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Theorem [G-M,K]: We have b 32n− 1c ≤ gss(n) ≤ gws (n) = 2n− 3.

what is the truth?

Proposition [G-M,K]: There are cubic graphs in Gws .

Conjecture [G-M,K]: Graphs in Gss are 2-degenerate.

Proposition [G-M,K]: Gws is not closed under adding leafs.

Question: Is Gss closed under adding leafs?

Conjecture [G-M,K]: Every graph has a (multiple) subdivision in Gss .
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g̃ji (n) := maxn′ +m, such that G ∈ Gji with |E(G)| = m, |V (G)| = n
and n′ of its vertices can be added to the set of midpoints, such that the

resulting set is in


strictly convex if j = s

weakly convex if j = w

arbitrary if j = a.

position.

fighting for constants

Theorem [G-M,K]: We have g̃ws (n) = 2n.

Theorem [G-M,K]: We have b 32nc ≤ g̃
s
s(n) ≤ 2n− 2.

Corollary: largest number of convexly independent points in A+A
for n-vertex convex set A ⊆ R2 lies within b 32nc and 2n− 2.
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⇔ ∃c > 1 : Kc,c,c,c ∈ 3D − Gsa

· ≤ mn


