in [13]. Here, ‘V’ and
‘R’ represent the valence and Rydberg excitations, respectively.

State Ours Conventional Exp.

N2 V: 15g (σg → πg) 9.44 9.34 9.31
V: 16−u (πu → πg) 9.44 9.34 9.92
V: 11u (πu → πg) 10.04 9.89 10.27
R: 16+g (σg → 3sσg) 11.69 11.57 12.20
R: 15u (σg → 3pπu) 12.91 12.05 12.90
R: 16+u (σg → 3pπu) 12.94 12.09 12.98
V: 36+u (πu → πg) 7.51 7.41 7.75
V: 35g (σg → πg) 7.85 7.78 8.04
V: 31u (πu → πg) 8.61 8.32 8.88
V: 36−u (πu → πg) 9.44 9.34 9.67
V: 35u (σu → πg) 10.95 10.77 11.19
R: 36+g (σg → 3sσg) 11.24 11.14 12.00

CO V: 15 (σ → π∗) 8.69 8.43 8.51
V: 16− (π → π∗) 9.84 9.77 9.88
V: 11 (π → π∗) 10.30 10.21 10.23
R: 16+ (σ → 3s) 10.50 10.28 10.78
R: 16+ (σ → 3pσ ) 11.68 10.73 11.40
R: 15 (σ → 3pπ ) 11.87 10.83 11.53
V: 35 (σ → π∗) 6.05 6.06 6.32
V: 36+ (π → π∗) 8.32 8.23 8.51
V: 31 (π → π∗) 9.20 8.95 9.36
V: 36− (π → π∗) 9.84 9.77 9.88
R: 36+ (σ → 3s) 10.05 8.95 10.40
R: 36+ (σ → 3pσ ) 11.31 9.79 11.30

C6H6 V: 1 1B2u (π → π∗) 5.49 5.39 4.90
V: 1 1B1u (π → π∗) 6.73 6.22 6.20
V: 1 1E1u (π → π∗) 7.08 7.00 6.94
R: 1 1E1g (π → 3s) 7.21 6.70 6.33
R: 1 1A2u (π → 3pσ ) 7.37 7.16 6.93
R: 1 1E2u (π → 3pσ ) 7.38 7.31 6.95
V: 1 3B1u (π → π∗) 4.18 3.76 3.94
V: 1 3E1u (π → π∗) 4.79 4.81 4.76
V: 1 3B2u (π → π∗) 5.06 5.03 5.60

H2CO V: 1A2 (n→ π∗) 3.98 3.81 3.94
V: 1B1 (σ → π∗) 9.21 9.10 8.68
R: 1B2 (n→ 3sa1) 6.92 6.71 7.09
R: 1A1 (n→ 3pb2) 7.96 7.54 7.97
R: 1B2 (n→ 3pa1) 7.90 7.45 8.12
R: 1A2 (n→ 3pb1) 8.61 7.69 8.38
V: 3A2 (n→ π∗) 3.39 3.13 3.50
V: 3A1 (π → π∗) 5.99 5.84 5.53
R: 3B2 (n→ 3sa1) 6.63 6.57 6.83
R: 3A1 (n→ 3pb2) 7.85 7.44 7.79
R: 3B2 (n→ 3pa1) 7.73 7.30 7.96

4. Applications to the conjugated polymer P3HT

In typical spectroscopic measurements and realistic applica-
tions involving large molecules, only low-energy excitations
are of particular interest; these low-energy excitations
correspond to electron transitions from shallow occupied
orbitals to low-energy virtual orbitals. Herein we consider the
low-energy excitations from No occupied orbitals to Nv virtual
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orbitals, i.e., the occupied KS orbitals from HOMO−No+1 to
HOMO and the virtual KS orbitals from LUMO to LUMO+
Nv − 1 are included in the calculations of equation (4).
In π -conjugated polymers, the frontier orbitals (including
both occupied and virtual levels near the Fermi energy) are
composed of π orbitals while the deep occupied states consist
of σ orbitals. Since there is negligible spatial overlap between
the π and σ orbitals, the contribution from the σ orbitals to
both the HF and DFT exchange energies can be neglected.
Hence, we make the second approximation by ignoring the
contributions from the deep σ orbitals in the last two terms of
equation (3), i.e., the summation of k includes No+Nos where
Nos is the number of additional occupied orbitals below the
No occupied orbitals. Moreover, in the second term, ρ(0)(r)
is replaced by

∑No+Nos
i nii(r). The KS eigenvalues ε′i are then

obtained by diagonalizing the Hamiltonian matrix Ĥ′ij whose
dimension is No + Nv.

To assess the errors of the second approximation in large
molecules, we calculate the excitation energies of disordered
P3HT polymers. A cubic computational cell with a dimension
of 18.2 Å is used in the range-separated TDDFT calculations.
The supercell contains 606 atoms, including three P3HT
chains; each chain consists of eight thiophene rings leading
to a mass density of 1.1 g cm−3, similar to the experimental
value [39]. The initial atomic structure of the P3HT chains
is obtained from randomly placed and warped configurations,
and is then subject to a full atomic relaxation to reach a local
energy minimum. We find that µ = 0.62 Å

−1
also works well

for P3HT, which has been used in the following calculations.
No = 6 occupied orbitals and Nv = 9 virtual orbitals are
included in the calculation of equation (4). A series of TDDFT
calculations are performed by increasing Nos from 1 to 717
(for Nos = 717, all occupied orbitals are included). The KS
eigenvalues (ε′ref

i ) and excitation energies (ωref) determined
with Nos = 717 are taken as reference points for evaluating
the errors. The error in the KS eigenvalues is given by

1εo (v) defined as 1εo (v) =

√∑No (v)
i (ε′i − ε

′ref
i )2/No (v) for

the occupied (o) and virtual orbitals (v), respectively. The
error in the excitation energy is represented by 1ωS(T) =

ωS(T) − ωref
S(T) for the lowest singlet (S) and triplet (T)

excitation, respectively. The errors as a function of Nos are
displayed in figure 3. It is found that the errors decrease
precipitously across Nos = 49 and then approach the reference
points gradually. At Nos = 49, ε′i amounts to 80% of ε′ref

i and
ωS(T) is about 85% of ωref

S(T). Thus Nos = 49 represents an
excellent trade-off point—one can attain the accuracy of 85%
for the excitation energies with ∼15 times less computational
cost comparing to the reference points. Because there are 48
π orbitals in P3HT from 96 C atoms along the backbone,
taking Nos = 49 ensures that all π orbitals are included. These
ignored orbitals are σ only, which have negligible overlap
with the π orbitals; thus their contribution to equation (3) can
be neglected.

The failures in TDDFT with the conventional or hybrid
XC functionals often show up in the lowest-lying π →

π∗ excited state [40, 41], including the charge density
distribution. With Nos = 49, we have determined the charge

Figure 3. Errors in the excitation energy (left) and KS eigenvalues
(right) versus Nos for the disordered P3HT. The red solid (dot) curve
represents the errors of the lowest singlet (triplet) excitation energy.
The black solid (dot) curve denotes the errors of the occupied
(virtual) KS eigenvalues.

density difference between the lowest excited state and the
ground state for the disordered P3HT polymer (the lowest
excited state of P3HT is that of the π → π∗ transition)
using both the PBE-GGA functional and the range-separated
functional. In figure 4, the positive value represents an
accumulation of the charge density (or the formation of the
quasi-electron) and the negative value indicates a depletion
of the charge density (or the formation of the quasi-hole). It
is evident that the range-separated functional yields an intra-
chain excitation and the quasi-electron and the quasi-hole
are located in the same P3HT chain; on the other hand, the
PBE-GGA functional predicts an inter-chain excitation and
the quasi-electron and the quasi-hole are separated in different
P3HT chains. The intra-chain excitation result is consistent
with experiments where the Frenkel-like intra-chain excitons
have been observed in the disordered P3HT as the lowest
excitation [42–44]. Therefore the proposed method is capable
of providing an accurate description of the excited states in
P3HT in terms of charge density.

Since the proposed method uses a plane-wave basis with
periodic boundary conditions, it can be applied to model
periodic systems such as organic crystalline semiconductors.
Some of these semiconductors exhibit great potential in
photovoltaic applications thanks to their macroscopic exciton
diffusion lengths [45]. In the following, we use the proposed
method to study the lowest singlet excitation in crystalline
P3HT. This excitation involves the transition between the
delocalized π and π∗ states, which takes place over the
entire P3HT chains [46]. It has been observed that this
excitation energy depends crucially on the conjugation length
of the polymers—the longer the conjugation length, the more
closely the energy approaches the experimental value [46]. In
addition, there is also π–π stacking interaction between the
polymer chains, which has to be included in the simulations.
To examine the effect of the conjugation length and the
π–π stacking on the excitation energy, we have considered
eight different models divided into two groups. In group I, a
single P3HT chain is contained in the supercell while there

5
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Figure 4. Charge density difference (ρexcited − ρground) between the lowest excited state and the ground state determined by (a) the proposed
method and (b) the PBE-GGA functional in the disordered P3HT. The blue (yellow) iso-surfaces illustrate the charge density difference at
+0.0005 (−0.0005) Å

−3
. The positive (negative) charge density corresponds to the quasi-electron (hole). The gray, white, and yellow

spheres denote C, H, and S atoms, respectively.

are two P3HT chains in the supercell for group II. In each
group, different boundary conditions along the z (stacking)
and x (chain) directions are used. To simulate a finite P3HT
segment, a vacuum is placed along the x direction (H atoms
are introduced to saturate the dangling bonds along the x
direction); to simulate an infinite chain, no vacuum is used.
Similarly, to simulate an isolated single or double P3HT chain,
a vacuum is introduced along the z direction; to simulate the
stacking interaction between the chains, no vacuum is placed
along the z direction.

With No = 8 and Nv = 8, we have calculated the lowest
excitation energy for the eight models and the results are
summarized in table 2. Firstly, we find that the excitation
energy of the finite P3HT segment is much higher than
that of the infinite chain(s). There are two reasons for the
energy difference: (1) the presence of saturating H atoms
in the finite segment increases the KS gap which amounts
to 25% of the increased excitation energy; (2) the Coulomb
interaction between the quasi-electron and the quasi-hole is
lower in the finite P3HT segment, and leads to 75% increase
of the excitation energy. The second reason can be explained
by comparing figures 5(b) and (c): there is an attractive
interaction between the quasi-electron and quasi-hole across
the boundaries in figure 5(b), while such interaction is absent
in figure 5(c). Since the stronger the Coulomb attraction,
the lower the excitation energy, the infinite chain(s) has
a lower energy than the segment. Secondly, we find that
comparing to the isolated single chain, the stacked chains
raise the excitation energy by 0.54 eV. In contrast, comparing
to the isolated double chain, the stacked chains lower the
excitation energy by 0.35 eV. Accordingly, we estimate the
lowest excitation energy of the crystalline P3HT to range
from 1.5 eV (from the double-chain calculation) to 2.4 eV
(from the single-chain calculation), which is in line with
the experimental value at ∼2.0 eV [46]. The two cases
(single chain versus double chain) have the same atomic
structure and charge density; in fact, since the calculation

Table 2. The lowest singlet excitation energies (in eV) determined
for the eight P3HT models.

z:

Group I Group II

Isolated Stacking Isolated Stacking

x: segment 3.45 3.99 3.03 2.51
x: infinite 1.91 2.45 1.81 1.46

is performed at the 0 point, their wavefunctions also have
the same amplitude. However, their wavefunctions acquire
different phases because the periodic boundary condition or
the Born–von Karman condition is applied differently (upon
different boxes). Therefore the phase of the wavefunctions
could have a significant effect (∼0.8 eV in this case) on the
excitation energy, notwithstanding it not affecting the ground
state energy. To shed light on the phase effect, in figure 5
we present a schematic picture of π–π stacking between the
polymer chains including three periodic cells for both single
chain and double chain. The π–π interaction is highlighted
by the red dashed lines. Note that the wavefunctions have
a difference in phases between the single and double chain.
In fact, the configuration shown in (b) is the only possible
one that would yield a different phase from (a). For the
single chain the π–π stacking involves the opposite-signed p
orbitals, while for the double chain, the π–π stacking consists
of the same-signed p orbitals. Hence we speculate that the
same-signed π–π stacking leads to a lower excitation energy.
Further theoretical or experimental investigations are required
to validate the speculation unambiguously. A recent work by
Nakatsuka et al [47] has found that the slipping modes could
also change the excitation energies significantly in π -stacking
molecules. We note that the slipping modes could weaken the
π–π stacking between the polymer chains which may either
increase or decrease the excitation energies, depending on the
π–π stacking phase.
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Figure 5. (a) The P3HT molecule is placed in the solid box and the
vacuum layers are contained in the dashed box along both x and z
directions. Periodic boundary conditions are applied in all three
directions. The polymer chain is along the x direction and the
inter-chain stacking is along the z direction. The dimensions of the
periodic boxes are given in Å. The gray, white, and yellow spheres
denote C, H, and S atoms, respectively. The electron density
difference between the lowest excited state and the ground state is
shown for the infinite P3HT chains (b) and the finite P3HT segment
(c). The blue (yellow) iso-surfaces illustrate the charge density
difference at +0.001 (−0.001) Å

−3
.

5. Conclusions

In this paper, we have proposed an efficient method based on
the non-self-consistent RS-DFT Hamiltonian for large-scale
TDDFT calculations. The excitation energies (including
valence, Rydberg, and charge-transfer excited states) of
typical benchmark molecules show excellent agreement with
experiments. The method is used to simulate the disordered
P3HT polymer with more than six hundred atoms and the
computational errors are evaluated. The method shows that
the lowest excitation of the disordered P3HT is an intra-chain
exciton, consistent with the experimental observations. We
have also calculated the excitation energy for the crystalline
P3HT and found that increasing the conjugation length of
the polymer lowers the excitation energy. More interestingly,
the π–π stacking between the polymer chains exhibits an
intriguing phase effect on the excitation energy. The proposed
method yields a lowest excitation energy for the crystalline
P3HT that agrees well with the experimental value. Overall,

Figure 6. Schematic picture of π–π stacking in the single-chain (a)
and double-chain (b) supercells. Three periodic supercells (solid
boxes) are shown for each case, and the red dashed lines denote the
π–π stacking. The solid lines represent the P3HT chains.

for the systems examined here, the proposed method can
reach a similar accuracy to the conventional RS-TDDFT
method but at a small fraction of the computational cost.
However, the general validity of the method has yet to
be established beyond the conjugated polymers and the
benchmark molecules. Although the method is not proposed
as a replacement for the conventional RS-TDDFT approaches,
it can be used as an alternative—sometimes the only one—for
treating large systems that are beyond the reach of the
conventional methods. We hope that the encouraging results
reported here will inspire further research in this direction.
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