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P C R? in strictly convex P C R? in weakly convex
position if P is the set of vertices position if P on the "boundary”
of the convex hull of P of the convex hull of P

o vertices and midpoints of edges on different

: not ok
points

ok

consider graph drawings f : G < R? such that: /A\@
o edges straight-line segments ®/<@\©
fstrictly convex if j=s
midpoints position ¢ weakly convex if j = w

for i, € {s,w,a} define G/ —+—_ JA  arbitrary itj = a.

as class of graphs drawable s.th. \V (strictly cerEy G =

vertex position ¢ weakly convex if i = w

_arbitrary if + = a.
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g7 (n) max number of edges n-vertex graph in G’

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in G? are planar and therefore ¢3(n) < 3n — 6.

so, this works...and | wont finish these drawings...
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Theorem [G-M,K]: We have [2n — 1] < g%(n) < g¥(n) = 2n — 3.
LWhat is the truth?

Proposition [G-M,K]: There are cubic graphs in G
Conjecture [G-M,K]: Graphs in G are 2-degenerate.
Proposition [G-M,K]: GY is not closed under adding leafs.

Question: Is G° closed under adding leafs?

Conjecture [G-M,K]: Every graph has a (multiple) subdivision in G%.
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What has all this to do with Minkowski sums?
A BCRYthen A+B:={a+b|lac Abc B}
if G C R? then midpoints C {(u+v) |[u£veV}Ci(V+V)

largest number of convexly independent points in
A + A for n-vertex convex set A C R? is O(g?).

because only vertices can be added )

fighting for constants

3 (n) := maxn’ 4+ m, such that G € G/ with |E(G)| = m, |V(G)| = n
and n’ of its vertices can be added to the set of midpoints, such that the
fstrictly convex if j=s

resulting set is in ¢ weakly convex if j = w position.

 arbitrary if 7 = a.
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Theorem [G-M,K]: We have [2n] < g5(n) < 2n — 2.

Corollary: largest number of convexly independent pointsin A+ A
for n-vertex convex set A C R? lies within [$n] and 2n — 2.

fighting for constants

3 (n) := maxn’ 4+ m, such that G € G/ with |E(G)| = m, |V(G)| = n
and n’ of its vertices can be added to the set of midpoints, such that the
fstrictly convex if j=s

resulting set is in ¢ weakly convex if j = w position.

 arbitrary if 7 = a.
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