Formulas to Know for Gateway Statistics Exam

1) Mean:
$$\mu = \frac{\sum x}{N}$$
, $\bar{x} = \frac{\sum x}{n}$, $E(x) = \sum xP(x)$

2) Standard Deviation:
$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$
, $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\text{sample variance}}$

- 3) Standard error of the mean: $\sigma_{\bar{x}} = \sigma / \sqrt{n}$
- 4) Frequency Distribution: class width = $\frac{Max Min}{\#classes}$
- 5) z statistic for testing hypotheses about the mean: $z = \frac{\overline{x} \mu}{\sigma / \sqrt{n}}$
- 6) t statistic for testing hypotheses about the mean: $t = \frac{\overline{x} \mu}{s/\sqrt{n}}$
- 7) Confidence Interval for the mean

(z)
$$\mu = \overline{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) = \overline{x} \pm (\text{interval width})/2$$

(t)
$$\mu = \overline{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$
, with n-1 d.f.

8) Confidence Interval for a proportion:
$$\pi = p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$
, where

$$\pi = \frac{\text{\# successes in the population}}{\text{population size}}, \quad p = \frac{\text{\# successes in the sample}}{\text{sample size}}, \quad P\Big(z > z_{\alpha/2}\Big) = \frac{\alpha}{2}$$

- 9) Regression Equation: $\hat{Y} = b_0 + b_1 x$
- 10) Standard error of estimate: the estimated standard deviation of Y about the regression line.
- 11) Coefficient of determination: R^2 = the percentage of the variation in Y that can be explained by the variation in X.