A Tale of two communities Assessing Homophily in Node-Link Diagrams

23rd International Symposium on Graph-Drawing and Network Visualization Los Angeles, September 26, 2015

Wouter Meulemans *City University London*

André Schulz *FernUniversität in Hagen*

homophily is a concept in social network analysis

- homophily is a concept in social network analysis
- more likely that two individuals with a common charactristic form a link \rightarrow homophily

- homophily is a concept in social network analysis
- more likely that two individuals with a common charactristic form a link \rightarrow homophily

- homophily is a concept in social network analysis
- more likely that two individuals with a common charactristic form a link \rightarrow homophily

(example: same-gender links are more likely in a friendship-networks)

reason 1 for homophily: "Birds of feather flock together" (social selection)

- **homophily** is a concept in social network analysis
- more likely that two individuals with a common charactristic form a link \rightarrow homophily

- reason 1 for homophily: "Birds of feather flock together" (social selection)
- reason 2 for homophily: we form characteristics similar to our friends
 (social influence)

- homophily is a concept in social network analysis
- more likely that two individuals with a common charactristic form a link \rightarrow homophily

- reason 1 for homophily: "Birds of feather flock together" (social selection)
- reason 2 for homophily: we form characteristics similar to our friends
- also effects opposite to homophily can occur (heterophily)

- **homophily** is a concept in social network analysis
- more likely that two individuals with a common charactristic form a link \rightarrow homophily

- reason 1 for homophily: "Birds of feather flock together" (social selection)
- reason 2 for homophily: we form characteristics similar to our friends
- also effects opposite to homophily can occur (heterophily)
- homophily is not restricted to social networks (Question: groups = clusters?)

fraction p of the individuals

fraction q of the individuals

fraction p of the individuals

A random link is

- with probability p^2 : $\mathsf{A} \leftrightarrow \mathsf{A}$
- with probability $q^2 \colon \mathsf{B} \leftrightarrow \mathsf{B}$
- with probability $2pq: \mathsf{A} \leftrightarrow B$

we want to measure the degree of homophily in a network

• we want to measure the **degree of homophily** in a network

Important Cases ① only cross-group links (heterophily)

(2) 2pq cross-group links (balanced)

③ no cross-group links (homophily)

• we want to measure the **degree of homophily** in a network

Important Cases (1) only cross-group links (heterophily) ()

(2) 2pq cross-group links (balanced) 1/2

③ no cross-group links (homophily) 1

Degree of Homophily —

A Tale of two Communities

Meulemans and Schulz, GD15

A Tale of two Communities

Can an observer assess homophily in a node-link diagram?

Can an observer assess homophily in a node-link diagram?

Subquestions:

Which node-link diagram layout is best suitable for detecting homophily?

Can an observer assess homophily in a node-link diagram?

Subquestions:

- Which node-link diagram layout is best suitable for detecting homophily?
- Is there a tendency for overestimation or underestimation?

Can an observer assess homophily in a node-link diagram?

Subquestions:

- Which node-link diagram layout is best suitable for detecting homophily?
- Is there a tendency for overestimation or underestimation?
- Are there general design principles to improve homophily detection?

Can an observer assess homophily in a node-link diagram?

Subquestions:

- Which node-link diagram layout is best suitable for detecting homophily?
- Is there a tendency for overestimation or underestimation?
- Are there general design principles to improve homophily detection?

We only consider node-link diagrams and the "two-groups-scenario"

the right

A Tale of two Communities

Meulemans and Schulz, GD15

Meulemans and Schulz, GD15

A Tale of two Communities

H1 For Homophily assessment we have

force-directed < **polarized** < **bipartite**

x < y means y is better than x

H1 For Homophily assessment we have force-directed < polarized < bipartite</p>

x < y means y is better than x

H2 For Homophily assessment we have

unbalanced < balanced

H1 For Homophily assessment we have force-directed < polarized < bipartite</p>

x < y means y is better than x

H2 For Homophily assessment we have

unbalanced < balanced

H3 For shortest path queries we have force-directed > polarized > bipartite

A Tale of two Communities

mixed design (too much trials otherwise)

mixed design (too much trials otherwise)
between subject

- 3 graph sizes (20-28 nodes, 20-40 edges)

mixed design (too much trials otherwise)

between subject

- 3 graph sizes (20-28 nodes, 20-40 edges)

within subjects

- 3 layouts
- balanced (50:50) and unbalanced (25:75)
- 5 degree of homophily levels (only 3 for unbalanced)
- 2 tasks (homophily / length of shortest path)

mixed design (too much trials otherwise)

between subject

- 3 graph sizes (20-28 nodes, 20-40 edges)

within subjects

- 3 layouts
- balanced (50:50) and unbalanced (25:75)
- 5 degree of homophily levels (only 3 for unbalanced)
- 2 tasks (homophily / length of shortest path)

demo of the user study

http://tutte.fernuni-hagen.de/~schulza

Evaluating Results

Evaluating Results

Users have an internal "scale" for the degree of homophily

Evaluating Results

Users have an internal "scale" for the degree of homophily

Meulemans and Schulz, GD15

polarized < bipartite, force-directed</p>

A Tale of two Communities

- polarized < bipartite, force-directed
- no difference between force-direced and bipartite

evidence

polarized < bipartite, force-directed</p>

no difference between force-direced and bipartite

A Tale of two Communities

Meulemans and Schulz, GD15

statistical

evidence

individual results, decreasing parts = defects (red)

- individual results, decreasing parts = defects (red)
- many inconsistencies (not clear from the aggregated data)

- individual results, decreasing parts = defects (red)
- many inconsistencies (not clear from the aggregated data)
- evidence that bipartite > force-directed

- individual results, decreasing parts = defects (red)
- many inconsistencies (not clear from the aggregated data)
- evidence that bipartite > force-directed
- tendency to overestimate in the polarized layout

Meulemans and Schulz, GD15

forced-directed better than polarized better than bipartite (again supported by statistical evidence)

forced-directed better than polarized better than bipartite (again supported by statistical evidence)

there was one problematic instance in size group 3 for the bipartite layout, caused by collinearities in the layout

forced-directed better than polarized better than bipartite (again supported by statistical evidence)

- there was one problematic instance in size group 3 for the bipartite layout, caused by collinearities in the layout
- size was not a big influence

H1 For Homophily assessment we have

force-directed < **polarized** < **bipartite**

H1 For Homophily assessment we have

force-directed < **polarized** < **bipartite**

 we can only partially accept H1: polarized < bipartite polarized < force-directed

 internal consistency data supports

force-directed < bipartite

H1 For Homophily assessment we have

force-directed < **polarized** < **bipartite**

- we can only partially accept H1:
 polarized < bipartite</p>
 polarized < force-directed</p>
- internal consistency data supports

force-directed < bipartite

 H2 For Homophily assessment unbalanced < balanced
 H3 For shortest path queries we have force-directed > polarized > bipartite

H1 For Homophily assessment we have

force-directed < **polarized** < **bipartite**

- we can only partially accept H1:
 polarized < bipartite</p>
 polarized < force-directed</p>
- internal consistency data supports

force-directed < bipartite

- H2 For Homophily assessment unbalanced < balanced
 H3 For shortest path queries we have
 force-directed > polarized > bipartite
 - we can accept H2 and H3 based on our statistical analysis

homophily is difficult to assess, but when averaging over a set of indivduals we get a good estimate

- homophily is difficult to assess, but when averaging over a set of indivduals we get a good estimate
- the bipartite layout helped to assess homophily at the costs of more difficult path tracing

- homophily is difficult to assess, but when averaging over a set of indivduals we get a good estimate
- the bipartite layout helped to assess homophily at the costs of more difficult path tracing
- node seperation, was not the primary reason for this, since the polarized layout was outperformed

- homophily is difficult to assess, but when averaging over a set of indivduals we get a good estimate
- the bipartite layout helped to assess homophily at the costs of more difficult path tracing
- node seperation, was not the primary reason for this, since the polarized layout was outperformed
- the unbalanced case is harder

- homophily is difficult to assess, but when averaging over a set of indivduals we get a good estimate
- the bipartite layout helped to assess homophily at the costs of more difficult path tracing
- node seperation, was not the primary reason for this, since the polarized layout was outperformed
- the unbalanced case is harder
- there is a tendency to overestimate in the polarized layout

- homophily is difficult to assess, but when averaging over a set of indivduals we get a good estimate
- the bipartite layout helped to assess homophily at the costs of more difficult path tracing
- node seperation, was not the primary reason for this, since the polarized layout was outperformed
- the unbalanced case is harder
- there is a tendency to overestimate in the polarized layout

Thank you for your attention!