Drawing graphs with vertices and edges in convex position and large polygons in Minkowski sums

Kolja Knauer LIF Marseille

Graph Drawing, September 29, 2015
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in weakly convex position if P on the "boundary" of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in weakly convex position if P on the "boundary" of the convex hull of P
consider graph drawings $f: G \hookrightarrow \mathbb{R}^{2}$ such that:

- edges straight-line segments
- vertices and midpoints of edges on different points
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in weakly convex position if P on the "boundary" of the convex hull of P
consider graph drawings $f: G \hookrightarrow \mathbb{R}^{2}$ such that:
- edges straight-line segments

- vertices and midpoints of edges on different points
$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in weakly convex position if P on the "boundary" of the convex hull of P
consider graph drawings $f: G \hookrightarrow \mathbb{R}^{2}$ such that:
- edges straight-line segments
- vertices and midpoints of edges on different points

$P \subseteq \mathbb{R}^{2}$ in strictly convex position if P is the set of vertices of the convex hull of P
$P \subseteq \mathbb{R}^{2}$ in weakly convex position if P on the "boundary" of the convex hull of P
consider graph drawings $f: G \hookrightarrow \mathbb{R}^{2}$ such that:
- edges straight-line segments
- vertices and midpoints of edges on different points
 midpoints position $\begin{cases}\text { strictly convex } & \text { if } j=s \\ \text { weakly convex } & \text { if } j=w \\ \text { arbitrary } & \text { if } j=a .\end{cases}$ for $i, j \in\{s, w, a\}$ define \mathcal{G}_{i}^{j} as class of graphs drawable s.th.

Theorem [G-M,K]:

$$
\mathcal{G}_{w}^{w}=\mathcal{G}_{a}^{w}=\mathcal{G}_{s}^{a}=\mathcal{G}_{w}^{a}=\mathcal{G}_{a}^{a}
$$

midpoints position $\begin{cases}\text { strictly convex } & \text { if } j=s \\ \text { weakly convex } & \text { if } j=w \\ \text { arbitrary } & \text { if } j=a .\end{cases}$ as class of graphs drawable s.th.

Theorem [G-M,K]:

$$
\mathcal{G}_{w}^{w}=\mathcal{G}_{a}^{w}=\mathcal{G}_{s}^{a}=\mathcal{G}_{w}^{a}=\mathcal{G}_{a}^{a}
$$

 as class of graphs drawable s.th.

$$
g_{i}^{j}(n) \text { max number of edges } n \text {-vertex graph in } \mathcal{G}_{i}^{j}
$$

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are planar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

so, this works...and I wont finish these drawings...

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are ploner and therefore $g_{s}^{s}(n) \leq 3 n-6$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are ploner and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are ploner and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3: \stackrel{\ominus}{v} \times \quad \stackrel{\odot}{w} v$ sees $v w$ and w does not

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$

$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$ $|E(G)|=$
$2 n$-doubly exteriors

v has at most 2 exterior edges
v doesn't see its interior edges

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors
if I have an edge $v w$
$\Longrightarrow \exists$ doubly exterior in $v \cup H^{+}(v w)$ $\int_{0}^{v q} 0$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors
if I have an edge $v w$
$\Longrightarrow \exists$ doubly exterior in $v \cup H^{+}(v w)$ W

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]:
All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$ $|E(G)|=$
$2 n$-doubly exteriors

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors
$\Longrightarrow \exists$ doubly exterior in $v \cup H^{+}(v w)$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors
$\Longrightarrow \exists$ doubly exterior in $v \cup H^{+}(v w)$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \leq 2 n-3:$
$G \in \mathcal{G}_{s}^{w}$ wlog $\delta>1$
$|E(G)|=$
$2 n$-doubly exteriors
if I have an edge $v w$
$\Longrightarrow \exists$ doubly exterior in $v \cup H^{+}(v w)$

$\Longrightarrow \exists 3$ doubly exteriors

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are ploner and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \geq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \geq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are ploar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
$g_{s}^{w}(n) \geq 2 n-3:$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plair and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are plaar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

$$
g_{s}^{s}(n) \geq\left\lfloor\frac{3}{2} n-1\right\rfloor:
$$

$g_{i}^{j}(n)$ max number of edges n-vertex graph in \mathcal{G}_{i}^{j}

Conjecture [Halmann, Onn, Rothblum 07]: All graphs in \mathcal{G}_{s}^{s} are ploar and therefore $g_{s}^{s}(n) \leq 3 n-6$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

$$
g_{s}^{s}(n) \geq\left\lfloor\frac{3}{2} n-1\right\rfloor:
$$

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.
what is the truth?

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$. -what is the truth?

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_{s}^{w}.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$. -what is the truth?

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_{s}^{w}.

Conjecture [G-M,K]: Graphs in \mathcal{G}_{s}^{s} are 2-degenerate.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$. -what is the truth?

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_{s}^{w}.

Conjecture [G-M,K]: Graphs in \mathcal{G}_{s}^{s} are 2-degenerate.

Proposition [G-M,K]: \mathcal{G}_{s}^{w} is not closed under adding leafs.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$. what is the truth?

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_{s}^{w}.

Conjecture [G-M,K]: Graphs in \mathcal{G}_{s}^{s} are 2-degenerate.

Proposition [G-M,K]: \mathcal{G}_{s}^{w} is not closed under adding leafs.

Question: Is \mathcal{G}_{s}^{s} closed under adding leafs?

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n-1\right\rfloor \leq g_{s}^{s}(n) \leq g_{s}^{w}(n)=2 n-3$.

Proposition [G-M,K]: There are cubic graphs in \mathcal{G}_{s}^{w}.

Conjecture [G-M,K]: Graphs in \mathcal{G}_{s}^{s} are 2-degenerate.

Proposition [G-M,K]: \mathcal{G}_{s}^{w} is not closed under adding leafs.

Question: Is \mathcal{G}_{s}^{s} closed under adding leafs?

Conjecture [G-M,K]: Every graph has a (multiple) subdivision in \mathcal{G}_{s}^{s}.

What has all this to do with Minkowski sums?

What has all this to do with Minkowski sums?

$$
A, B \subseteq \mathbb{R}^{d} \text { then } A+B:=\{a+b \mid a \in A, b \in B\}
$$

What has all this to do with Minkowski sums?

$$
A, B \subseteq \mathbb{R}^{d} \text { then } A+B:=\{a+b \mid a \in A, b \in B\}
$$

if $G \subset \mathbb{R}^{2}$ then midpoints $\subseteq\left\{\left.\frac{1}{2}(u+v) \right\rvert\, u \neq v \in V\right\} \subset \frac{1}{2}(V+V)$

What has all this to do with Minkowski sums?

$$
A, B \subseteq \mathbb{R}^{d} \text { then } A+B:=\{a+b \mid a \in A, b \in B\}
$$

if $G \subset \mathbb{R}^{2}$ then midpoints $\subseteq\left\{\left.\frac{1}{2}(u+v) \right\rvert\, u \neq v \in V\right\} \subset \frac{1}{2}(V+V)$
largest number of convexly independent points in $A+A$ for n-vertex convex set $A \subseteq \mathbb{R}^{2}$ is $\Theta\left(g_{s}^{s}\right)$.
because only vertices can be added

What has all this to do with Minkowski sums?

$$
A, B \subseteq \mathbb{R}^{d} \text { then } A+B:=\{a+b \mid a \in A, b \in B\}
$$

if $G \subset \mathbb{R}^{2}$ then midpoints $\subseteq\left\{\left.\frac{1}{2}(u+v) \right\rvert\, u \neq v \in V\right\} \subset \frac{1}{2}(V+V)$
largest number of convexly independent points in $A+A$ for n-vertex convex set $A \subseteq \mathbb{R}^{2}$ is $\Theta\left(g_{s}^{s}\right)$.
because only vertices can be added

fighting for constants

$\widetilde{g}_{i}^{j}(n):=\max n^{\prime}+m$, such that $G \in \mathcal{G}_{i}^{j}$ with $|E(G)|=m,|V(G)|=n$ and n^{\prime} of its vertices can be added to the set of midpoints, such that the resulting set is in $\begin{cases}\text { strictly convex } & \text { if } j=s \\ \text { weakly convex } & \text { if } j=w \text { position. } \\ \text { arbitrary } & \text { if } j=a .\end{cases}$

Theorem [G-M,K]: We have $\widetilde{g}_{s}^{w}(n)=2 n$.
fighting for constants
$\tilde{g}_{i}^{j}(n):=\max n^{\prime}+m$, such that $G \in \mathcal{G}_{i}^{j}$ with $|E(G)|=m,|V(G)|=n$ and n^{\prime} of its vertices can be added to the set of midpoints, such that the resulting set is in $\begin{cases}\text { strictly convex } & \text { if } j=s \\ \text { weakly convex } & \text { if } j=w \text { position. } \\ \text { arbitrary } & \text { if } j=a .\end{cases}$

Theorem [G-M,K]: We have $\widetilde{g}_{s}^{w}(n)=2 n$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n\right\rfloor \leq \widetilde{g}_{s}^{s}(n) \leq 2 n-2$.
fighting for constants
$\widetilde{g}_{i}^{j}(n):=\max n^{\prime}+m$, such that $G \in \mathcal{G}_{i}^{j}$ with $|E(G)|=m,|V(G)|=n$ and n^{\prime} of its vertices can be added to the set of midpoints, such that the resulting set is in $\begin{cases}\text { strictly convex } & \text { if } j=s \\ \text { weakly convex } & \text { if } j=w \text { position. } \\ \text { arbitrary } & \text { if } j=a .\end{cases}$

Theorem $[\mathbf{G}-\mathrm{M}, \mathrm{K}]:$ We have $\widetilde{g}_{s}^{w}(n)=2 n$.

Theorem [G-M,K]: We have $\left\lfloor\frac{3}{2} n\right\rfloor \leq \widetilde{g}_{s}^{s}(n) \leq 2 n-2$.

Corollary: largest number of convexly independent points in $A+A$ for n-vertex convex set $A \subseteq \mathbb{R}^{2}$ lies within $\left\lfloor\frac{3}{2} n\right\rfloor$ and $2 n-2$.
fighting for constants
$\widetilde{g}_{i}^{j}(n):=\max n^{\prime}+m$, such that $G \in \mathcal{G}_{i}^{j}$ with $|E(G)|=m,|V(G)|=n$ and n^{\prime} of its vertices can be added to the set of midpoints, such that the resulting set is in $\begin{cases}\text { strictly convex } & \text { if } j=s \\ \text { weakly convex } & \text { if } j=w \text { position. } \\ \text { arbitrary } & \text { if } j=a .\end{cases}$

Large convexly independent sets in Minkowski sums

$$
A, B \subseteq \mathbb{R}^{2} \text { or } \mathbb{R}^{3},|A|=m,|B|=n
$$

$A=B$	A convex	B convex	large convex in minkowski sum \mathbb{R}^{2}
\circ	\circ	\circ	$O\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$
\circ	\times	\circ	$\Omega\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$
\times	\circ	\circ	$\Omega\left(n^{\frac{4}{3}}+n\right)$
\circ	\times	\times	$O((m+n) \log (m+n))$
\times	\times	\times	$\frac{2}{3} n \leq \cdot \leq 2 n-2$

Eisenbrand, Pach, Rothvoß, Sopher Bílka, Buchin, Fulek, Kiyomi, Tanigawa, Tóth Swanepoel, Valtr
Tiwary

Large convexly independent sets in Minkowski sums

$$
A, B \subseteq \mathbb{R}^{2} \text { or } \mathbb{R}^{3},|A|=m,|B|=n
$$

$A=B$	A convex	B convex	large convex in minkowski sum \mathbb{R}^{2}
\circ	\circ	\circ	$O\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$
\circ	\times	\circ	$\Omega\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$
\times	\circ	\circ	$\Omega\left(n^{\frac{4}{3}}+n\right)$
\circ	\times	\times	$O((m+n) \log (m+n))$
\times	\times	\times	$\frac{2}{3} n \leq \cdot \leq 2 n-2$

Eisenbrand, Pach, Rothvoß, Sopher
Bílka, Buchin, Fulek, Kiyomi, Tanigawa, Tóth
Swanepoel, Valtr
Tiwary

Large convexly independent sets in Minkowski sums

$$
A, B \subseteq \mathbb{R}^{2} \text { or } \mathbb{R}^{3},|A|=m,|B|=n
$$

| | | | large convex in minkowski sum | |
| :---: | :---: | :---: | :---: | :--- | :--- |
| $A=B$ | A convex | B convex | \mathbb{R}^{2} | \mathbb{R}^{3} |
| \circ | \circ | \circ | $O\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$ | $\leq m n$ |
| \circ | \times | \circ | $\Omega\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$ | $-\leq m n$ |
| \times | \circ | \circ | $\Omega\left(n^{\frac{4}{3}}+n\right)$ | $\frac{1}{3} n^{2} \leq \cdot \leq \frac{3}{8} n^{2}+O\left(n^{\frac{3}{2}}\right)$ |
| \circ | \times | \times | $O((m+n) \log (m+n))$ | $m n \leq$. |
| \times | \times | \times | $\frac{2}{3} n \leq \cdot \leq 2 n-2$ | $\frac{1}{4} n^{2} \leq$. |

Eisenbrand, Pach, Rothvoß, Sopher
Bílka, Buchin, Fulek, Kiyomi, Tanigawa, Tóth
Swanepoel, Valtr
Tiwary
Fukuda, Weibel
Halman, Onn, Rothblum

Large convexly independent sets in Minkowski sums

$$
A, B \subseteq \mathbb{R}^{2} \text { or } \mathbb{R}^{3},|A|=m,|B|=n
$$

$A=B$	A convex	B convex	large convex in minkowski sum \mathbb{R}^{2}	
\bigcirc	\bigcirc	\bigcirc	$O\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$	$\leq m n$
\bigcirc	\times	\bigcirc	$\Omega\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$	$\leq m n$
\times	\bigcirc	\bigcirc	$\Omega\left(n^{\frac{4}{3}}+n\right)$	$\frac{1}{3} n^{2} \leq \cdot \leq \frac{3}{8} n^{2}+O\left(n^{\frac{3}{2}}\right)$
\bigcirc	\times	\times	$O((m+n) \log (m+n))$	$m n \leq$.
\times	\times	\times	$\frac{2}{3} n \leq \cdot \leq 2 n-2$	$\frac{1}{4} n^{2} \leq$

Eisenbrand, Pach, Rothvoß, Sopher
Bílka, Buchin, Fulek, Kiyomi, Tanigawa, Tóth
Swanepoel, Valtr
Tiwary
Fukuda, Weibel
Halman, Onn, Rothblum

linear expected

