Drawing graphs with vertices and edges in convex position and large polygons in Minkowski sums

Graph Drawing, September 29, 2015

 $P \subseteq \mathbb{R}^2$ in weakly convex position if P on the "boundary" of the convex hull of P

 $P \subseteq \mathbb{R}^2$ in weakly convex position if P on the "boundary" of the convex hull of P

consider graph **drawings** $f: G \hookrightarrow \mathbb{R}^2$ such that:

- edges straight-line segments
- vertices and midpoints of edges on different points

 $P \subseteq \mathbb{R}^2$ in weakly convex position if P on the "boundary" of the convex hull of P

consider graph **drawings** $f: G \hookrightarrow \mathbb{R}^2$ such that:

- edges straight-line segments
- vertices and midpoints of edges on different points

 $P \subseteq \mathbb{R}^2$ in weakly convex position if P on the "boundary" of the convex hull of P

consider graph **drawings** $f: G \hookrightarrow \mathbb{R}^2$ such that:

- edges straight-line segments
- vertices and midpoints of edges on different points

 $P \subseteq \mathbb{R}^2$ in weakly convex position if P on the "boundary" of the convex hull of P

consider graph drawings $f: G \hookrightarrow \mathbb{R}^2$ such that:

- edges straight-line segments
- vertices and midpoints of edges on different points

 $\begin{array}{ll} \text{midpoints position} \\ \text{for } i,j \in \{s,w,a\} \text{ define } \mathcal{G}_i^j \\ \text{as class of graphs drawable s.th.} \\ \text{vertex position} \\ \end{array} \\ \begin{array}{l} \text{strictly convex} & \text{if } j = s \\ \text{arbitrary} & \text{if } j = a. \\ \\ \text{strictly convex} & \text{if } i = s \\ \text{weakly convex} & \text{if } i = w \\ \text{arbitrary} & \text{if } i = w \\ \text{arbitrary} & \text{if } i = a. \end{array} \\ \end{array}$

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

so, this works...and I wont finish these drawings...

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

```
g_s^w(n) \le 2n - 3:
```

```
\begin{array}{l} G\in \mathcal{G}^w_s \text{ wlog } \delta>1 \\ |E(G)| = \\ 2n-\text{doubly exteriors} \\ & \text{how many?} \end{array}
```

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$.

if I have an edge vw

 $\begin{array}{l} G\in \mathcal{G}^w_s \mbox{ wlog } \delta>1 \\ |E(G)| = \\ 2n - \mbox{doubly exteriors} \\ & \mbox{how many?} \end{array}$

 $g_s^w(n) \le 2n - 3:$

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$.

```
g_s^w(n) \le 2n - 3:
```

```
\begin{array}{l} G\in \mathcal{G}^w_s \text{ wlog } \delta>1 \\ |E(G)| = \\ 2n-\text{doubly exteriors} \\ & \text{how many?} \end{array}
```

if I have an edge vw $\implies \exists$ doubly exterior in $v \cup H^+(vw)$ $\implies \exists 2$ doubly exteriors

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$.

 $g_s^w(n) \le 2n - 3:$ $G \in \mathcal{G}_s^w \text{ wlog } \delta > 1$ |E(G)| = 2n - doubly exteriorshow many?

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$.

 $g_s^w(n) \le 2n - 3:$ $G \in \mathcal{G}_s^w \text{ wlog } \delta > 1$ |E(G)| = 2n - doubly exteriorshow many?

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$.

 $g_s^w(n) \le 2n - 3$: $G \in \mathcal{G}_s^w \text{ wlog } \delta > 1$ |E(G)| = 2n - doubly exteriorshow many?

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$.

 $g_s^w(n) \ge 2n - 3:$

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_s^s are planar and therefore $g_s^s(n) \leq 3n - 6$.

Theorem [G-M,K]: We have
$$\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$$
.
what is the truth?

Theorem [G-M,K]: We have
$$\lfloor \frac{3}{2}n - 1 \rfloor \leq g_s^s(n) \leq g_s^w(n) = 2n - 3$$
.
what is the truth?

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_s^w .

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_s^w .

Conjecture [G-M,K]: Graphs in \mathcal{G}_s^s are 2-degenerate.

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_s^w .

Conjecture [G-M,K]: Graphs in \mathcal{G}_s^s are 2-degenerate.

Proposition [G-M,K]: \mathcal{G}_s^w is not closed under adding leafs.

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_s^w .

Conjecture [G-M,K]: Graphs in \mathcal{G}_s^s are 2-degenerate.

Proposition [G-M,K]: \mathcal{G}_s^w is not closed under adding leafs.

Question: Is \mathcal{G}_s^s closed under adding leafs?

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_s^w .

Conjecture [G-M,K]: Graphs in \mathcal{G}_s^s are 2-degenerate.

Proposition [G-M,K]: \mathcal{G}_s^w is not closed under adding leafs.

Question: Is \mathcal{G}_s^s closed under adding leafs?

Conjecture [G-M,K]: Every graph has a (multiple) subdivision in \mathcal{G}_s^s .

$A, B \subseteq \mathbb{R}^d \text{ then } A + B := \{a + b \mid a \in A, b \in B\}$

$A, B \subseteq \mathbb{R}^d \text{ then } A + B := \{a + b \mid a \in A, b \in B\}$

if $G \subset \mathbb{R}^2$ then midpoints $\subseteq \{\frac{1}{2}(u+v) \mid u \neq v \in V\} \subset \frac{1}{2}(V+V)$

$$A, B \subseteq \mathbb{R}^d \text{ then } A + B := \{a + b \mid a \in A, b \in B\}$$

if $G \subset \mathbb{R}^2$ then midpoints $\subseteq \{\frac{1}{2}(u+v) \mid u \neq v \in V\} \subset \frac{1}{2}(V+V)$

largest number of convexly independent points in A + A for *n*-vertex convex set $A \subseteq \mathbb{R}^2$ is $\Theta(g_s^s)$.

because only vertices can be added -

$$A, B \subseteq \mathbb{R}^d \text{ then } A + B := \{a + b \mid a \in A, b \in B\}$$

if $G \subset \mathbb{R}^2$ then midpoints $\subseteq \{\frac{1}{2}(u+v) \mid u \neq v \in V\} \subset \frac{1}{2}(V+V)$

largest number of convexly independent points in A + A for *n*-vertex convex set $A \subseteq \mathbb{R}^2$ is $\Theta(g_s^s)$.

because only vertices can be added -

fighting for constants

Theorem [G-M,K]: We have $\widetilde{g}_s^w(n) = 2n$.

fighting for constants

Theorem [G-M,K]: We have $\widetilde{g}_s^w(n) = 2n$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n \rfloor \leq \widetilde{g}_s^s(n) \leq 2n-2$.

fighting for constants

Theorem [G-M,K]: We have $\widetilde{g}_s^w(n) = 2n$.

Theorem [G-M,K]: We have $\lfloor \frac{3}{2}n \rfloor \leq \widetilde{g}_s^s(n) \leq 2n-2$.

Corollary: largest number of convexly independent points in A + A for *n*-vertex convex set $A \subseteq \mathbb{R}^2$ lies within $\lfloor \frac{3}{2}n \rfloor$ and 2n - 2.

fighting for constants

$$A,B\subseteq \mathbb{R}^2$$
 or \mathbb{R}^3 , $|A|=m$, $|B|=n$.

A = B	A convex	B convex	large convex in minkowski sum \mathbb{R}^2
0	0	0	$O(m^{\frac{2}{3}}n^{\frac{2}{3}} + m + n)$
0	×	0	$\Omega(m^{\frac{2}{3}}n^{\frac{2}{3}} + m + n)$
×	0	0	$\Omega(n^{\frac{4}{3}} + n)$
0	×	×	$O((m+n)\log(m+n))$
×	×	×	$\frac{2}{3}n \le \cdot \le 2n-2$

Eisenbrand, Pach, Rothvoß, Sopher Bílka, Buchin, Fulek, Kiyomi, Tanigawa, Tóth Swanepoel, Valtr Tiwary

$$A,B\subseteq \mathbb{R}^2$$
 or \mathbb{R}^3 , $|A|=m$, $|B|=n$.

	l	1	large convex in minkowski sum
A = B	A convex	B convex	\mathbb{R}^2
0	0	0	$O(m^{\frac{2}{3}}n^{\frac{2}{3}} + m + n)$
0	×	0	$\Omega(m^{\frac{2}{3}}n^{\frac{2}{3}} + m + n)$
×	0	0	$\Omega(n^{\frac{4}{3}} + n)$
ο	×	×	$O((m+n)\log(m+n))$
×	×	×	$\frac{2}{3}n \le \cdot \le 2n-2$

Eisenbrand, Pach, Rothvoß, Sopher Bílka, Buchin, Fulek, Kiyomi, Tanigawa, Tóth Swanepoel, Valtr Tiwary

linear expected

$$A,B\subseteq \mathbb{R}^2$$
 or \mathbb{R}^3 , $|A|=m$, $|B|=n$.

$$A,B\subseteq \mathbb{R}^2$$
 or \mathbb{R}^3 , $|A|=m$, $|B|=n$.

